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NEW DEGREES OF FREEDOM IN COMPUTATIONAL
MECHANICS: MESH FREE FINITE POINT METHOD,
ROTATION FREE SHELL TRIANGLES AND

MOVING FREE MESHES

Eugenio Onate

SUMMARY

The paper presents an overview of some recent developiments
in computational mechanics introducing new degrees of “freedom”
allowing the solution of more challenging problems. First avances
in the finite point method for fully mesh free solution in fluid and
solid mechanics are described. Next, new rotation free shell triangles
incorporating membrane and bending effects are presented. Finally
a simple method allowing free movement of meshes is described.
Examples of application of all the “free” methods are given.

1. INTRODUCTION

Considerable effort has been spent in recent years in trying
to introduce greater flexibility and simplicity in classical numerical
methods, such as the finite element method, for solving a wider range of
engineering problems. Some goals aimed by the new procedures are the
possibility of elliminating the burden of mesh generation, the use of new
simple shell triangles adequate for large scale structural analysis and
the efficient update of mesh nodes for problems involving fluid-structure
interaction among others.

The paper describes recent advances in the three above mentioned
fields. First, progress in the so called finite point method for a fully
mesh free solution of problems in fluid and solid mechanics is presented.
Next, new rotation free shell triangles adequate for parallel computing
of large scale structural problems such as vehicle crash worthiness and
sheet metal forming are described. Finally a simple method for free
movement of mesh nodes minimizing element distortion is presented.
Examples of application of the three “free” techniques are given.
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2. ADVANCES IN THE FINITE POINT METHOD FOR
MESH FREE ANALYSIS IN FLUID AND SOLID
MECHANICS

Mesh free techniques have become quite popular in computational
mechanics. A family of mesh free methods is based on smooth particle
hydrodynamic procedures. [1,2]. These techniques, also called free
lagrangian methods, are typically used for problems involving large
motions of solids and moving free surfaces in fluids. A second class
of mesh free methods derive from generalized finite difference (GFD)
techniques [3,4]. Here the approximation around each point is typically
defined in terms of Taylor series expansions and the discrete equations
are found by using point collocation. Among a third class of mesh
free techniques we find the so called diffuse element (DE) method (5],
the element free Galerking (EFG) method [6,7] and the reproducing
kernel particle (RKP) method [8,9]. These three methods use local
interpolations for defining the approximate field around a point in terms
of values in adjacent points, whereas the discretized system of equations
is typically obtained by integrating the Galerkin variational form over
a suitable background grid.

The finite point method (FPM) proposed in [10-13] is a truly
meshless procedure. The approximation around each point is obtained
by using standard moving least square techniques similarly as in DE
and EFC methods. The discrete system of equations is obtained by
sampling the governing differential equations at each point as in GFD
methods.

The basis of the success of the FPM for solid and fluid mechanics
applications is the stabilization of the discrete differential equations.
The stable form found by the finite element calculus procedure
presented in [14-17] corrects the errors introduced by the point
collocation procedure, mainly next to the boundary points [13]. In
addition, it introduces the necessary stabilization for treating high
convection effects and it also allows equal order velocity-pressure

interpolations in fluid flow problems. A brief summary of the stabilized
FPM is given below.

Interpolation in the FPM

Let §; be the interpolation domain (cloud) of a function u(x) and
let s; with j =1,2,---,7n be a collection of n points with coordinates



xj € §;. The unknown function u may be approximated within §2; by

m
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u(z) Za(z) = ) pz)a =p() a (1)
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where a = [al,ag,-uam]T and vector p(z) contains typically

monomials, hereafter termed “base interpolating functions”, in the
space coordinates ensuring that the basis is complete. For a 2D problem
we can specify

p=[1,z,y]"

for m =3 (2)
and
p= [1,$,y,x2,$y, yQ]T for m=6  etc. (3)

Function u(z) can now be sampled at the n points belonging to
2; giving
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where u;? = u(z;) are the unknown but sought for values of function u
at point j, @; = 4(z;) are the approximate values, and P; = p(zj).

In the FE approximation the number of points is chosen so that
m = n. In this case C is a square matrix. The procedure leads to the
standard shape functions in the FEM [18].

If n > m, C is no longer a square matrix and the approximation
can not fit all the u? values. This problem can be simply overcome by
determining the @ values by minimizing the sum of the square distances
of the error at each point weighted with a function ¢(x) as

J=Y o)l —a@)? = 3 oley)wh - pTa)?  (5)
i=1 j=1

with respect to the a parameters. Note that for ¢(z) = 1 the standard
least square (LSQ) method is reproduced.



Function ¢(z) is usually built in such a way that it takes a unit
value in the vicinity of the point 4 typically called “star node” where the
function (or its derivatives) are to be computed and vanishes outside a
region ; surrounding the point. The region §2; can be used to define
the number of sampling points n in the interpolation region. A typical
choice for ¢(z) is the normalized Gaussian function and this has been
chosen in the examples shown in Sections 5.1-5.3. Of course n > m 18
always required in the sampling region and if equality occurs no effect
of weighting is present and the interpolation is the same as in the LSQ
scheme.

Standard minimization of eq.(5) with respect to a gives

a=Clu" | cl=A"1B (6)

_ (2 T,
A j;go(‘])p( JP (@) (7)

B =[p(z1)p(x1), p(z2)P(22), - - p(wn)P(2n)]

The final approximation is obtained by substituting o from eq.(6)
into (1) giving

n
N Ta=1h T h — i,/
a(z)=p ' CTu'=N u’ =) Njuf (8)
j=1
where the “shape functions” are

Niw) = 3 (@)t = (@) )
=1

It must be noted that accordingly to the least square character of
the approximation

u(z;) = a(zj) # u? (10)

i e. the local values of the approximating function do not fit the nodal
unknown values (Figure 1). Indeed @ is the true approximation for
which we shall seek the satisfaction of the differential equation and
the boundary conditions and u? are simply the unknown parameters
sought.

The weighted least square approximation described above depends
on a great extend on the shape and the way to apply the weighting
function. The simplest way is to define a fixed function p(z) for each
of the Q; interpolation domains (see Figure 1) [11,12].
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Figure 1. Fixed weighing least square procedure.

Let ¢;(z) be a weighting functions satisfying (Figure 1)

pi(xi) =1
pi(z) #0z €y (11)
pi(z) =0z ¢ Q

Then the minimization square distance becomes
n
Ji= ‘Pi(mj)(ué'l - ?1(37]'))2 minimum (12)
j=l1

The expression of matrices A and B coincide with eq.(7) with
e(zj) = pi(z;)

Note that according to (1), the approximate function a(z) is
defined in each interpolation domain ;. In fact, different interpolation
domains can yield different shape functions N!. As a consequence a
point belonging to two or more overlapping interpolation domains has
different values of the shape functions which means that N! # N j}‘ . The
interpolation is now multivalued within §2; and, therefore f]0r any useful
approximation a decision must be taken limiting the choice to a single
value. Indeed, the approximate function @(z) will be typically used to
provide the value of the unknown function u(z) and its derivatives in
only specific regions within each interpolation domain. For instance by
using point collocation we may limit the validity of the interpolation
to a single point z;. It is precisely in this context where we have found
this meshless method to be more useful for practical purposes [10-13].



Discretization of governing equations

Let us assume a problem governed by the following set of
differential equations

A(uj) =0 in Q2
with boundary conditions

uj —uj =0 on I'y

(13)
B(uj) =0 on I'y
In above A is a differential operator defining the governing
differential equations to be satisfied on the domain 2 with boundary
I' = I't UTy, B is the differential operator defining the boundary
conditions at the Neumann boundary I't, u; are the unknown variables
with prescribed values u; at the boundary I'y, j = 1,2,---, N, where
Ny is the number of variables.

A stabilized form of above differential equations can be found by
using the finite increment calculus (FIC) procedure described in [14-17].
The FIC method is based on imposing the balance laws typical of solid
and fluid mechanics over a domain of finite size and retaining higher
order terms in the standard Taylor series expansion used to approximate

the unknown field over the balance domain. The stabilized form of egs.
(13) reads

1. 0A :
A — Ehj—a—m—j =0 in 2
uj —u; =0 on I'y, (14)

1
B — ihjnjA =0 on I't

where n; are the components of the unit normal to the boundary I'; and
h; are the dimensions of the balance domain (also called characteristic
length parameters). The underlined terms in eq.(14) introduce the
necessary stabilization in the governing equations at discrete level. It
can be shown that egs.(14) are the starting point for deriving many well
known stabilized numerical methods typically used in computational
fluid dynamic problems [14-17]. The stabilized equations (2) have also
been found useful for enhanced application of the FPM in solid and
fluid mechanics [13].

The discretized system of equations in the FPM is found by
substituting the approximation (8) into egs.(14) and collocating the



differential equations at each point in the analysis domain. This gives

) 1. @ .

. 1 .
{B(u:j) — §hjnjA(uj)L) =0 p=1,2---N;

In above N is the number of points within the domain €2 and Ny
and N; are the points located on the boundaries T'y, and I't, respectively.

The discretized system of equations (15) can be written in the
standard matrix form

Kul =f (16)

from where the values of the nodal parameters uf can be found.
Details of the implementation of the boundary conditions on the

Dirichlet boundary I'; are given in [11,12].

The computation of the characteristic length parameters h; follows
the procedure explained in [13-17]. In the examples shown in the paper

using quadratic base functions, the value h; = d™M™ has been chosen

where dj™" is the closest distance from a star node in a cloud to its
closest neighbour.

Further details on the FPM can be found in [10-13].

3. ROTATION FREE SHELL TRIANGLES

The development of simple and efficient plate and shell triangles
is still a challenge in computational structural mechanics. Traditional
elements based on Kirchhoff’s thin plate theory have the drawback of
(7 continuity requirements whereas more advanced elements based on
Reissner-Mindlin’s hypothesis suffer from shear locking deffects [18].

Several authors have tried to derive plate and shell finite elements
with displacements as the only nodal variables [19-25]. Most of
these developments assume that the elements are hinged together at
their common boundaries and the bending stiffness is represented by
torsional springs placed at the hinge lines.



Ofiate and Cervera [26] derived a simple rotation-free thin plate
triangle based on combining finite element approximations with finite
volume (FV) concepts [27]. The approach has been formalized in [28]
using a mixed Hu-Washizu formulation and extended to the derivation
of new rotation-free thin plate and shell triangles. Applications of
the new rotation-free shell triangles to engineering shell analysis, sheet
stamping and contact-impact problems were reported in [28-31].

The basis of the combined FE-FV procedure for deriving rotation
free thin plate bending elements is briefly described next.

Let us consider the plate of Figure 2. We will assume Kirchhoft’s
condition to hold. The set of governing equations is expressed in integral
form starting from the standard Hu-Washizu functional

II= %//A kI DrdA — //A[Lw —kTmdA _//A qwdA  (17)

where k and m are the curvature and bending moment fields, D is the
constitutive matrix, ¢ is the distributed load, w is the vertical deflection
and A the area of the plate. The form of above matrices and vectors is
shown in Figure 2 where all simbols have the standard meaning.

k =Lw

92 o2 92 17
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Figure 2. Definition of deflection and rotations in a plate. Basic
vectors and matrices.

Variations of IT with respect to k, m and w leads to the following
three equations:

Constitutive equation: //A(SNT[D& —m|]dA =0 (18a)

Curvature-deflection equation: //AcsmT[Lw —k]JdA =0 (18b)



Equilibrium equation: //4[L(5w]deA - //45111qu =) (18c)

Let us consider an arbitrary discretization of the plate into
standard three node triangles. The curvature and the bending moments
are described by constant fields within appropriate non-overlapping
control domains covering the whole plate as

m = I3my, om = I3dm,, (19a)
k = I3kp, 0k = I3k (190)

where I3 is the 3 x 3 unit matrix and (-), denotes constant values for
the p-th control domain.

Two modalities of control domains are considered: a) that formed
by a single triangular element (Figure 3a) and b) the control domain
formed by 1/3 of the areas of the elements surrounding a node (Figure
3b). The two options are termed in the FV literature “cell centered”
and “cell vertex” schemes, respectively. Note that in the cell centered
scheme each control domain coincides with a standard three node finite
element triangle. Alternatively in the cell vertex scheme an element is
formed by contributions from three different control domains.

a) Cell Centered (BPT) b) Cell Vertex (BPN)

Control domain

Figure 3. a) Cell centered and cell vertex schemes; b) BPT and
BPN elements

It is also useful to define the term “patch of elements” associated
to a control domain. In the cell centered scheme this patch is always
formed by four elements (except at the boundaries), whereas in the cell
vertex scheme the number of elements in the patch is variable.



Derivation of the curvature and bending moment fields as well as
the stiffness matrix of each control domain will be expressed next in
terms of the nodal deflections associated to the corresponding element
patch.

The area integrals in egs.(18) can be written as sum of
contributions over the different control domains taking into account

egs. (19) as

Constitutive equation: . / / " 5ng[an —my|dA =0 (20)
p Ap

where A, is the area of the p-th control domain. Recalling that the
virtual curvatures are arbitrary, gives

my, = Dty (21)

where Dy = :%; N} Ap DdA is the average constitutive matrix over a

control domain.

Curvature-deflection equation: y / / 5mg[Lw —KpldA=0  (22)
p A

p

Taking into account that the virtual bending moments are
arbitrary, gives
1 /
Ky = —— LwdA 23
P Ap/ Ap (23)

A simple integration by parts of the r.h.s. of eq.(23) leads to

T 0

ng 0 n ;
Kp = ;lgfrp TVwdl'| where T = { O‘L ny nﬂ ) V= {gaz}
¢ )

(24)

and n = [nl-,ny]T is the outward unit normal to the boundary I'p
surrounding the control domain (Figure 3).

Eq.(24) defines the curvatures for each control domain in terms
of the deflection gradients along its boundaries. The transformation of
the area integral of eq.(23) into a line integral is typical of finite volume
(FV) methods [27].



Integrating by parts the first integral in eq. (18c¢), gives
S /F (TVéw]T m,dl - / /4 SwgdA = 0 (25)
P “iw ‘

Substituting eqs.(21) and (23) into (25) gives finally

S Jp [TVéw]T L TVwdl — [ [4 dwgdA =0 (26)
pF P ’

The final step is to discretize the deflection field. The simplest
option is to interpolate linearly the deflection within each triangular
element in terms of the nodal deflections in the standard finite element
manner as '

3
w = Z Niwi = N(e)w(e) (27)
1=1

with N(¢) = [Ny, Ny, N3] and w(®) = [wl,wg,wg,]T. In (27) w; denotes
nodal deflection values and N; are the standard linear shape functions
of the three node triangle [18].

Substituting eq. (27) into (26) gives the final system of algebraic
equation as
Kw=f (28)

where vector w contains the nodal deflections. The stiffness matrix
K can be obtained by assembling the contributions from the different
control domains given by

where By, is the curvature matrix relating the constant curvature field
within a control domain and the nodal deflections associated to the
corresponding patch of triangles.

3.1 Cell centered patch. BPT element

The evaluation of the constant curvature field in eq.(23) requires
the computation of the deflection gradients along the control domain
boundaries. This poses a difficulty in cell centered configurations where
each control domain coincides with an individual element (Figure 3a).
Here if the deflection is linearly interpolated within each element, then
the term Vw is discontinuous at element sides. A simple method



to overcome this problem proposed by Onate and Cervera [26] is to
compute the deflection gradients at the triangle sides as the average
value of the gradients contributed by the two elements sharing the side.
The constant curvature field for each control domain can be expressed
in this case using eq.(23) as

Kp = 1@ /Fp T[VN(p)w(p) + VN(’)w(q')]dF =Bpwp, (30a)

with
wp = (Wi, Wy, Wk, WY, Wy, 'U)n]T (300)
In eq.(30a) superindexes p and i = a,b,c denote respectively

the p-th element and any of the three elements adjacent to element
p (Figure 3a).

The resulting plate element is identical to that derived by Onate
and Cervera [26] and is termed BPT (for Basic Plate Triangle). The
element can be viewed as a standard finite element plate triangle with
one degree of freedom per node and a wider bandwidth, as each element
is linked to its neiboughrs through eq.(30a).

3.2 Cell vertex patch. BPN element

As mentioned earlier, a different class of rotation-free plate
triangles can be derived starting from the so called cell vertex scheme
(Figure 3b). The advantage of the cell vertex scheme is that
the deflection gradient is now continuous along the control domain
boundaries. This allows to compute directly the curvatures within a
control domain as

1
p/LIp

where Nj contains contributions from the shape functions from all
the elements associated to the p-th control domain. Eq. (31) can be
rewritten in a simpler form, taking into account that the deflection
gradients are constant within each element, as

kp = — S i uNW) = Bw, (32)
Ap 52

where the sum extends over all the elements contributing to the p-th
control domain, [; is the exterior side of element 7 in the patch and

Ap = %ZA(i)'



It is important to note that B, is in this case the global curvature
matriz for the central p-th node. Thus, the product BII;DI?BPAP
provides the p-th row of the global stiffness matrix. This simplifies
the assembly and solution process as the global stiffness equations for
a node can be elliminated once they are computed.

This element is termed BPN (for Basic Plate Nodal patch). Note
that the concept of “element” is generalized in this case as the BPN
element combines an standard finite element interpolation with non-
standard integration domains.

The implementation of the boundary conditions in the BPT and
BPN plate elements is simple and the main difference with standard
finite elements is that the conditions on the prescribed rotations must
be imposed when the curvature matrices By, are being built. Full details
can be found in [27,31].

3.3 Basic shell triangle (BST) element

The BPT element of Section 3.1 can be combined with
the standard Constant Strain Triangle (CST) to model membrane
behaviour. The resulting rotation free shell element is termed BST
(for Basic Shell Triangle) (Figure 4). The (constant) local curvatures
within each control domain are written in terms of the (local) deflection
gradients at the domain edges by means of expressions equivalent
to eq.(30a). These gradients are in turn expressed in terms of the
deflection values for the adjacent clements sharing each side. A
transformation of the local bending stiffness matrix to global axes is
then performed for assembly with the in-plane contributions from the
CST element in the standard manner (31].

3.4 Basic shell nodal patch (BSN) element

The BPN plate element of Section 3.2 and the CST membrane
element can be combined to give the rotation free BSN shell element
(Figure 4). The constant curvature and bending moment fields are
defined now in nodal axes. The application of eq.(31) requires a
transformation of the rotations from nodal to element axes for each
of the elements forming the patch. Details can be found in [31].



| Control domain

Figure 4. BST and BSN control domains for rotation free shell analysis.

4. A SIMPLE METHOD ALLOWING FREE MOVEMENT
OF MESH NODES

Finite element solution of problems such as shape optimization or
fluid-structure interaction usually requires the update of the analysis
mesh. A typical example is the study of movement of an object
within a flowing liquid where the fluid mesh needs to be continuously
updated accordingly to the changes in position of the object due to the
interaction forces.

Chiandussi, Bugeda and Onate [32] have recently proposed a
simple method for movement of mesh nodes ensuring minimum element
distorsion. The method is based on the iterative solution of a fictitions
linear elastic problem on the mesh domain. In order to minimize
mesh deformation the “elastic” properties of each mesh element are
appropiately selected so that elements suffering greater movements are
stiffer. The basis of the method is given below.

Let us consider an elastic domain with homogeneous isotropic
elastic properties characterized by the Young modulus E and the
Poisson coefficient v. Once a discretized finite element problem has
been solved using, for instance, standard C, linear triangles (2D) or
linear tetraedra (3D), the principal stresses lg; at the center of each
element are obtained as

lo; = Ele; —v(ej +ep)]  i,§=1,2,3 for 3D (33)

where €; are the principal strains.

Let us assume now that a uniform strain field ¢; = € throughout



the mesh is sougth. The principal stresses are then given by
26;=Ee(1-2v) i=1,2,3 for 3D (34)
where F is the unknown Young modulus for the element.

A number of criteria can be now used to find the value of E. The
most effective approach found in [32] is to equal the element strain
energies in both analysis. Thus

Ur ='oie; = E[(e2 + €} +€3) — 2v(e1eg + ege3 +e1e3)]  (35)
Uy =20ie; = 3EE2(1 — 2v) (36)

Equaling egs.(35) and {36) gives the sought Young modulus E as

E

E=———
3€2(1 - 2v)

[(8% + 5% + 5%) — 2u(e1e9 + e9e3 + £1€3)] (37)

Note that the element Young modulus is proportional to the
element deformation as desired. Also recall that both E and & are
constant for all elements in the mesh.

The solution process includes the following two steps.

Step 1. Consider the finite element mesh as a linear elastic solid with
homogeneous material properties characterized by E and v. Solve the
corresponding elastic problem with imposed displacements at the mesh
boundary. These displacements can be due to a prescribed motion of
a body within a fluid, to changes in the shape of the domain in an
optimum design problem, etc.

Step 2. Compute the principal strains and the values of the new Young
modulus in each element using eq.(37) for a given strain field €. Repeat
the finite element solution of the linear elastic problem with prescribed
boundary displacements using the new values of E for each element.

The movement of the mesh nodes obtained in the second step
ensures a quasi uniform mesh distorsion. Further details on this method
including other alternatives for evaluating the Young modulus F can
be found in [32].



5. EXAMPLES

5.1 Example 1. Inviscid incompressible flow around a NACA
profile using the FPM

Figure 5 shows the geometry of the NACA profile and the
distribution of 5300 points used for the analysis using the Finite Point
Method (FPM). The steady-state solution of the incompressible Euler
equations has been found using a fractional step procedure described in
[33,34,17]. A quadratic interpolation for velocities and pressure (m = 6)
within clouds of n > 6 points has been used. Numerical results for the
velocity and pressure contours for an angle of attack of 5 and uco = 1
are shown in Figure 5. A plot of the Cy coefficient is also presented.

5.2 Example 2. Analysis of a simple supported beam using
the FPM

Figure 6a shows the geometry of the beam, the mechanical
properties and the uniform distribution of 105 points. A point load
acting on the free edge is considered. Again a quadratic interpolation
for the displacement variables has been chosen. Numerical results for
the beam deflection and the stress distribution are shown in Figures 6d
and 6e. The same problem has been analyzed with the FEM using a
structured mesh of 150 linear plane stress triangles (CST element) based
on the same point distribution (Figure 6¢). Nodal stresses have been
obtained by standard nodal averaging of element values. Comparison
of the errors for the control deflection and the maximum o stress gives
some advantage to the FPM results.

5.3 Example 3. Square plate with circular hole under tension

Figure 7 shows the geometry of the plate and the loading. One
quater of the plate is analyzed only due to symmetry. The problem has
been solved with the FPM using an unstructured grid of 148 points.
Contours of the horizontal displacement and the o, stress obtained
with the FPM are shown. Results for the maximum o, stress at the
upper tip of the hole obtained with the FPM are very accurate (1%
error). This compares very favourably with the 16% error obtained
with the FEM using the unstructured mesh of 58 CST elements shown
in Figure 7c. Further applications of the FPM can be found in [10-13].
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Figure 6. Simple supported beam analyzed with FPM and FEM. a) Beam
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field (FPM).
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Figure 7. Square plate with circular hole under tension analyzed with FPM
and FEM. a) Plate geometry and loading. b) Unstructured grid of
48 points. ¢) Unstructured mesh of 58 CST elements. d) Horizontal
displacement contours (FPM). e) o, contours (FPM).
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5.4 Example 4.

Spherical dome under impulse pressure
loading

This example illustrates the efficiency of the new rotation free
BST shell element for non linear elastoplastic dynamic analysis of shells
using an explicit time integration scheme. The geometry of the dome
and the material properties are shown in Figure 8. The loading is due
to a uniform pressure of 600 psi acting impulsively. Numerical results
for the evolution of the central deflection obtained with three different
meshes of BST elements with 507, 867 and 1324 d.o.f. are shown. Note
the accuracy of the response for the coarse mesh. A comparison of the
results for the 1324 d.o.f. mesh with those obtained with the standard
DKT-15 shell element [35] using 1445 d.o.f. is shown in Figure 9.

central deflection (in)

E =10.5 x 10° psi
p=2.45 x 10™* Ibs-sec’ /in*
v =0.33

i _ 3
o 0.0002 0.0004 00005 0.0008 0.001 0.0012 oy=24 10" psi
E, = 0.21 x 10° psi

time (sec)

Figure 8. Spherical dome under impulse loading analyzed with the
rotation free BST element.

BST 13
DKT15 14;

.+ 1»

central deflection (in)

\

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012
time (sec)

Figure 9. Spherical dome.Comparison of results obtained with BST
and DKT15 elements.



5.5 Example 5. Sheet stamping of an industrial part using the
rotation free BST triangle

Figures 10a and 10b show the geometry of the die and the mesh of
24683 BST triangles discretizing the sheet. The numerical solution was
found using an explicit dynamic code in which the BST element has
been implemented [36]. The analysis was run in a parallel PC network
under Windows. Figures 10c and 10d show some typical results of the
analysis such as the deformed geometry of the sheet after forming and
the thickness distribution plotted on the deformed sheet.

Further applications of the BST element can be found in [26-31].

5.6 Example 6. Displacement of an airfoil within a finite
element mesh

This example shows the efficiency of the mesh updating procedure
presented in Section 4. The problem concerns the change of position of
an airfoil within a fluid domain. Figure 11a shows the initial position
of the airfoil and the mesh of three node triangles covering the fluid
domain. Figures 11b and 11lc show the new position of the airfoil
after imposing a vertical displacement at the tail end point and a
vertical rigid body motion for the whole airfoil, respectively. A value
of & = 1072 was chosen in the analysis. The final airfoil positions
correspond to the maximum displacements before element intersection
is found in the mesh. A detail of the distorted elements in the vecinity
of the airfoil tail is also shown. Note that the final meshes have the same
topology than the original ones, i.e. no remeshing has been carried out.
Further examples of the mesh free movement procedure proposed can
be found in [32].

6. CONCLUDING REMARKS

Some new procedures introducing a higher degree of freedom in
standard finite element techniques have been described. The stabilized
finite point method is a simple fully mesh free procedure which seems
a good candidate for solution of practical problems in fluid and solid
mechanics. The rotation-free plate and shell elements presented are
very adequate for large scale computations in structural engineering
and sheet metal forming analysis. Finally the mesh updating procedure
described allows to follow large movements of rigid and flexible bodies
within fluids without the need of regenerating the mesh.



Figura 10. Analysis of an industrial sheet forming process with the
BST element. a) Die mesh. b) Sheet discretized in
24683 BST elements. c) Distribution of thickness ratio
(t/to). d) Deformed sheet mesh after forming.
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Figura 11. Movement of a NACA0012 airfoil within a fluid domain.
a) Initial position of airfoil. Final airfoil position and
mesh after: vertical displacement of tail point (b) and
vertical rigid body displacement of airfoil (c). Figures
show the maximum airfoil displacement before element

intersection is found.



ACKNOWLEDGEMENTS

Thanks are given to Mr. Carlos Sacco and Mr. Franco Perazzo
who provided the figures for examples 1,2 and 3 respectively. The sheet
forming analysis was performed by Ms. Pilar Soler and Ms. Natalia
Dominguez from DECAD S.A. using the commercial code STAMPACK
[35] with support from QUANTECH ATZ, S.A. Their help is also
gratefully acknowledged.

REFERENCES

1. MONAGHAN, J.J. - Smoothed particle hydrodynamics: Some recent
improvement and applications. Annu. Rev. Astron. Physics, 30, 543,
1992.

2. RANDLES, P.W. and LIBERSKY, L.D. - Smoothed particle
hydrodynamics: Some recent improvement and applications. Appl.
Mech. Engng., 139, 175, 1996.

3. PERRONE, N. and KAO, R. - A general finite difference method for
arbitrary meshes, Comp. Struct, 9, 45-47, 1975.

4. LISZKA, T. and ORKISZ, J. - The finite difference method at arbitrary
irregular grids and its application in applied mechanics. Comp. Struct.,
11, 83-95, (1980).

5. NAYROLES, B., TOUZOT, G. and VILLON, P. - Generalizing the
FEM: Diffuse approximation and diffuse elements. Comput. Mechanics,
10, 307-18, 1992.

6. BELYTSCHKO, T., LU, Y. and GU, L. - Element free Galerkin
methods. Int. J. Num. Meth. Engng., 37, 229-56, 1994.

7. DOLBOW, J. and BELYTSCHKO, T. - An introduction to
programming the meshless element free Galerkin method. Archives of
Comput. Meth. in Engng., 5 (3), 207-241, 1998.

8. LIU, W.K., JUN, S., LI, S.,, ADEE, J. and BELYTSCHKO, T. -
Reproducing Kernel particle methods for structural dynamics. Int. J.
Num. Meth. Engng., 38, 1655-1679, 1995.

9. LIU, W.K., CHEN, Y., JUN, S., CHEN, J.S., BELYTSCHKO, T., PAN,
C., URAS, R.A. and CHANG, C.T. - Overview and applications of the
Reproducing Kernel particle method. Archives of Comput. Meth. in
Engng., Vol. 3(1), 3-80, 1996.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ONATE, E., IDELSOHN, S., ZIENKIEWICZ, O.C. and FISHER, T. -
A finite point method for analysis of fluid flow problems. Proceedings of
the 9th Int. Conference on Finite Element Methods in Fluids, Venize,
Italy, 15-21, October 1995.

ONATE, E., IDELSOHN, S., ZIENKIEWICZ, O.C. and TAYLOR, R.L.
- A finite point method in computational mechanics. Applications to

convective transport and fluid flow. Int. J. Num. Meth. Engng., Vol.
39, 3839-3866, 1996.

ONATE, E., IDELSOHN, S., ZIENKIEWICZ, O.C., and TAYLOR,
R.L. - A stabilized finite point method for analysis of fluid mechanics’s
problems. Comput. Meth. in Appl. Engng, Vol. 139, 1-4, pp. 315-347,
1996.

ONATE, E. and S. IDELSOHN - A mesh free finite point method for
advective-diffusive transport and fluid flow problems. Computational
Mechanics, 21, 283-292, 1988.

ONATE, E. - Derivation of stabilized equations for advective-diffusive
transport and fluid flow problems. Comput. Meth. Appl. Mech. Engng.,
Vol. 151, 1-2, pp. 233-267, 1998.

ONATE, E., GARCIA, J. and IDELSOHN, S. - Computation of the
stabilization parameter for the finite element solution of advective-
diffusive problems. Int. J. Num. Meth. Fluids, Vol. 25, pp. 1385-1407,
1997.

ONATE, E., GARCIA, J. and IDELSOHN, S. - An Alpha-adaptive
approach for stabilized finite element solution of advective-diffusive
problems with sharp gradients. New Adv. in Adaptive Comp. Met.
in Mech., P. Ladeveze and J.T. Oden (Eds.), Elsevier, 1998.

ONATE, E. - A finite element method for incompressible viscous flows
using a finite increment calculus formulation. Research Report N. 150,
CIMNE, Barcelona, January 1999.

ZIENKIEWICZ, O.C. and TAYLOR, R.C. - The finite element method,
4th Edition, Vol. 1, McGraw Hill, 1989.

BARNES, M.R. - Form finding and analysis of tension space structure
by dynamic relaxation. Ph.D. Thesis, Dept. of Civil Engineering, The
City University, London, 1977.

PHAAL, R. and CALLADINE, C.R. - A simple class of finite elements
for plate and shell problems. I: Elements for beams and thin plates. Int.



21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Num. Meth. Engn., Vol. 35, 955-977, 1992.

PHAAL, R. and CALLADINE, C.R. - A simple class of finite elements
for plate and shell problems. II: An element for thin shells with only
translational degrees of freedom. Int. J. Num. Meth. Engn., Vol. 35,
979-996, 1992.

HAMPSHIRE, J.K., TOPPING, B.H.V and CHAN, H.C. - Three node
triangular elements with one degree of freedom per node. Eng. Comput,
Vol. 9, 49-62, 1992.

RIO, G., TATHI, B. and LAURENT, H. - A new efficient finite element
model of shell with only three degrees of freedom per node. Applications
to industrial deep drawing test. in Recent Developments in Sheet Metal
Forming Technoloy, Ed. M.J.M. Barata Marques, 18th IDDRG Biennial
Congress, Lisbon, 1994. -

BRUNET, M. and SABOURIN, F. - Prediction of necking and wrinkles
with a simplified shell element in sheet forming. Int. Conf. of Metal
Forming Simulation in Industry, Vol. 11, pp. 27-48, B. Kroplin (Ed.),
1994.

YANG, D.Y., JUNG, D.W., SONG, L.S.,, YOO, D.J. and LEE,
J.H. - Comparative investigation into implicit, explicit and iterative
implicit/explicit schemes for simulation of sheet metal forming processes.
NUMISHEET 93, Eds. Makinouchi, A., Nakamachi, E., Onate, E. and
Wagoner, R.H., RIKEN, 35-42, Tokyo, 1993.

ONATE, E. and CERVERA, M. - Derivation of thin plate bending
elements with one degree of freedom per node. FEng. Comput. Vol.
10, 543-561, 1993.

ONATE, E., CERVERA, M. and ZIENKIEWICZ, O.C. - A finite volume
format for structural mechanics. Int. J. Num. Meth. Eng., 37, 181-201,
1994.

E. ONATE and F. ZARATE - New thin plate and shell triangles with
translational degrees of freedom only. Presented at IUTAM/IACM
Symposium “Discretization Methods in Structural Mechanics 11”7, Viena,
Austria, June 2-6, 1997.

ONATE, E., CENDOYA, P., ROJEK, J. and MIQUEL, J. - A simple
thin shell triangle with translational degrees of freedom for sheet stam-
ping analysis. at 3rd International Conference on Numerical Simulation
of 3D Sheet Forming Processes (NUMISHEET’96), Dearbon, Michigan,
USA, 29 Sept. - 3 Oct., 1996



30.

31.

32.

33.

34.

35.

36.

ONATE, E., CENDOYA, P., ROJEK, J. and MIQUEL, J. - Non linear
explicit dynamic analysis of shell structures using a simple triangle with
translational degrees of freedom only. at the International Conference

on Computational Engineering Science (ICES’97), San Jose, Costa Rica,
May 4-9, 1996.

ONATE, E. and ZARATE, F. - Rotation-free triangular plate and shell
elements. Research Report 149, CIMNE, Barcelona, January 1999.
Submitted to Int. J. Num. Meth. Engng.

CHIANDUSI, G., BUGEDA, G. and ONATE, E. - A simple method
for update of finite element meshes. Research Report 147, CIMNE,
Barcelona, January 1999.

ZIENKIEWICZ, O.C. and CODINA, R. (1995) - A general algorithm
for compressible and incompressible flow. Part I: The split characteristic
based scheme. Int. J. Num. Meth. in Fluids, 20, 869-85.

ZIENKIEWICZ, O.C., MORGAN, K., SATYA SAI, B.V.K., CODINA,
R. and VAZQUEZ, M. - A general algorithm for compressible and
incompressible flow. Part II: Tests on the explicit form. Int. J. Num.
Meth. in Fluids, 20, No. 8-9, 886-913, 1995.

BATOZ, J.L., BATHE, K.J and HO, L.W. - A study of three-node
triangular plate bending elements. Int. J. Num. Meth. Engn., Vol. 15,
1771-1812, 1980.

STAMPACK - An explicit dynamic finite element code for sheet
stamping analysis. QUANTECH ATZ S.A., Barcelona 1999.



