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In modern society, route guidance problems can be found everywhere. Reinforcement learning models can be normally used to
solve such kind of problems; particularly, Sarsa Learning is suitable for tackling with dynamic route guidance problem. But how to
solve the large state space of digital road network is a challenge for Sarsa Learning, which is very common due to the large scale of
modern road network. In this study, the hierarchical Sarsa learning based route guidance algorithm (HSLRG) is proposed to guide
vehicles in the large scale road network, in which, by decomposing the route guidance task, the state space of route guidance system
can be reduced. In this method, Multilevel Network method is introduced, and Differential Evolution based clustering method is
adopted to optimize the multilevel road network structure.The proposed algorithm was simulated with several different scale road
networks; the experiment results show that, in the large scale road networks, the proposedmethod can greatly enhance the efficiency
of the dynamic route guidance system.

1. Introduction

In the recent decades, more and more people own their
private vehicles, and the traffic pressure in the city increased
rapidly. Citizens’ life quality is always undermined by daily
delay which is one of the consequences of traffic congestion.
The congestion can also cause the aggravation of pollution
and the increasing of travelling cost. The dynamic route
guidance method, which can not only provide travel routes
but also relieve the traffic congestion, attractedmany scholars’
attention [1–3].

Dynamic route guidance system (DRGS) is an important
part of Intelligent Transportation System (ITS), in which
centrally determined route guidance system (CDRGS) [4] is
economically effective and efficient for drivers and can avoid
Braess’s paradox [5]. CDRGS guides all the vehicles for all
the possible origin destination (OD) pairs with the real-time
information and considers guidance in terms of the whole
traffic system. However, traditional route guidance methods,
like Dijkstra Algorithm [6] and A∗ Algorithm[7], are not
suitable in the dynamic traffic environment [8], because these
shortest path algorithms may cause traffic concentration
and overreaction phenomenon when they are adopted to

guide plenty of vehicles. Multiple paths routing algorithm
[9] could relief the traffic jam by distributing traffic into
different paths and does not depend too much on the real-
time data, but when it needs to compute new solutions, the
response time may be lengthened. Reinforcement learning
strategy has been widely used in the dynamic environment
[10–13], because it can reduce the computational time and
make full use of real-time information.With these characters,
reinforcement learning strategy has been used in the dynamic
route guidance system. Shanqing et al. [14] applied Sarsa
learning to guide vehicles in the dynamic environments by
consideringminimizing the route computational time. In our
earlier study [15], Sarsa learning is adopted to guide vehicles
in CDRGS and the Boltzmann distribution is selected as the
action selection method. The results show that, compared
with traditional methods, the proposed Sarsa learning based
route guidance algorithm (SLRGA) and Sarsa learning with
Boltzmann distribution algorithm (SLWBD) can strongly
reduce the travelling time and relieve traffic congestion.

However, the scale of real-world road networks is usually
large, and then the scale of state set of reinforcement learn-
ing based route guidance system responding to these road
networks is huge. Thus it is really difficult for reinforcement
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learning based route guidance system to be convergent in
the larger scale traffic environment. So, how to solve the
route guidance problem in the large scale road network with
reinforcement learning method is a challenge. Hierarchical
reinforcement learning (HRL) can improve in both time and
searching space for learning and execution of the whole task
by recursively decomposing larger and complex tasks into
sequentially executed smaller and simpler subtasks [13]. The
decomposition strategy is a key point in the hierarchical
context [16], and when HRL is used in solving the route
guidance problem in the large scale road networks, avoiding
congestion phenomenon and reducing vehicles’ traveling
time can be achieved by an effective decomposition of the
route guidance.

Heng Ding et al. [17] proposed a macroscopic fundamen-
tal diagram (MFD) based traffic guidance perimeter control
coupled (TGPCC) method to improve the performance of
macroscopic traffic networks. They establish a programming
function according to the network equilibrium rule of traffic
flow amongst multiple MFD subregions, which reduce the
congestion phenomenon by effectively assigning the traffic
flow amongst different subregions. So, partitioning the orig-
inal network and assigning traffic flows in subnetworks are
effectively considered as the objective of the decomposition
strategy when HRL is adopted for solving route guidance
problems.

Multilevel approach has been successfully employed in
a variety of problems [18] and Multilevel Network method
[19] is considered to be introduced to segment the original
network into several subnetworks and generate higher level
network. S. Jung et al. [20] indicated that the optimal route on
higher level network between two nodes is equivalent to that
on original road network. Thus, Multilevel Network method
can be utilized to perform the route guidance task in the large
scale road network, in which route guidance on the higher
level network can be seen as the decomposition of the route
guidance task, and as a result, this method would not affect
the preciseness of route guidance.

Therefore, Multilevel Network structure based HRL is
adopted in this study, and considering the on-line learning
characteristic of Sarsa learning method and its effective
performance in solving route guidance problems[15], the
hierarchical Sarsa learning based route guidance algorithm
(HSLRG) is proposed to guide vehicles with proper routes
in the large scale road network. The route guidance task
can be divided into several smaller route guidance tasks,
and then these smaller route guidance tasks perform on
the corresponding subnetworks. To generate the Multi-
level Network structure, traditional clustering methods like
K-means [21] and K-modes [22] have been considered.
However comparing with conventional clustering meth-
ods, evolution based clustering method can avoid tripping
into local optimal problem [19]. In addition, evolutionary
algorithm can always deal with multiobjective problems
effectively [23–26]. In this study, Differential Evolution [27,
28] based clustering method, which can be adopted in
complex environment [29], is introduced, andmultiobjective
functions are designed to optimize the Multilevel Network
structure.

The contribution of this work is shown as follows: Firstly,
we proposed a novel Multilevel Network structure based
dynamic route guidancemethod. By reducing the state action
space with Multilevel Network structure, the route guidance
method can greatly reduce the congestion phenomenon in
the road network and improve the efficiency of the whole
transportation system notably. Secondly, we provide a Dif-
ferential Evolution based clustering method to construct the
Multilevel Network with multiobjectives. These objectives
consider optimizing the structure from both higher level
network and subnetwork aspects and optimize the structure
greatly.

This paper includes seven sections. Section 2 intro-
duces the Multilevel Network based route guidance model
(MNRGM). Section 3 introduces the Differential Evolution
based clustering method. Section 4 proposes HSLRG and
describes the main procedure and details of it. Section 5
introduces the experimental conditions and discusses and
analyzes the results. The last parts of this paper are the
conclusion and acknowledgement sections.

2. Multilevel Network
Based Route Guidance Model

In this section, MNRGM is introduced. HRL can reduce the
searching space, and in this study, it is used to decompose the
vehicle guidance from the original network into subnetworks.
Sarsa learning, which fits for solving dynamic environment
problems [30, 31], is adopted to guide vehicles in the Mul-
tilevel Network. The purpose of this model can be seen as
follows:

(i) Reduce the average travelling time of vehicles in the
large scale road network.

(ii) Reduce the probability of congestion in the large scale
road network.

(iii) Reduce the searching space of reinforcement learning
in the large scale road.

And we assumed that the real-time travelling information in
the Multilevel Network can be collected.

2.1. Multilevel Network Model. Multilevel Network is con-
structed by dividing the original network into several sub-
networks. The example of two-level network can be seen as
Figure 1.Theboundary nodes of subnetworks and the optimal
routes between them are nodes and links on higher level
network.

In this model, the topographical road map is seen as
the directed network 𝐺(𝑉, 𝐸), where 𝑉 denotes the set of
nodes of road network and 𝐸 denotes the set of links of
road network; i.e., 𝑠𝑖𝑗 corresponds to the link from node 𝑖
to node 𝑗. The cost of it in this model is measured by the
traveling time. If G(V, E) can be divided intom subnetworks
like 𝐺1(𝑉1, 𝐸1), 𝐺2(𝑉2, 𝐸2), . . . , 𝐺𝑚(𝑉𝑚, 𝐸𝑚) then

𝑉 = 𝑉1 ∪ 𝑉2 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑚,
𝐸 = 𝐸1 ∪ 𝐸2 ∪ ⋅ ⋅ ⋅ ∪ 𝐸𝑚

(1)



Journal of Advanced Transportation 3

Original
network

Higher level
network

Figure 1: An example of Multilevel Network.

In the subnetwork, the nodes can be divided into two
categories: interior nodes and boundary nodes. A node is a
boundary node if it belongs to more than one subnetwork,
and vice versa.

The Multilevel Network model is shown as follows.

Indices. 𝑖, 𝑗, 𝑟 ∈ {1, 2, . . . , 𝑛}, index of node.
Parameters

𝑛: the number of nodes.

𝑜: origin node.

𝑑: destination node.

𝑅(𝑜, 𝑑): a route from 𝑜 to 𝑑.
𝑠𝑘𝑖𝑗: link from node 𝑖 to node 𝑗 in level 𝑘.
𝑘: index of the level in Multilevel Network, 𝑘 ∈
{1, 2, . . . , 𝐾𝑚𝑎𝑥}.
𝐾𝑚𝑎𝑥: the maximum level of Multilevel Network.

𝑛𝑘: the number of nodes in level 𝑘 of Multilevel
Network.

𝑐𝑘𝑖𝑗: cost of link 𝑠𝑖𝑗 in level 𝑘 of Multilevel Network.

𝐹(𝑟): set of nodes connected from node 𝑟.
𝑇(𝑟): set of nodes connected to node 𝑟.

Decision Variables

𝑥𝑘𝑖𝑗

= {
{
{

1, if and only if link 𝑠𝑖𝑗 𝑖𝑠 included 𝑖𝑛 𝑅 (𝑜, 𝑑) in level 𝑘
0, otherwise

(2)

Theoptimal path onMultilevelNetwork can be calculated
as follows:

min
𝐾max

∑
𝑘=1

𝑛𝑘

∑
𝑖=1

𝑛𝑘

∑
𝑗=1

𝑐𝑘𝑖𝑗𝑥𝑘𝑖𝑗 (3)

s.t. ∑
𝑗∈𝐹(𝑟)

𝑥𝑘𝑟𝑗 − ∑
𝑖∈𝑇(𝑟)

𝑥𝑘𝑖𝑟 =
{{{{
{{{{
{

1 (𝑟 = 𝑜)
0 (𝑟 ∈ 𝑉 \ {𝑜, 𝑑})
−1 (𝑟 = 𝑑)

(4)

𝑥𝑘𝑖𝑗 ∈ {0, 1} , ∀𝑖, 𝑗, 𝑘 (5)

where constraints (4) and (5) can ensure the flow conserva-
tion rule to be observed for 𝑉 \ {𝑜, 𝑑}.

The 𝐾𝑚𝑎𝑥 is set as 2 in the simulations of this study.
We use 𝐺ℎ𝑖𝑔ℎ(𝑉󸀠, 𝐸󸀠) to represent the higher level net-

work, where𝑉󸀠 and𝐸󸀠 are the set of nodes and links of higher
level network, respectively.

The set of boundary nodes between any subnetworks
𝐺𝑖(𝑉𝑖, 𝐸𝑖) and𝐺𝑗(𝑉𝑗, 𝐸𝑗) is𝑉𝑖∩𝑉𝑗, where 𝑖 ̸= 𝑗.We use𝐵(𝐺𝑖) to
represent the set of boundary nodes of subnetwork𝐺𝑖(𝑉𝑖, 𝐸𝑖).
Then,

𝐵 (𝐺𝑖) =
𝑚

⋃
𝑗=1

(𝑉𝑖 ∩ 𝑉𝑗) , where 𝑖 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖. (6)

Let 𝐵𝑇 represent the set of the boundary nodes:

𝐵𝑇 =
𝑚

⋃
𝑖=1

𝐵 (𝐺𝑖) where𝑉󸀠 = 𝐵𝑇. (7)

Links of the higher level network are calculated and
generated based on 𝐵𝑇. In 𝐺𝑖(𝑉𝑖, 𝐸𝑖), we use 𝑙(𝑢, V) to
represent the optimal route between any node pair 𝑢 and V
in 𝐵(𝐺𝑖); the cost function 𝑓𝑐(𝑢, V) of 𝑙(.) is shown as follows:

𝑓𝑐 (𝑢, V) = {
{
{

𝑙 (𝑢, V) if there is a route from 𝑢 to V on𝐺𝑖 (𝑉𝑖, 𝐸𝑖) without any other boundary node on the route;
0 otherwise. (8)

For subnetwork 𝐺𝑖(𝑉𝑖, 𝐸𝑖), let
𝐿 (𝐺𝑖) = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ {(𝐵 (𝐺𝑖) × 𝐵 (𝐺𝑖) }} (9)

Let 𝐿𝑇 represent the set of links of the higher level network:

𝐿𝑇 =
𝑚

⋃
𝑖=1

𝐿 (𝐺𝑖) where𝐸󸀠 = 𝐿𝑇 (10)

In order to guide vehicles in this structure, once the OD
pairs are determined, the higher level network is extended,
the extension of higher level network can be denoted as
𝐺󸀠ℎ𝑖𝑔ℎ(𝐵𝑇

󸀠 , 𝐿𝑇󸀠), where 𝐵𝑇󸀠 is the extension of 𝐵𝑇, which can

be shown as 𝐵𝑇󸀠 = 𝐵𝑇 ∪ 𝑂 ∪ 𝐷, and 𝐿𝑇󸀠 is the extension
of 𝐿𝑇, which is shown as 𝐿𝑇󸀠 = 𝐿𝑇 ∪ 𝐿(𝑂) ∪ 𝐿(𝐷), 𝐿(𝑂)
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denotes the set of routes from original node to boundary
nodes in the corresponding subnetwork, and 𝐿(𝐷) denotes
the set of routes from boundary nodes to destination node in
the corresponding subnetworks, which can be shown as

𝐿 (𝑂) = {(𝑜, 𝑢) | (𝑜, 𝑢) ∈ {(𝑂 × 𝐵 (𝐺𝑖) }} (11)

𝐿 (𝐷) = {(𝑢, 𝑑) | (𝑢, 𝑑) ∈ {(𝐵 (𝐺𝑗) × 𝐷}} (12)

where 𝑂 is the set of original nodes, 𝐷 is set of destination
nodes, and 𝐺𝑖 and 𝐺𝑗 are the corresponding subnetworks of𝑂 and 𝐷.

2.2. Multilevel Network Based Hierarchical Reinforcement
Learning

2.2.1. Hierarchical Sarsa Learning. Hierarchical reinforce-
ment learning (HRL)[32] decomposes a reinforcement learn-
ing task into a hierarchy of subtasks so that lower-level child
tasks can be invoked by higher-level parent tasks to reduce
computing time and searching space.

In this study, the route guidance tasks are decomposed
according to the structure of the Multilevel Network. As
shown in Figure 2, the guidance in the higher level network
(the selected series of links in the higher level network)
determines the subtasks in the subnetworks. It guides vehicles
from a node in the subnetwork to a boundary node or a
destination node in this subnetwork. For example, as shown
in Figure 3, the vehicle guidance on the original network is
decomposed into guidance on three subnetworks, which can
be seen as follows:

(i) Vehicle departs from original node 𝑂 and arrives at
boundary node 𝐵𝑖 in subnetwork 𝐺1;

(ii) Vehicle departs from boundary node 𝐵𝑖 and arrives at
boundary node 𝐵𝑗 in subnetwork 𝐺2;

(iii) Vehicle departs from boundary node𝐵𝑗 and arrives at
destination node 𝐷 in subnetwork 𝐺3.

In the hierarchical Sarsa learning model, the agent is
the CDRGS in each road network (both subnetworks and
higher level network), and the purpose of the CDRGS is
to guide all the vehicles in the traffic road network and to
pursue the optimal travelling time. For each agent, the state
is continuous, which is the positions and destinations of all
the vehicles in the corresponding subnetwork (or higher level
network); the description of the continuous state space of any
graph 𝐺𝑖 can be shown as follows:

𝑆𝑡𝑎𝑡𝑒𝑐 (𝐺𝑖)
= ((𝑝 (V𝑒𝑙1) , 𝑑 (V𝑒𝑙1)) , . . . , (𝑝 (V𝑒𝑙𝑗) , 𝑑 (V𝑒𝑙𝑗)) , . . .)

(13)

where 𝐺𝑖 is the 𝑖th subnetwork, V𝑒𝑙𝑗 ∈ 𝑉𝐸𝐿(𝐺𝑖) are the
vehicles in 𝐺𝑖, 𝑝(V𝑒𝑙𝑗) is the position of vehicle V𝑒𝑙𝑗, and𝑑(V𝑒𝑙𝑗) is the destination of vehicle 𝑑(V𝑒𝑙𝑗).

In order to reduce the state space, the discrete stateswhich
are the nodes and destinations of each vehicle are adopted.
In the original network, the state space is 𝑆𝑡𝑎𝑡𝑒𝑑(𝐺); with the

Multilevel Network structure, the state space is reduced, each
subnetwork has the state space 𝑆𝑡𝑎𝑡𝑒𝑑(𝐺𝑖), the state space of
higher level network is 𝑆𝑡𝑎𝑡𝑒𝑑(𝐺ℎ𝑖𝑔ℎ), and the function can be
seen as follows:
𝑆𝑡𝑎𝑡𝑒𝑑 (𝐺𝑖)

= ((V (V𝑒𝑙1) , 𝑑 (V𝑒𝑙1)) , . . . , (V (V𝑒𝑙𝑗) , 𝑑 (V𝑒𝑙𝑗)) , . . .)
(14)

where 𝐺𝑖 is the 𝑖th subnetwork, V𝑒𝑙𝑗 ∈ 𝑉𝐸𝐿(𝐺𝑖) are the
vehicles in subnetwork 𝐺𝑖, V ∈ 𝑉𝑖, 𝑉𝑖 is the set of nodes in
subnetwork 𝐺𝑖, V(V𝑒𝑙𝑗) is the nearest node in front of vehicle
V𝑒𝑙𝑗, and 𝑑(V𝑒𝑙𝑗) is the destination node of vehicle 𝑑(V𝑒𝑙𝑗).

The action of each agent is an array which is composed of
selections of next guided link of each vehicle, which is shown
as follows:

𝐴𝑐𝑡𝑖𝑜𝑛 (𝐺𝑖) = (𝑒 (V𝑒𝑙1) , . . . , 𝑒 (V𝑒𝑙𝑗) , . . .) (15)

where 𝑒(.) ∈ 𝐸𝑖 is the guided next link of vehicle, and 𝐸𝑖 is the
set of links in subnetwork 𝐺𝑖.

According to the 𝐴𝑐𝑡𝑖𝑜𝑛(𝐺𝑖), as shown in Figure 4, in
each network (both higher level network and subnetwork),
vehicles would receive their guidance information. And the
passing time which is the time spent by each vehicle in the
corresponding link composes the penalty; the penalty can be
seen as follows:

𝑃 (𝐺𝑖) = (𝑡 (V𝑒𝑙1) , 𝑡 (V𝑒𝑙2) , . . . , 𝑡 (V𝑒𝑙𝑗) , . . .) (16)

where 𝑡(V𝑒𝑙𝑗) is passing time of vehicle V𝑒𝑙𝑗 for the link 𝑒(V𝑒𝑙𝑗).
Q-value matrix is used to guide vehicles in each sub-

network and higher level network, in which each Q-value
represents the estimate optimal traveling time from the
corresponding link to the destination. The proposed vehicle
guidance method on both level networks is based on Sarsa
learning. The equation of updating Q-values in the matrix
with Sarsa learning method is shown as follows:

𝑄𝑑 (𝑖, 𝑗) ←󳨀 𝑄𝑑 (𝑖, 𝑗) + 𝛼
∗ (𝑡𝑖𝑗 + 𝛾 ∗ 𝑄𝑑 (𝑗, 𝑘) − 𝑄𝑑 (𝑖, 𝑗))

(17)

where 𝑄𝑑(𝑖, 𝑗) is the estimated optimal traveling time to
destination 𝑑 for each vehicle which selects moving to node
𝑗 in node 𝑖; 𝑡𝑖𝑗 is the travelling time of the latest passing time
of link 𝑠𝑖𝑗; 𝑘 is the node belonging to 𝐹(𝑗) (the set of nodes
connected from node 𝑗), through which vehicles travel to
destination 𝑑 after they passed link 𝑠𝑖𝑗; 𝛼 is the learning rate.
𝛾 is the discount rate.

Boltzmann distribution [33] is adopted as the probability
distribution of action selection in this study which can
balance the exploration and exploitation of action selection
according to the Q-values. The probability model of action
selection is shown as follows:

𝑝𝑑 (𝑖, 𝑗) ←󳨀 𝑒−(1/𝜏)(𝑄𝑑(𝑖,𝑗)/𝐸𝑄𝑑(𝑖))
∑𝑗∈𝐴(𝑖) 𝑒−(1/𝜏)(𝑄𝑑(𝑖,𝑗)/𝐸𝑄𝑑(𝑖)) (18)

where𝐸𝑄(𝑖) is the averageQ-value fromnode 𝑖 to destination
𝑑; 𝜏 is 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.

𝜏 = 𝜏𝑚𝑎𝑥
1 + 𝑒−𝛼(𝑁𝑉−𝛽) (19)
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Figure 2: An example of vehicle guidance in the higher level
network.
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Figure 3: An example of decomposition of route guidance.

where 𝜏𝑚𝑎𝑥, 𝛼, 𝛽 are constants; 𝑁𝑉 is the total number of
vehicles in the road network.

2.2.2. Optimizing Multilevel Network Structure. In this study,
in order to accelerate the convergence of reinforcement learn-
ing in the Multilevel Network, the structure of the Multilevel
Network should be considered. Both state action space of
subnetworks and higher level network can be optimized
with clustering method. Two objective functions have been
considered, which are described as follows:

∑󵄨󵄨󵄨󵄨󵄨𝐵𝑇𝑖
󵄨󵄨󵄨󵄨󵄨 ∗ 𝑆 (𝐺𝑖) (20)

𝑆 (𝐺ℎ𝑖𝑔ℎ) (21)

where 𝑆(.) is the searching space of the road network, and it
can be calculated as follows:

𝑆 (𝐺) =
|𝑉|

∏
𝑖=1

𝐸 (V𝑖) (22)

where 𝐸(V) is the number of links departing from node V if
the set is not null; otherwise it is 1.

3. Differential Evolution
Based Clustering Method

Ding et al. [17] divided the heterogeneous networks into
homogeneous subregions, which have small variances in

Agent(CDRGS)

· · · · · ·e(velj)

vehicle link
node

Figure 4: Demonstration of vehicle guidance in the network.

link densities, such that each subregion has a well-defined
MFD shape. In the proposedmethod, multiple homogeneous
similar scale subnetworks and a virtual higher level network
which can effectively assign traffic flows among them are
required. In this section, a Differential Evolution based
clustering method is used to generate the previous Multilevel
Network structure offline.

3.1. DE Based ClusteringMethod. DE [27, 28] is a well-known
direction based evolution method which can search the
optimal solution effectively in large scale searching space. In
order to construct the proper Multilevel Network structure,
various individuals should be maintained in the population,
and an effective evolution direction is necessary. Thus DE is
selected as the clustering method.

In the proposed method, decoding operator is clustering
the road network, and after decoding, each gene in the
chromosome becomes a subnetwork. On the other word,
subnetwork𝐺𝑖(𝑉𝑖, 𝐸𝑖) is cluster 𝑖 of the clustering result of the
corresponding chromosome.

In order to accelerate the convergence of reinforcement
learning in the Multilevel Network, two factors are consid-
ered when the Multilevel Networks are constructed. The first
one is the convergence efficiency of reinforcement learning
on each subnetwork. The second one is the convergence effi-
ciency of reinforcement learning on the higher level network.
Therefore, there are two objective functions, minimizing the
state action space of all subnetworks in (23) and minimizing
the state action space of the higher level network in (24).

∑󵄨󵄨󵄨󵄨󵄨𝐵𝑇𝑖
󵄨󵄨󵄨󵄨󵄨 ∗ 𝑆 (𝐺𝑖) (23)

𝑆 (𝐺ℎ𝑖𝑔ℎ) (24)

In order to achieve these two objective functions simulta-
neously, a fitness function is used, which is shown as follows:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = log∑󵄨󵄨󵄨󵄨󵄨𝐵𝑇𝑖
󵄨󵄨󵄨󵄨󵄨 ∗ 𝑆 (𝐺𝑖) + log 𝑆 (𝐺ℎ𝑖𝑔ℎ) (25)

3.2. Genetic Representation. When the Multilevel Network
structure is constructed by the DE based clustering method,
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the number of clusters has strong influence on the number of
nodes and links of the higher level network [34], which will
affect the two objective functions. So, an appropriate number
of clusters should be found to optimize the structure of the
Multilevel Network.

In this study, in order to get the proper number of clusters,
two vectors, coordinate value vector and available vector, are
defined in the chromosome. Each element in the coordinate
value vector is corresponding to the element in the same
position of the available vector.Themaximum length of these
vectors is 𝑀, the coordinate values vectors present cluster
centroids, and each number of the available vector represents
the validity of the corresponding centroid; if the number is
bigger than the threshold V𝑎𝑙𝑖𝑑, the corresponding centroid
is valid, and visa versa.

The decoding procedure is the clustering procedure, in
which the Multilevel Network structure is generated with
each valid gene.

3.3. Differential Evolution. TheDE operator of any individual
𝑥𝑖 can be seen as follows:

𝑙𝑖 = 𝑟1 + 𝐹 (𝑟2 − 𝑟3) , 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑥𝑖 (26)

where 𝑟1, 𝑟2, and 𝑟3 are three different individuals which are
randomly selected from the population, 𝑙𝑖 is themutants of 𝑥𝑖,
(𝑟2-𝑟3) forms a vector, and 𝐹 which is a positive real number
controls the length of the vector.

The overall procedure of DE based clusteringmethod can
be seen in Algorithm 1.

4. Hierarchical Sarsa Learning Based Route
Guidance Algorithm

4.1. Overall Procedure. After generating the optimized Mul-
tilevel Network structure, the proposed hierarchical Sarsa
learning based route guidance algorithm (HSLRG) can be
divided into 3 stages:

(i) Initializing stage: initialize Q-values of all the bound-
ary nodes and destination nodes in the Multilevel
Network.

(ii) Route guidance stage: guide vehicles in the higher
level network and subnetworks.

(iii) Updating stage: update Q-values of all the boundary
nodes and destination nodes in the Multilevel Net-
work.

Before each updating stage, the CDRGS collects travelling
information from the environment. During the period,
the CDRGS guides vehicles with the Q-values updated in
last updating stage. The overall procedure of the proposed
HSLRG is shown as Algorithm 2.

4.2. Initializing Q-Values. Q-value based Dynamic Program-
ming is adopted to initialize the Q-values of Sarsa of the

Multilevel Network, andQ-values are iteratively calculated by
the following equation.

𝑄(𝑛)𝑑 (𝑖, 𝑗) = 𝑡𝑐𝑖𝑗 + min
𝑘∈𝐹(𝑗)

𝑄(𝑛−1)𝑑 (𝑗, 𝑘)

𝑖 ∈ 𝐼 − 𝑑 − 𝐵 (𝑑) , 𝑗 ∈ 𝐹 (𝑑)
(27)

where 𝑖, 𝑗 ∈ 𝐼 is set of nodes; 𝑑 ∈ 𝐷 is set of destinations; 𝑠𝑖𝑗 is
link departure fromnode 𝑖 to node 𝑗; 𝑡𝑐𝑖𝑗 is the history traveling
time of link 𝑠𝑖𝑗; 𝐹(𝑖) is set of nodes depart from node 𝑖.

In this study, the procedure of initialization can be seen
as Algorithm 3.

4.3. Route Guidance Procedure. In the HSLRG, the guidance
is based on the Sarsa learning in the Multilevel Network.
The guidance in the higher level network determines the
actual destinations of vehicles in each subnetwork. The route
guidance procedure for each vehicle of CDRGS can be
divided into 3 steps, which can be seen as follows.

Step 1. Guide vehicle in the higher level network with
Algorithm 4 and get the selected link (the subtask on the
subnetwork).

Step 2. According to the result of Step 1, guide vehicle in the
subnetwork with Algorithm 4 until the vehicle reaches the
boundary node or destination.

Step 3. If the vehicle does not reach destination, turn to Step 1.

4.4. Updating Procedure. During the updating stage, the
following steps should be performed:

(i) Update the Q-values of 𝑑 ∈ 𝐵𝑇󸀠 in each subnetwork
𝐺𝑖.

(ii) Update the Q-values of 𝑑 ∈ 𝐷 in the higher level
network 𝐺󸀠ℎ𝑖𝑔ℎ.

The procedure of updating is presented as Algorithm 5.
The updates of Q-value for each subnetwork/high level

network are independent of each other, so the updating of
the proposedmethod is designed computing parallel, and the
time complexity of updating stage is 𝑂(|𝐷𝐺| ∗ |𝐿𝐺|), where,|𝐷𝐺| and |𝐿𝐺| are the number of elements in destination set
and link set in the road network 𝐺, respectively.

5. Simulation

In this study, the SUMO [35] simulator is used to implement
the experiments with three different digital road networks
as shown in Table 1. All the algorithms were coded in Java
and a PC with 8-core Xeon E5-2640 v3 2.60GHZ processor
and 128GB of RAM running Linux (centos 6.6) was used
for the all experiments. Our experiments are conducted
using real networks, representing various roads of Japan
(Experiment 1 and Experiment 2) and US (Experiment 3).
The Japan digital road maps are taken from Japan Digital
Road Map Association (JDRMA). The US digital networks
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Table 1: Data of experiments.

Item Experiment 1 Experiment 2 Experiment 3
Number of nodes 1500 1800 3500
Number of links 4620 5488 11310
Number of OD 33 33 100
Number of OD pairs 1089 1089 10000
Vehicle departure rate of each origin node 7 seconds per vehicle 7 seconds per vehicle 8 seconds per vehicle

input: road network data, DE parameters
output: optimal solutions E(P)
begin
current generation 𝑡 ←󳨀 0;
initialize Population 𝑃(𝑡);
generate Multilevel Network according to each chromosome;
evaluate each Multilevel Network;
while not termination condition do

for individual 𝑥𝑡𝑖 do
if random(0,1)< 𝑃𝐶 then
selected different individuals 𝑟𝑡1, 𝑟𝑡2, 𝑟𝑡3 from 𝑃(𝑡) randomly;
𝑙𝑡𝑖 = 𝑟𝑡1 + 𝐹(𝑟𝑡2 − 𝑟𝑡3)
generate a Multilevel Network according to the chromosome;
evaluate the Multilevel Network;
end if

end for
𝑡 ←󳨀 𝑡 + 1;
for individual 𝑥𝑡𝑖 do
if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑙𝑡−1𝑖 ) < 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑡−1𝑖 ), 𝑥𝑡𝑖 = 𝑙𝑡−1𝑖 ;
otherwise 𝑥𝑡𝑖 = 𝑥𝑡−1𝑖 .

end for
end while
end

Algorithm 1: Procedure of DE based clustering.

begin
//Initializing stage
Initialization routine
while not termination condition do

while at updating interval do
//Route Guidance stage
Route Guidance routine

end while
//Updating stage
Updating routine;

end while
end

Algorithm 2: Overall procedure of Hierarchical Sarsa Learning
based route guidance algorithm.

is provided by the Topologically Integrated Geographic
Encoding and Referencing (TIGER)/line collection, available
at http://www.diag.uniroma1.it/challenge9/data/tiger/. In the
simulation, a time step means a second, and the length of
simulation of experiments is set as 15000 time steps.

Table 2: Results of DE based clustering method.

Item Experiment 1 Experiment 2 Experiment 3
Number of clusters 12 11 21
Fitness 228 229 607

5.1. Multilevel Network. DE based clustering method is used
to generate Multilevel Network of each experiment, the
evolution process can be seen as Figure 5, the x-axis is the
generation, and the y-axis is the average fitness of individuals
in the population.The results of theDE can be seen as Table 2.

It can be seen that the DE based clustering method can
reduce the fitness during the process of evolution effectively
and Multilevel Network structure which is used in the
proposed algorithm has been optimized greatly.

5.2. Comparing Method. In the experiments, the Dijkstra
algorithm (DA) and Sarsa learning based route guidance on
the original road network method are adopted to compare
with the proposed method.

(1)Dijkstra algorithm (DA): DA is adopted to represent
the static shortest route method, and it calculates the routes

http://www.diag.uniroma1.it/challenge9/data/tiger/
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begin
//Initializing Q-value of 𝐵𝑇󸀠 in each subnetwork
for each 𝑑 ∈ 𝐵𝑇󸀠 do
Initialize 𝑄𝑑 According to Eq. (27) in the corresponding subnetwork

end for
//Initializing Q-value of 𝐷 in the higher level network
for each 𝑑 ∈ 𝐷 do

Initialize 𝑄𝑑 According to Eq. (27) in the 𝐺󸀠ℎ𝑖𝑔ℎ
end for
end

Algorithm 3: Procedure of Initialization.

input: Vehicle V, Destination 𝑑
output: Next link 𝑠𝑗𝑘
begin
Get the link 𝑠𝑖𝑗 link of vehicle V
//Calculating the probabilities of next links according to Eq. (18).

𝑝𝑑(𝑗, 𝑘) ←󳨀 𝑒−(1/𝜏)(𝑄𝑑(𝑗,𝑘)/𝐸𝑄𝑑(𝑗))
∑𝑘∈𝐴(𝑗) 𝑒−(1/𝜏)(𝑄𝑑(𝑗,𝑘)/𝐸𝑄𝑑(𝑗))

//Selecting the next link.
Choose 𝑠𝑗𝑘 by 𝑝𝑑(𝑗, 𝑘).
end

Algorithm 4: Procedure of Route Guidance.

every 60 time steps based on real-time traffic information
which is supposed to be collected in this study.

(2)Sarsa learning based route guidance on the original
road network method: In order to evaluate the efficiency
of Multilevel Network based route guidance method, Sarsa
learning with Boltzmann distribution algorithm (SLWBD),
which only considers the route guidance on the original road
network, is adopted as comparingmethod in the simulations.
The Boltzmann distribution is selected as the action selection
method. The Q-values are updated with (17) every 60 time
steps.

5.3. Evaluation. Two kinds of criteria are adopted to evaluate
the performance of route guidance algorithm.

(1) The number of vehicles in the traffic system 𝑁𝑢𝑚𝑉;
(2) The average traveling time of vehicles arriving desti-

nations in the a period of time, which is calculated as
follows:

𝑎V𝑒𝑇 (𝑡) =
𝑁(𝑡)

∑
𝑖=1

𝑇 (V𝑖)
𝑁 (𝑡) (28)

where 𝑡 is the time step; 𝑁(𝑡) is the total number of vehicles
arriving destinations in a period of time until 𝑡; V𝑖 is one of
the vehicles that reached destination in the time period.𝑇(V𝑖)
is the traveling time of vehicle V𝑖;

Every 100 time steps, these figures are estimated, and the
time period is set as 100 time steps. These two criteria can

reflect the traffic condition in the road network; lower𝑁𝑢𝑚𝑉
means less congestion happened in the road network; lower
𝑎V𝑒𝑇 reflects that vehicles were guided by better routes and
the time they cost on waiting in the road network is reduced.
So these two criteria are adopted to evaluate whether the
HSLRG is converged.

5.4. Experiment. In this part, simulations are conducted to
evaluate the performance of the proposed HSLRG. In order
to evaluate the performance of the proposed method, the
drivers’ acceptance of guidance is supposed as 100%. The
updating interval of higher level network is set as 30 time
steps, and the updating interval of subnetworks network is 60
time steps. The data shown in the following tables are results
of the average of multiple independent simulations. In order
to accelerate the converge of reinforcement learning at early
stage of simulation and keep Q-values stable at middle and
final stage, the learning rate 𝛼 of Sarsa learning is changed
depending on the time step of simulation. The concept of
SimulatedAnnealing [36] is introduced, and the equation can
be seen as follows:

𝛼 = 𝑎 ∗ (1 − 𝑡
𝑀𝐴𝑋𝑇𝐼𝑀𝐸)

𝑏

+ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝛼 (29)

where 𝑡 is the current time of simulation, MAXTIME is the
total simulation time, 𝑎 and 𝑏 are constants, and minimum𝛼
is the lower limit of 𝛼.

Table 3 presents the results of Experiment 1, Experiment
2, and Experiment 3. Figures 6(a), 6(b), 6(c), 6(d), 6(e) and
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input: Destination 𝑑, Network 𝐺
output: 𝑄𝑛𝑑
begin
𝑄𝑛−1𝑑 ←󳨀 𝑄𝑛𝑑
for link 𝑠𝑖𝑗 ∈ 𝐿(𝐺) do

if 𝑡𝑑𝑖𝑗 ̸= 𝑛𝑢𝑙𝑙 then
𝑄𝑛𝑑(𝑖, 𝑗) ←󳨀 𝑄𝑛−1𝑑 (𝑖, 𝑗) + 𝛼 ∗ (𝑡𝑑𝑖𝑗 + 𝛾 ∗ 𝑄𝑛−1𝑑 (𝑗, 𝑘) − 𝑄𝑛−1𝑑 (𝑖, 𝑗))

end if
end for
end

Algorithm 5: Procedure of Updating.
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Figure 5: The evolution process of road network in Experiment 1, Experiment 2, and Experiment 3.

6(f) in Figure 6 show𝑁𝑢𝑚𝑉 and 𝑎V𝑒𝑇 of these experiments,
respectively. Table 4 shows the mean and standard deviation
(Std) of these experiments.

As shown in Figures 6(a)–6(f), HSLRG has lower figures
of evolution values than SLWBD and DA almost during
the entire simulations. These data indicate that HSLRG is
fitting for guide vehicles in the large scale route network;
it can alleviate the congestion phenomena and reduce the
traveling time and traveling distance of vehicles in the larger
scale route network. In Figures 6(a)–6(d), the tendency of
𝑁𝑢𝑚𝑉 and 𝑎V𝑒𝑇 ofHSLRG and SLWBDbecomes decreasing
after early stage of simulation (about 5000 time steps in
Experiment 1, and about 2000 time steps in Experiment 2)
while as shown in Figures 6(e) and 6(f), the evaluation values
of SLWBD increased dramatically during the total 15000
time steps. The data indicate that, in limited size of road
network, SLWBD has reasonable performance; however, in
the larger scale road the performance of SLWBD becomes
poor. As Figures 6(a)–6(f) show, the measured values of DA
increased continuously. This performance indicates that DA
is not a proper method for route guidance in the dynamic

environments.Themain reason is that DA only considers the
static shortest routes, which may cause negative behavioral
phenomena in dynamic transportation system, including
overreaction and concentration phenomena. As shown in
Table 4, from the mean and Std of 𝑁𝑢𝑚𝑉 and 𝑎V𝑒𝑇, we can
see that the performance of proposed HSLRG dominates that
of SLWBD and DA, which can prove the effectiveness of the
proposed HSLRG.

As shown in Table 3, it can be seen that in all the
experimentsHSLRGhas the best performance and outweighs
the other twomethods; the statistic data indicate that vehicles
guided by this algorithm have not only the largest number
of vehicles arriving destinations and the least mean traveling
time, but also the least traveling distance. SLWBD has better
performance than DA in Experiment 1 and Experiment 2
but worse performance in Experiment 3. The statistic result
indicates that Sarsa learning based route guidance on the
original road network is not suitable for guiding vehicles
in the large scale road network. It is because the speed
of convergence of reinforcement learning depends on the
scale of the searching space, and it is exponential growth



10 Journal of Advanced Transportation

HSLRG
SLWBD
DA

0
500

1000
1500
2000
2500
3000
3500
4000
4500

N
um

be
r o

f v
eh

ic
le

s

5000 10000 150000
Time step

(a) The NumV of Experiment 1

HSLRG
SLWBD
DA

0

500

1000

1500

Av
er

ag
e t

ra
ve

lin
g 

tim
e

5000 10000 150000
Time step

(b) The aveT of Experiment 1

HSLRG
SLWBD
DA

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r o

f v
eh

ic
le

s

5000 10000 150000
Time step

(c) The NumV of Experiment 2

HSLRG
SLWBD
DA

0 5000 10000 15000
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Time step

Av
er

ag
e t

ra
ve

lin
g 

tim
e

(d) The aveT of Experiment 2

HSLRG
SLWBD
DA

0 5000 10000 15000

x 104

Time step

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

N
um

be
r o

f v
eh

ic
le

s

(e) The NumV of Experiment 3
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Figure 6: The results of Experiments.
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Table 3: Results of Experiments.

Experiment Algorithm Number of arriving vehicles Mean duration of each vehicle Mean route length of vehicle

Experiment 1
HSLRG 63,862.3 308.03 1,880.81
SLWBD 63,542.67 616.88 6,876.22
DA 49,604.25 757.67 3,931.18

Experiment 2
HSLRG 70,572.33 194.81 1,639.80
SLWBD 62,193.4 670.91 5,127.49
DA 51,193.1 1,087.06 4,792.38

Experiment 3
HSLRG 95,919.17 456.12 4,029.92
SLWBD 50,690.11 2,738.79 23,735.61
DA 78,696.5 1,384.96 9,160.27

Table 4: Mean and Std of Experiment results.

Experiment Algorithm Mean NumV Std NumV Mean aveT Std aveT

1
HSLRG 1055 296.9 236.6 108.5
SLWBD 2578 609.8 576 163.9
DA 2969 859.6 789 282.2

2
HSLRG 975.4 174.1 190 73.43
SLWBD 2606 523.5 560 125.3
DA 4347 1502 1094 477.4

3
HSLRG 3644 711.7 498.5 137.1
SLWBD 27130 13160 2606 1382
DA 9943 4463 1370 628.5

with the increasing of the scale of road network. And the
proposed HSLRG introduced optimized Multilevel Network
structure, by which route guidance on the subnetwork and
route guidance on the higher level network are combined
to compress the searching space of the traffic system. So,
the proposed HSLRG can enhance the efficiency of CDRGS
greatly.

6. Conclusion

In this paper, we have proposed the hierarchical Sarsa
learning based route guidance algorithm (HSLRG) to solve
route guidance problem in large scale road networks. HSLRG
applies Multilevel Network method to reduce the state space
of the traffic environment, which can greatly accelerate con-
vergence of the route guidance algorithm. The effectiveness
and efficiency of HSLRG were studied in three different
scale road networks. The simulation results show that, in
the large scale road network, comparing with SLWBD and
DA, HSLRG can guide vehicles to the destinations more
effectively. How to guide vehicles with multiobjective and
considering personality of drivers are worthwhile for future
research.
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