
X International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2023

M. Papadrakakis, B. Schrefler and E. Oñate (Eds)

INTRODUCING A CLOUD-BASED FRAMEWORK FOR
CREATING, VISUALISING, TESTING AND AUTOMATING

COMPLEX SIMULATION WORKFLOWS

Olivia A. Stodieck

Dapta Ltd
Newminster House, 27-29 Baldwin Street, Bristol BS1 1LT, United Kingdom

e-mail: olivia.stodieck@dapta.com, web page: https://www.dapta.com

Key words: Coupled Problems, Multiphysics Problems, Automation, Multidisciplinary Design
Optimisation, Open Source Software

Abstract. Engineers increasingly need tools that help them automate complex simulation
workflows. Besides performance, robustness and usability requirements, tools should also be
easily accessible. To fulfil these requirements, Dapta Ltd is developing a cloud-based framework,
which is designed to be an all-in-one solution to create, visualise, test and automate simulation
workflows. Here we demonstrate the use of the dapta platform with open-source software
libraries, focusing on an FSI multiphysics example.

1 INTRODUCTION

As performance expectations rise, products are becoming more complex and so are engineer-
ing simulation workflows, models and processes. In a recent industry report [1], it is estimated
that more than half of R&D-driven organisations are using three or more different simulation
software packages (not counting in-house tools), in many cases to support multidisciplinary
simulation efforts. Since each discipline has a different focus, the modelling approaches and
levels of fidelity are rarely consistent, even if the same software package is used. One example
of this can be seen in the aerospace industry when considering the effects of aeroelasticity on
the structural design of aircraft wing structures. A wing structure is typically idealised us-
ing low-fidelity beam elements to compute the aeroelastic load re-distributions, but the actual
wing sizing analysis requires the use of more complex finite element models, coupled with the
evaluation of numerous strength and design criteria [2, 3].

In the past, the task of transferring and processing data between different loosely coupled
simulations has been a largely manual process. However, this approach is incompatible with
the increasing complexity of the models, the desire for faster design cycles and more robust
performance predictions. Indeed, standardisation and automation of these manual processes is
key to the application of formal multidisciplinary design optimisation approaches. To illustrate
this concept, figure 1 from reference [3] shows a possible flow of data between a gradient-based
design optimisation algorithm and aeroelastic and structural wing model analyses.

The requirement for automating data processing steps is also present in multiphysics simu-
lation problems where different numerical methods are used, such as the Eulerian finite volume



Olivia A. Stodieck

Figure 1: Aeroelastic optimization with detailed stress constraints, reproduced from [3]

method for flow simulation and the Lagrangian finite element methods for the structural dy-
namics. In this case, the physics coupling is not intrinsic to the problem solution process and
instead needs to be implemented through purpose-built solver interfaces and coupling libraries.

The general requirements for multiphysics and loosely coupled simulation processes are
deemed to be similar enough here to combine them in the discussion that follows. In the
first section, we introduce the new dapta web platform [4], and describe how it addresses the
requirements outlined above. The main user tasks that can be performed using the platform
are described in the second section. In the last section, we provide an insight into the platform’s
current use with various open-source software (OSS) tools and present a specific fluid-structure
interaction (FSI) multiphysics application example, that uses the preCICE library [5] to cou-
ple the finite element solver CalculiX CrunchiX [6] to the computational fluid dynamics solver
OpenFOAM [7].

2 A cloud-based simulation workflow automation framework

In January 2020, the new dapta platform prototype was launched [4], allowing users to create
and automate complex simulation workflows in the cloud. The platform currently provides easy
access to web-based simulation capabilities, using python interfaces and mainly open-source
software tools for research purposes. The platform aims to provide:

- Compatibility with a wide range of existing software tools and services;

2



Olivia A. Stodieck

Figure 2: A modular architecture

- Fully customisable and version controlled workflows and simulation interfaces;

- Secure, highly available and scalable cloud resources;

- User-friendly web interfaces for self-service simulation anywhere, anytime;

- Collaboration tools for engineers, managers and suppliers.

The platform is built using a modular architecture typical of modern web services, where the
main modules are shown in figure 2. Since the user accesses the platform via a secure web-page,
the Dashboard shown on the left, there is no requirement to install any local software packages.
Indeed, the user could choose to create, view or execute workflows from a smartphone or tablet
device. The Dashboard communicates with a kubernetes cloud environment via web APIs,
which allow the user to dynamically set up and control compute resources within his/her own
user kubernetes namespace.

The modular architecture not only allows features to be added incrementally and released
frequently. It also allows users to only load the tools and interfaces that they specifically require,
which speeds-up executions and simplifies the user interfaces. Users are also encouraged to
download the generic component image templates from the publicly accessible Dapta GitHub
page1 to develop and test more complex simulation components locally, before integrating them
into the cloud environment.

3 How to use the platform

Users can create, visualise, test and automate workflows directly from the web interface.
The following subsections describe these tasks in more detail.

3.1 Creating a workflow

Once signed-into the dapta platform, each users can work on multiple workflows simulta-
neously by opening additional web browser tabs. Each workflow is a combinations of linked

1https://github.com/daptablade/generic-python3-comp

3



Olivia A. Stodieck

Figure 3: An FSI mutiphysics workflow as it appears in the dapta interface

simulation components, each component being representative of a discrete analysis task, which
has its own set of inputs, outputs and parameters. The FSI workflow from section 4 is shown
in figure 3. Components are displayed as simple rectangular boxes in the workspace and can
be either created directly in the interface by right-clicking or by importing custom JSON input
files. Connections between components appear as labelled curved arrows that can be drawn
from one component output to another component input. Connections can be used to transfer
files or data in the form of numerical arrays, which makes this data easily accessible to work-
flow drivers such as optimisation algorithms (see 3.4). The user’s first task is to define which
components he/she wishes to include in the workflow and which software tools or libraries each
component should be able to access. The current list of publicly available component images
can be found in the user manual2.

3.2 Visualising workflow inputs

Each component in the workflow requires a minimum number of user inputs before it can be
executed. Typically, this information includes: a name, a chosen container image (depending
on the software required), a setup script, a computation script and any parameters and custom
input files that the setup or computation scripts may need to access. Python templates for
the setup and computation scripts are provided in the user manual tutorials. Scripts can be
viewed and edited in standard text editors, whilst parameters, inputs and outputs can be
accessed and defined directly in the web interface. It is also possible to import or export whole
workflows from the dapta web interface in a JSON format, including component parameters,
inputs and outputs. A green tick symbol indicates when a component is fully defined and ready
for execution.

2https://daptadocs.com

4



Olivia A. Stodieck

Figure 4: Viewing a run log from the FSI example in section 4

3.3 Testing and viewing outputs

Once all components and connections have been fully defined, the workflow can be executed.
Visual clues are used to notify the user of the current status of each component. The cog symbols
in figure 3 for example indicate that all three components in the workflow are currently active
and in the ’compute’ phase. If a component causes an error to be raised, a flashing warning
symbol will replace the cog symbol of that component and the workflow execution with stop.
The user can view details of the error message in the component’s Log tab, where a hyperlink
also permits a snapshot of all the latest input and output files generated by the component to be
downloaded for further local investigation. Alternatively, the user can view and download the
run log at any time after the workflow execution has started. The run log (figure 4) contains
a summary of all component log messages (customisable by the user) that are output once
the component completes the ’setup’ or ’compute’ phase. Users are encouraged to define single
component workflows initially, to test that these execute as expected before integrating multiple
components into more complex workflows.

3.4 Automation

Automation in the dapta platform covers multiple aspects. The first type of automation ex-
ists where multiple components are executed in a logical order, in series or in parallel, depending
on each component’s inputs, outputs and connections to other components. To unambiguously
define the order of execution of all components, the user also defines a starting and ending
component. Each component waits until its specific required inputs are available before staring
a compute phase. The second type of automation is achieved by defining so called workflow
’driver’ component. These include design exploration and optimisation drivers, as well as mul-
tiphysics simulation drivers that have the ability to launch the execution of specific components
or whole workflows once or multiple times. Drivers are also components and they require a
similar set of customisable user inputs before they can be executed.

5



Olivia A. Stodieck

Figure 5: Overview of the preCICE coupling library functionality [5]

4 A multiphysics simulation workflow example

The dapta platform currently provides access to a number OSS tools in the cloud, including
CalculiX [6], OpenFOAM [7] and preCICE [6] as described below, but also OpenMDAO [8]
for multidisciplinary optimisation applications, OpenVSP [9] for aircraft performance analysis
and LibreOffice [10] for a wide range of scripting and reporting tasks. We aim to support users
and developers of OSS software, by publishing OSS implementation templates, step-by-step
tutorials and component source files. We are also committed to keeping OSS resources free of
charge and easy to access.

The user manual tutorial ’A fluid-structure interaction simulation with preCICE, Open-
FOAM and CalculiX’ provides step-by-step instructions for a user to create and execute an
FSI mutiphysics workflow using the dapta platform. OpenFOAM is used to model the fluid
flow and CalculiX to model the behaviour of a flexible flap exposed to the fluid flow. We use
the preCICE library [5] and the provided solver adapters to replicate the ’Perpendicular flap’
preCICE tutorial in the cloud. The main elements of the preCICE library are shown in figure
5 and include: communication, data mapping, coupling schemes and time interpolation.

In general, preCICE participants are launched in separate processes and the coupled sim-
ulation only starts once both processes have been launched. To replicate this approach, we
define a driver component that launches the fluid and solid components in parallel using the
generic python ThreadPoolExecutor class. The FSI workflow therefore includes 3 components
as shown in figure 3. We also need to create a connection that links the fluid component to
solid component. It exists purely to satisfy the basic workflow requirements that simulation
workflows should have a single starting component and that all (non-driver) components should
be connected. In this case we choose the fluid component to be the start node (you can equally
choose the solid component, without affecting the analysis in this case).

Once launched, the analysis completes within a few minutes and the user can download the

6



Olivia A. Stodieck

Figure 6: Plotting the FSI outputs: the fluid velocity field around the flexible flap in a channel flow

output files for further inspection. Figure 6 shows the openFOAM fluid velocity field around
the flexible flap in a channel flow. The CalculiX output also includes the time trace of the flap
tip deflections and applied fluid forces.

REFERENCES

[1] Big Compute 2021 State of Cloud HPC Report, https://rescale.com/resources/big-
compute-2021-state-of-cloud-hpc-report/

[2] Gerd Schuhmacher, Ibrahim Murra, Liu Wang, Armin Laxander, Owen O’Leary and
Michael Herold Multidisciplinary Design Optimization of a Regional Aircraft Wing Box.
AIAA 2002-5406, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, September 2002, https://doi.org/10.2514/6.2002-5406

[3] Lucian Iorga, Vincent Malmedy, Olivia Stodieck, Simon Coggon, Joseph Loxham Prelimi-
nary Sizing Optimisation of Aircraft Structures - Industrial Challenges and Practices. 6th
Aircraft Structural Design Conference, Bristol, 20th September 2018

[4] Launching the Dapta Trial, https://www.dapta.com/launching-the-dapta-trial/

[5] Chourdakis G, Davis K, Rodenberg B et al. preCICE v2: A sustainable and user-friendly
coupling library [version 2; peer review: 2 approved]. Open Res Europe 2022, 2:51,
https://doi.org/10.12688/openreseurope.14445.2

[6] CalculiX website, http://www.dhondt.de/

[7] OpenFOAM website, https://www.openfoam.com/

[8] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor, OpenM-
DAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimiza-
tion. Structural and Multidisciplinary Optimization, 2019.

7



Olivia A. Stodieck

[9] Robert A. McDonald and James R. Gloudemans, Open Vehicle Sketch Pad: An Open
Source Parametric Geometry and Analysis Tool for Conceptual Aircraft Design. AIAA
2022-0004. AIAA SCITECH 2022 Forum. January 2022

[10] LibreOffice website, https://www.libreoffice.org/

8


