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still recurring subjects of debate (Daniel, 2007). Cohesive elements have become very popular as
discontinuities may efficiently be simulated, e.g. splitting due to delamination (Camanho and
Mathews, 1999; Camanho et al., 2003; Tvergaard, 2004; Iannucci and Willows, 2006). An up-to-
date review can be found in Wisnom (2010). The proposed technique admits linkage to cohesive
elements, although this is not attempted at this time.

The proposed technique is framed on the thermodynamics of irreversible process following
Chaboche (1992). Other interesting thermodynamical approaches for damage mechanics of com-
posites are also found in literature, e.g. Simo and Ju (1987), Turon et al. (2006), amongst others.
From a purely damage mechanics point of view, the main features of the proposed technique are the
computation of paths of damages which provide an effective localisation of the different damage
modes and, second, the computation of damage on the strain space through the generation of a
mapping between the strain and stress spaces where the so-called normalised energy release rates are
readily computed. Thus, the undamaged domain is defined on the strain space bounded for a set of
quadratic damage surfaces. The approach is based on computing the damage at quadrature points,
i.e. gauss points, within each finite element, forming the mesh of the composite which is performed in
the strain space. Moreover, fracture energy – modes I and II – can be added to the model and
mapped onto to the strain space following an analogous strategy. This last point permits to treat all
the variables associated to failure on the composite in a progressive manner which provides higher
stability and convergence in the explicit finite element method (XPFEM) procedure, as the removal of
a finite element often causes oscillations when using XPFEM, creating instability, and, eventually,
divergence (Camanho et al., 2001).

This article is outlined as follows. First, the thermodynamical background, in which the technique
is framed, is briefly presented. Second, definition of the measurements of stress utilised are provided.
Third, damage components of the technique are described. Fourth, the integration within XPFEM is
presented in some detail. Finally, numerical results and discussion are provided. Additionally, an
appendix containing relevant tensors is included.

Thermodynamics of damage in dissipative materials

The case of irreversible process in dissipative materials considered follows the framework by
Chaboche (1992). A brief summary is highlighted in this section to frame the background of the
study. The definition of the damage state is described by a set of internal damage variables (Germain
et al., 1983; Desmorat et al., 2010; Yang et al., 2010). The thermodynamic potential is represented by
the specific free energy, �. Since non-metallic composites are approached, plasticity and hardening
terms may be ignored. In this case, the free energy � takes the following expression

� :¼
1

2
e : C : e ð1Þ

Here and henceforth, bold symbols and bold characters denote tensor and vector variables. The
symbol e denotes the second-order strain tensor and ‘:’ the inner product. The constitutive law is
represented by the damaged secant stiffness, C, which is, in general, a fourth-order tensor (Simo and
Ju, 1987). This tensor is a function of the damage internal variables �ij, equation (2). These variables
are integrated in the tensor g.

CðgÞ ¼ 2
@�

@ ðe� eÞ
r ¼

@�

@ e
¼ C : e ð2Þ
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where � is the tensor product. Chaboche (1992) defines the energy release rates as the derivative of
this potential respect to the internal damage variables,

Yðe , gÞ :¼ �
@�

@ g
¼ �

1

2
e :
@C

@ g
: e ð3Þ

where Y denotes a second-order tensor containing the thermodynamic forces Yij. The dissipative
potential is related to the irreversibility of the process which is caused by distinct damage modes in
the case of composites. The dissipative potential is a function of the thermodynamic forces Yij and
the damage state itself. Following Chaboche (1992), the dissipative potential is replaced by damage
criteria. Equation (4) defines the elastic undamaged domain on the strain space.

g :¼ gðe� e , gÞ � 0 ð4Þ

In the proposed technique (‘Damage computation’), a new criteria is proposed as a substitute for
the dissipative potential which takes into account the so-called normalised energy release rates as
constituents.

Measurement of stress

Although the stress–strain relationship, in general, for composites with potential anisotropic damage
implies the formulation in terms of a fourth-order tensor (Simo and Ju, 1987), the attempt, here, is
restricted to orthotropic fibre-reinforced laminae and, therefore, the constitutive tensor can be rep-
resented by a second-order tensor as described below. The stress is measured using the definition of
effective stress r̂ by Chaboche (1981), that is equation (5). In Figure 1, the different measurements of
stress, effective and nominal, are schematically depicted. Furthermore, the principle of strain equiva-
lence (Lemaitre and Chaboche, 1990) is applied on the constitutive law. Following Simo and Ju
(1987), the damage matrix D is formed by the damage internal variables �ij, equation (6), which are
related to stiffness degradation of the composite in the corresponding directions.

r̂n ¼ DðgnÞ � rn ð5Þ

〉
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Figure 1. Schematic representation of the principle of strain equivalence (Lemaitre and Chaboche, 1990) relating both

measures of stress used, effective �̂ and nominal �.

The red line indicates the final deformed configuration. This principle asserts that the effective stress acting over Â,

total area minus area of the microcracks or defects, produces the same strain as that of the nominal stress acting over

the total area A.
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Material axis {1, 2, 3} are used for the definition of tensors and vectors at plies – unidirectional
(UD) layers. They are local in the ply and are rotated to a global axis {x, y, z} for the final coupling
of the global system of momentum equations. The transformation of tensors from an off-axis con-
figuration can be consulted in any standard reference for mechanics of laminar composites such as
Staab (1999). Material axis at the ply level are defined following the conventional standards:

. 1-direction: longitudinal to fibres,

. 2-direction: in-plane perpendicular to fibres, and

. 3-direction: out-of-plane perpendicular to fibres.

The stress is introduced as a contracted vector, rn ¼ �11 , �22 , �33 , �12 , �23 , �31½ �
T

n, equation (5), and
the diagonal of the damage tensor contains the damage variables �ij linked to the deterioration of the
stiffness components, as shown in equation (6). g denotes a vector – from a contracted tensor –
containing the damage internal variables, gn ¼ �11 , �22 , �33 , �12 , �23 , �31½ �

T

n, which define the damage
state. Henceforth, subscript n denotes that the computation of the variable or tensor affected by it
refers to the time step tn of the proposed time-marching technique.

DijðgnÞ ¼ �ij=ð1� �ijjnÞ ð6Þ

where �ij is the Kronecker delta.a The stress–strain relationship is provided in equation (7), where
C0 is a second-order constitutive tensor that contains the initial values of stiffness components,
unaffected by any damage. Finally, the stress–strain relationship may be written through a
constitutive matrix that integrates the deterioration of its components due to the damage modes,
equation (7).

rn ¼ D�1ðgnÞ � C0 � en ¼ Cn � en ð7Þ

Damage computation

Mapping and characterisation of undamaged domain

The damage surfaces bound the undamaged domain composed for as many as the numbers of
damage modes x modelled. In other words, every damage mode is linked to a stress damage surface
that in turn is mapped onto the strain space as explained next. Normalised energy release rates are
provided in equation (8). These strain damage surfaces are obtained by the mapping in equation
(11), from normalised energy release rates on the stress space

�Yijðrn , gnÞ :¼

�2ii
2Eið1��2iiÞX

ðtÞ
ii

jn if i ¼ j and �ii� 0

�2ii
2Eið1��2iiÞX

ðcÞ
ii

jn if i ¼ j and �ii5 0

�2ij
2Sijð1��2ijÞXij

jn if i 6¼j

8>>>>><
>>>>>:

ð8Þ

aThe Kronecker delta, �ij, is 1 if i¼ j and, 0 otherwise.
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where Ei denotes the Young’s modulus in direction i, Sij the elastic shear modulus associated to
directions i and j, XðtÞ

ii
the direct tensile strength of the laminate in direction i and Xij the shear

strength related to the corresponding directions. The stress damage surfaces are

f �ðrn , gnÞ :¼ f �ð �Yijðrn , gnÞÞ � ¼ 1 , 2 , . . . ,m ð9Þ

For convenience, equation (9) is rearranged as follows in equation (10).

f � ðrn , gnÞ :¼ rT

n � F
�ðgnÞ � rn � 1 � ¼ 1 , 2 , . . . ,m ð10Þ

where Fx denotes the tensor associated to the damage mode x and m the total number of damage
modes modelled, see A. The mapping in equation (11) is obtained by previous computation of these
damage surfaces on the stress space. Thus, these stress damage surfaces are built as function of the
so-called normalised energy release rates in equation (8) due to the propagation of damage variables.
The stress damage surfaces fx shrink with the progression and development of any damage mode
affecting them. The initial spherical damage quadratic form turns into an ellipsoid (Figure (2)) due
to the progression of damage and the volume is re-shaped and, therefore, the undamaged domain on
the strain space is consequently reduced. Once fx is calculated, the corresponding gx damage surface
on the strain space is computed at each quadrature point on the finite element under calculation
according to

G�
ðgnÞ ¼ CT

n � F
�ðgnÞ � Cn � ¼ 1 , 2 , . . . ,m ð11Þ

g�ðen , gnÞ :¼ eTn �G
�ðgnÞ � en � 1 � ¼ 1 , 2 , . . . ,m ð12Þ
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Figure 2. Stress damage surface due to fibre rupture (x1) on a tensile test. The initial spherical damage quadratic

form turns into an ellipsoid due to the progression of damage.
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Remark: The technique permits the inclusion of fracture energy that conveniently can be used for the
utilisation of cohesive elements in future works. The fracture energy in mode I for interply failure as
defined by Johnson et al. (2001)

GI :¼

Z
u33

0

�33du33 ð13Þ

is re-defined for readiness of computation at quadrature points as given by

G
�
I
¼
Xnq
�¼1

&ð�Þ �ð�Þ
33
"ð�Þ
33

ð14Þ

where the direction 3 is perpendicular to the interply plane. G�
Ic
fracture toughness in mode I, nq the

number of quadrature points used for numerical integration of the expression of the energy release
rate G�

I
and �(k) the weight associated to the quadrature point. Analogously, a stress damage surface

is generated that is mapped onto the strain space, equation (15). Then, this surface will form part of
the boundary of the undamaged domain in the strain space. This represents a huge advantage as
having all damage surfaces in the strain space bounding the undamaged domain, which is itself
evolving in volume and shape, with the progression of the damage modes permits an straightforward
computation of damage at every time step of XPFEM.

f �ðrn , gnÞ ¼ ð
G
�

I

G
�

Ic

Þ
p
� 1 ð15Þ

Criterion for progression of damage

A new criterion is presented in this section for computing a progression of a particular damage mode
at any time step. A damage mode is compued at time step tn if the criterion in equation (16) is
satisfied, accumulating in that manner that specific damage mode. The derivation of the criterion is
performed as follows:

. Application of the proposed mapping between stress and strain spaces to obtain the boundaries
of the undamaged domain in the strain space (equation (12)) from the corresponding surface on
the stress space (equation (10)).

. Accumulation of a specific damage mode occurs only if r"g
�
n � _en 4 0. Note that this is a direct

condition necessary for the accumulation of the damage mode x in the current time step Tn.

r"g
�
n � _en 4 0 g�ðen , gnÞ � 0 � ¼ 1 , 2 , . . . ,m ð16Þ

From a mathematical point of view, it asserts that if the gradient of damage surface at the current
state is pointing outwards with an angle less than 90 with the strain rate vector, then the compu-
tation, at current time step for that particular damage mode, is performed. In this manner, the strain
rate dependence is taken into account which permits, for instance, distinction at different impact
velocities. Further details of the procedure are depicted in the flowchart provided in Figure 3.

Directions for propagation of damage

The characterisation of directional vectors dx is given by equation (17), which points to the damage
mode direction – or path – to follow on the strain space.

d�n :¼ eTn � ðG
�T
n þG�

nÞ=kr" g
�
nk � ¼ 1 , 2 , . . . ,m ð17Þ
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Damage Stiffness Tensor

Loop over quadrature points ,qp

Loop over damage modes

Normalised Energy Release Rates , Eq.(8)

Stress Damage Tensor, Eq.(10)

Stress Damage Surfaces, Eq.(9)

Mapping onto Strain Space, Eq.(11)

Damage Strain Surface, Eq.(12)

Yes

Yes

Yes

No

No

No

Update damage rate, Eq.(19)

Increment of damage mode, Eq.(18)

Damage direction, Eq.(17)

Next
Mode

Next
q.p.?

Criteria,
Eq.(16)?

Figure 3. Detailed flowchart of the calculation of damage progression associated to the different modes computed

at the quadrature point level.

This algorithm is nested within the loop over finite elements and embedded into the time-stepping scheme as

described in ‘Explicit time-stepping scheme’. Note that in XPFEM, there is a spatial discretisation by finite elements

and a time discretisation by finite differences (Belytschko et al., 2001).

Progression of damage

Once the criterion in equation (16) is accomplished, the progression of the damage mode x con-
cerned is conducted by the description given by

 �n :¼ ðr"g
�
n � _enÞ

1=p � ¼ 1 , 2 , . . . ,m ð18Þ
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where  x denotes the corresponding increment and p a parameter depending upon the compos-
ite material and the geometry that must be adjusted for a particular problem. In general, p¼ 2
produced excellent results, see ‘Numerical results and discussion’. The square root operator
was incorporated as preliminary results showed an excessive increment of the damage. Its inclu-
sion proved to be more physically accurate respect to the degree of damage attained. The smooth-
ness of the numerical process was also positively affected. Finally, the damage rate vector is
computed at the current time step as given by equation (19) following Matzenmiller et al.
(1995). In this case, the relation, in terms of growth coefficients, becomes non-linear due to the
re-definition of  x.

_gn ¼
Xm

�¼1

 �n d
�
n ð19Þ

Explicit time-stepping scheme

The procedure implemented into the in-house program is better understood following a quasi-
algorithmic description. Once the damage is computed for the current time step, the dependent
variables and tensors are updated on the elements and, then, they are assembled for the total
number of elements on the composite mesh. A detailed description of the FEM operations is clearly
out of the main scope of this article. Thus, the discussion is reduced either to the points that differ
from the standard scheme due to the proposed damage strategy or to highlight several issues of
interest for programming. Readers interested in operations such as assembly or numerical integra-
tion are referred to standard textbooks on FEM, such as Hughes (2000) or Zienkiewicz and Taylor
(2000), for further details. The algorithm of the explicit time-stepping scheme deployed is provided
below in some detail.

(a) initialisation and initial conditions:
. counter and initial time: n¼ 0, t0¼ 0,
. initial velocity: _u0 ¼ 0;
. initial values of other state variables: g0¼ 0, p0¼ 0, etc., and
. input nodal coordinates of Lagrangian mesh: X0.

(b) compute lumped-mass matrix M (Belytschko et al., 2001), which is a diagonal mass matrix in
order to have an uncoupled system of equations and hence perform an explicit time-stepping
scheme

(c) Loop over time steps:
1. Update configuration by new position of nodal coordinates

Xn ¼ Xn�1 þ un ð20Þ

where un denotes the nodal displacements vector.
2. Loop over elements e

2.1. Compute strain at current element

en ¼ B � un ð21Þ

2.2. Call to constitutive composite damage law subroutine, flowchart Figure (3), to update
material state variables at the element e.

en , gn�1�!Cn , rn , _gn

8 International Journal of Damage Mechanics 0(0)
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2.3. Update increment of damage

�gn ¼ �tn _gn ð22Þ

2.4. Update damage internal variables

gnþ1 ¼ gn þ�gn ð23Þ

2.5. Compute element nodal internal force vector

fðeÞn ¼

Z
�e

BT � Cn � B d� ð24Þ

2.6. End loop over elements
3. Global internal force vector, assembly for all elements

fðintÞn ¼

n̂umel

e¼1

fðeÞn ð25Þ

4. If external forces are time-dependent, update nodal external force vector

fðextÞ
n
¼

n̂umel

e¼1

� Z
�e

NT bnd�þ

Z
�e

NT qn d�

�
ð26Þ

where, N is a tensor containing the shape functions, bn the body forces, qn the traction forces
applied over the boundary of the body, B is the strains operator (Hughes, 2000), f(int)(gn) the
nodal internal forces which are damage dependent and fðextÞ

n
the external forces. Counter index

is written for the external force vector to indicate a possible variation with the time-stepping
scheme. The symbol

V
numel

e¼1
denotes the assembly for the total number of elements in the mesh

numel. The integrals over the finite element domain are approximated by means of numerical
integration (Hughes, 2000).

5. Compute acceleration from momentum finite element system of equations

€un ¼M�1 � ½fðextÞ
n
� fðintÞðgnÞ� ð27Þ

where üu is the acceleration vector containing the nodal acceleration.
6. Compute the nodal mid-step velocities _unþ1=2 as

_unþ1=2 ¼ _un�1=2 þ�tn €un ð28Þ

7. Calculate new nodal displacement vector

unþ1 ¼ un þ�tnþ1=2 _unþ1=2 ð29Þ

(d) calculate new critical time step �tðcritÞn , update time step �tn ¼ ��tðcritÞn , a 7]0, 1] and check con-
vergence (relative norm of the residual)

(e) end loop over time steps

Numerical results and discussion

An in-house three-dimensional XPFEM code was developed for the numerical technique. In this
manner, the subroutines were written in an accessible environment which demonstrated to be ver-
satile for straightforward modifications. Once this pilot program was conveniently validated, the
material subroutines were translated into a VUMAT subroutine within ABAQUS to provide
broader postprocessing of results.

Sosa et al. 9
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Single element under tensile loading in fibre direction

In this test, the assessed damage modes were fibre rupture, matrix cracking, fibre kinking and matrix
crushingb (see appendix for the used tensors related to the different damage modes). Obviously, the
two latter ones should not appear in a tension test as described here. In tension, the typical modes of
failure are fibre rupture and matrix cracking. The model was able to detect only these two modes for
tension and therefore simulating only the expected ones.

The numerical technique is validated by comparing the predicted ultimate tensile stress and
failure strain for a carbon fibre reinforced finite element with the corresponding values obtained
by experimental testing. The experimental material properties were obtained by Soden et al. (1998b).
Elastic properties and material strengths used are presented in Table 1.

The finite element is an eight-noded brick element with reduced integration.c The tensile load was
applied incrementally in the longitudinal direction of the fibres, trespassing on failure, and was
exerted until the load-bearing capacity of the element vanished. Thus, the different damage
modes computed were fully recorded if they were present at any stage of the simulation to validate
the process. The load is applied slowly, neglecting inertia and is perpendicular to one of the sides of
the element in the longitudinal direction of the fibres. The numerical oscillations associated to
XPFEM – and other explicit numerical methods – were attenuated using an artificial damping
term in the weak form of the momentum equations, i.e. dynamics relaxation (Belytschko and
Hughes, 2001). In this manner, the steady-state solution, i.e. after an initial transient, represents
the solution to the quasi-static problem (Curiel Sosa et al., 2006).

The obtained failure parameters, ultimate tensile stress and failure strain correlated well with the
experimental ones, as given in Table 2. The results show that the expected damage modes involved in
the tensile loading failure, i.e. fibre rupture and matrix cracking, were computed whereas matrix
crushing and fibre kinking were not. This highlights the capacity of the technique to detect the
correct damage modes associated to a particular stress state.

Shearing on plane 12 of single element

In this test, the element, with material parameters from Table 1, is subjected to shearing in plane 12.
The load was linearly incremented until complete failure by shear. The comparison of numerical and
experimental responses are presented in Table 3. The numerical results show a relative error of 19%
in the failure strain, although the averaged relative error remained small. The predicted failure stress
was in good agreement with the experimental one.

Single element under compression in fibre direction

The single element described in ‘Single element under tensile loading in fibre direction’ is used here
with reverse loading, i.e. compression, up to complete failure. The material parameters are the same
of those in Table 1. The failure stress is presented in Table 4. Stability was observed during execution
of the program until the element completely lost its structural resistance. The damage modes rec-
orded were fibre kinking and matrix crushing. Neither matrix cracking nor fibre rupture was
observed in the numerical test.

bOther modes may be flexibly introduced in the envisaged framework.
cReduced integration performs computation of stress, and other variables, in one quadrature point (Belytschko et al., 2001).

10 International Journal of Damage Mechanics 0(0)
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Low-velocity impact on laminate

The proposed technique is used to simulate maps of damage in a cross-ply laminate when impacted
by a projectile at low velocity. Hou et al. (2000) performed this test. Their experimental work
involved the use of a titanium projectile of 260 g, 9.55mm in diameter and ended with a spherical

Table 1. Material properties of the carbon reinforced epoxy lamina (Soden et al., 1998b) used in single-element

tests.

Lamina properties (single-element tests)

Young’s modulus, E1 (GPa) 126

Young’s modulus, E2, E3 (GPa) 11

Shear modulus, S12, S31 (GPa) 6.6

Shear modulus, S23 (GPa) 3.93

Poisson ratios, �12, �31 0.28

Poisson ratio, �23 0.4

Tensile strength in fibre direction, XðtÞ
11

(MPa) 1950

Compressive strength in fibre direction, XðcÞ
11

(MPa) �1480

Perpendicular to fibre tensile strength, XðtÞ
22

, XðtÞ
33

(MPa) 48

Perpendicular to fibre compressive strength, XðcÞ
22

, XðcÞ
33

(MPa) �200

Shear strength, X12, X31 (MPa) 79

Shear strength, X23 (MPa) 17.14

Superscripts (t) and (c) denote tension and compression respectively.

Table 4. Results for single element under compression in fibre direction.

Experimental Numerical Relative error (%)

�11,f (MPa) �1480 �1558 5.2

Table 2. Values of ultimate stress, �11,UTS, and failure strain, e11,f from longitudinal (fibre direction) tensile loading

tests on a lamina with mechanical properties given in Table 1.

Experimentala Numerical Relative error (%)

�11,UTS (MPa) 1950 1966.7 0.82

e11,f (%) 0.0138 0.0157 14.5

aExperimental results were obtained by Soden et al. (1998b)

Table 3. Results from shearing on plane 12 of single element.

Experimental Numerical Relative error (%)

�12,f (MPa) 79 84.3 6.7

e12,f (%) 0.021 0.025 19.07

Sosa et al. 11
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steel cap 16mm in diameter that impacted on a laminate at 7.08m/s. Rubber bungs were utilised to
attenuate the oscillations of the forced signal in the projectile. The target laminate has a stacking
sequence of 21 alternated plies with orientations [0, 90] with a percentage of fibre volume of 60%.
Plies are made of one layer of UD carbon fibres within an epoxy matrix. The composite material is
commonly specified as CFRP T300/914 and its material properties are given in Table 5. The test was
carried out by means of a gas gun apparatus (Hou et al., 2000). The projectile is launched by the gas
gun and is impacted on the ring-supported laminate, as depicted in Figure 4. The sample is initially
unstressed. The dimensions of the laminate were 85� 85� 2.6mm3. The support for the specimen is
located at the side opposite to the impact and it is a ring of hole diameter 45mm.

Hou et al. (2000) measured the projectile speed by infrared timing gates immediately before the
contact between the projectile and the target. Dye penetrants were utilised to visualise the damage
which was recorded by C-scans later on. Perhaps, the most significant result was that delamination

Quarter of specimen used
v = 7.08 m/s

2.6 mm

21 alternated
plies [0,90]

86 mm86 mm

Figure 4. Configuration of the low-velocity impact on target laminate.

The rigid ring support beneath the laminate target is not visible in the perspective shown.

Table 5. Material properties of the lamina used in the manufacturing of the target laminate taken from Hou et al.

(2000).

Material properties (low-velocity impact test)

Density, 	 (kg/m3) 1580

Young’s modulus, E1 (GPa) 139

Young’s modulus, E2, E3 (GPa) 9.4

Shear modulus, S12, S31 (GPa) 4.5

Shear modulus, S23 (GPa) 2.98

Poisson ratio, �12, �13 0.209

Poisson ratio, �21, �31 0.00141338

Poisson ratio, �23, �32 0.33

Tensile strength in fibre direction, XðtÞ
11

(MPa) 2070

Perpendicular to fibre tensile strength, XðtÞ
22

, XðtÞ
33

(MPa) 74

Perpendicular to fibre compressive strength, XðcÞ
22

, XðcÞ
33

(MPa) �237

Shear strength, X12, X31 (MPa) 86

Shear strength, X23 (MPa) 64

12 International Journal of Damage Mechanics 0(0)
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was not observed in the through-thickness compressive region beneath the projectile impact zone,
i.e. the centre of the target laminate (Figure 5). Our proposed technique replicates this effect, see
Figure 6. This effect is caused because of the symmetry of the configuration.

The target laminate was modelled using one finite element per ply in the transversal direction,
making 21 elements through the thickness of the laminate in total. The finite element used is an eight
noded hexahedra element with reduced integration. For this test, the numerical technique was
implemented in FORTRAN language into a VUMAT subroutine for ABAQUS software. The
number of state variables representing damage was set to six and the number of damage modes
modelled was six. These were fibre rupture, fibre kinking, matrix cracking (in both normal-to-fibre
directions) and matrix crushing (also in both normal-to-fibre directions). The main expressions of
tensors and other variables can be found in ‘Appendix’. Thanks to the symmetry and, in order to
save computational cost, the configuration was reduced to one quarter of the original geometry for
all components, i.e. projectile, specimen and rigid support.

Although the proposed technique is mesh-dependent, regularisation, e.g. Petrinic et al. (2006), is
not attempted here as the interest is to replicate experimental response for matrix crushing and
delamination mainly with the same mesh as Hou et al. (2000). However, it is encouraged to develop
non-local strategies within the proposed technique for simulation of damage independent of the size
of the finite elements in future works. Because of the utilisation of reduced integration, hourglassing
controld was used to avoid unrealistic distortion of elements. The contact condition was set for
surface–surface. The shear stress fields are depicted in Figures 7 and Figure 8. Shear stresses play a
major role in the initiation and development of delamination in these type of problems. Figure 9
shows the final matrix crushing once the projectile has bounced back. The crushing damage is

Figure 5. Approximated localisation of delamination from experimental results by Hou et al. (2000).

The figure represents a through-thickness view of a quarter of the target laminate. Middle vertical line indicates the

corner.

Figure 6. View through section-cut interply damage (delamination) on a quarter laminate.

Localisation of delamination correlates well with the experimental map of damage provided by Hou et al. (2000). In

that work, a delamination-free region was recorded just beneath the projectile, in through-thickness impact zone. The

simulation was able to model that delamination-free zone as can be observed in his figure.

dprovided by ABAQUS software.
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Figure 7. Contour plot of shear stress �23. �
ðmaxÞ

23
¼ 36:17 MPa (red contour); �ðminÞ

23
¼ �15:48 MPa (blue contour).

Figure 8. Contour plot of shear stress �13. �
ðmaxÞ

13
¼ 36:15 MPa (red contour); �ðminÞ

13
¼ �14:76 MPa (blue contour).

Figure 9. Detail of matrix crushing map of damage in the through-thickness impact zone, under the impactor.

The crushed region was observed in the expected location.
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located in the contact zone beneath the impactor which correlates with the results by Hou et al.
(2000). Figure 6 represents the delamination region, with grades, matching the experimental map,
Figure 5, of damage obtained from the gas gun in a significant region and leaving efficiently without
delamination of the central part.

Conclusion

The development of a new technique for simulation of damage modes in fibre reinforced composite
laminates was presented in this article. The explicit time-stepping technique embedded within the
FEM was shown in detail as well as novel features, which included:

(a) formulation of damage directions whereby propagation of the different damage modes was
computed,

(b) increment of damage, i.e. growth, posed as a function of normalised energy release rates mapped
onto strain space for smoother and stable computational executions, and

(c) criteria of damage based on shrinkage of strain damage surfaces and positive accumulation of
damage.

Results proved that the proposed technique is able to address the initiation of failure followed by
a suddenly disappearing non-linear regime, that eventually precipitates in complete failure. In par-
ticular, excellent prediction of delamination was observed in low-velocity impact numerical test,
correlating with experiments in great detail.

The evolution of damage is gradually evolving without losing completely the load-bearing capacity
of the element once the damage criteria are fulfilled. In this manner, the stability and, therefore, the
convergence of the numerical techniques are improved. The technique is sensible to mesh element size,
and hence, regularisation techniques are recommended for future works. Furthermore, the use of
cohesive elements in conjunction with the technique would possibly provide a more accurate descrip-
tion of discontinuities associated to damage although this has not been attempted at this time.

Funding

222.

References

Allen DH, Harris C and Groves SE (1987) A thermomechanical constitutive theory for elastic composites with

distributed damage. Part I: Theoretical development. International Journal of Solids and Structures 23(9):

1301–1318.
Belytschko T and Hughes TJR (2001) Computational Methods for Transient Analysis. The Netherlands: Elsevier

Science B.V.
Belytschko T, Liu WK and Moran B (2001) Nonlinear Finite Elements for Continua and Structures. New York:

John Wiley & Sons.
Camanho PP, Dávila CG and Ambur DR (2001) Numerical simulation of delamination growth in composite

materials. NASA/TP-2001-211041, Hampton, VA.
Camanho PP and Mathews FL (1999) A progressive damage model for mechanically fastened joints in com-

posite laminates. Journal of Composite Materials 33(24): 2248–2280.
Camanho PP, Dávila CG and de Moura MF (2003) Numerical simulation of mixed-modes progressive delam-

ination in composite materials. Journal of Composite Materials 37(16): 1415–1438.

Sosa et al. 15



XML Template (2012) [16.4.2012–4:23pm] [1–19]
//blrnas1/journals/application/sage/IJD/IJD 446820.3d (IJD) [PREPRINTER stage]

Chaboche J-L (1981) Continuous damage mechanics – a tool to describe phenomena before crack initiation.

Nuclear Engineering and Design 64: 233–247.
Chaboche J-L (1992) Damage induced anisotropy: on the difficulties associated with the active/passive unilat-

eral condition. International Journal of Damage Mechanics 1: 148–171.
Chang F-K and Chang KY (1987) A progressive damage model for laminated composites containing stress

concentration. Journal of Composite Materials 21: 834–855.

Curiel Sosa JL, de Souza Neto EA and Owen DRJ (2006) A combined implicit-explicit algorithm in time for

non-linear finite element analysis. Communications in Numerical Methods Engineering 22: 63–75.
Daniel IM (2007) Failure of composite materials. Strain 43: 4–12.

Desmorat R, Gatuingt F and Ragueneau F (2010) Nonstandard thermodynamics framework for robust com-

putations with induced anisotropic damage. International Journal of Damage Mechanics 19(1): 53–73.
Donadon MV, Iannucci L, Falzon BG, et al. (2008) A progressive failure model for composite laminates

subjected to low velocity impact damage. Computers and Structures 86: 1232–1252.
Germain P, Nguyen QS and Suquet P (1983) Continuous thermodynamics. Journal of Applied Mechanics,

ASME 50: 1010–1020.

Hallet SR (1997) Small specimen impact testing and modelling of carbon fibre T300/914. PhD Thesis. University

of Oxford, UK.
Harris CE, Coats TW, Allen DH, et al. (1995) A progressive damage model and analysis methodology for

predicting the residual strength of composite laminates. Journal of Composites Technology and Research 29:

926–981.
Hashin Z (1980) Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics 47:

329–334.
Hinton MJ and Soden PD (1998) Predicting failure in composite laminates, the background to the exercise.

Composites Science and Technology 58: 1001–1010.
Hou JP, Petrinic N, Ruiz C and Hallet SR (2000) Prediction of impact damage in composite plates. Composites

Science and Technology 60: 273–281.

Hughes TJR (2000) The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. New York:

Dover.
Iannucci L and Willows ML (2006) An energy based damage mechanics approach to modelling impact onto

woven composite materials. Part I: Numerical models. Composites: Part A 37: 2041–2056.
Johnson AF, Pickett AK and Rozycki P (2001) Computational methods for predicting impact damage in

composite structures. Composites Science and Technology 61: 2183–2192.

Lemaitre J and Chaboche JL (1990) Mechanics of Solids Materials. Cambridge: Cambridge University Press.
Liu PF and Zheng JY (2010) Recent developments on damage modeling and finite element analysis for com-

posite laminates: a review. Materials and Design 31: 3825–3834.

Lundmark P and Varna J (2005) Constitutive relationships for laminates with ply cracks in inplane loading.

International Journal of Damage Mechanics 14: 235–259.
Maimi P, Camanho PP, Mayugo JA, et al. (2007a) A continuum damage model for composite laminates: Part I

– Constitutive model. Mechanics of Materials 39(10): 897–908.
Maimi P, Camanho PP, Mayugo JA, et al. (2007b) A continuum damage model for composite laminates:

Part II – Computational implementation and validation. Mechanics of Materials 39(10): 909–919.

Matzenmiller A, Lubliner J and Taylor RL (1995) A constitutive model for anisotropic damage in fiber-

composites. Mechanics of Materials 20: 125–152.
Petrinic N, Curiel Sosa JL, Siviour CR, et al. (2006) Improved predictive modelling of strain localisation

and ductile fracture in a Ti-6Al-4V alloy subjected to impact loading. Journal of Physics IV 134:

147–155.
Puck A and Schurmann H (1998) Failure analysis of FRP laminates by means of physically based phenom-

enological models. Composites Science and Technology 58: 1045–1067.
Raimondo L, Iannucci L, Robinson P, et al. (2012) A progressive failure model for mesh-size-independent FE

analysis of composite laminates subject to low-velocity impact damage. Composites Science and Technology

72: 624–632.

16 International Journal of Damage Mechanics 0(0)



XML Template (2012) [16.4.2012–4:23pm] [1–19]
//blrnas1/journals/application/sage/IJD/IJD 446820.3d (IJD) [PREPRINTER stage]

Simo JC and Ju JW (1987) Strain- and stress-based continuum damage models – I. Formulation. International
Journal of Solids and Structures 23(7): 821–840.

Singh CV and Talreja R (2008) Analysis of multiple off-axis ply cracks in composite laminates. International
Journal of Solids and Structures 45(16): 4574–4589.

Singh CV and Talreja R (2010) Evolution of ply cracks in multidirectional composite laminates. International
Journal of Solids and Structures 47(10): 1338–1349.

Soden PD, Hinton MJ and Kaddour AS (1998a) A comparison of the predictive capabilities of current failure

theories for composite laminates. Composites Science and Technology 58(7): 1225–1254.
Soden PD, Hinton MJ and Kaddour AS (1998b) Lamina properties, lay-up configurations and loading con-

ditions for a range of fibre-reinforced composite laminates. Composites Science and Technology 58(7):

1011–1022.
Staab GH (1999) Laminar Composites. Oxford: Butterworth–Heinemann.
Talreja R (1987) Modelling of damage development in composites using internal variables concepts.

Proceedings of the ASME, Damage Mechanics in Composites, AD 12: 11–16.
Talreja R (2006) Damage analysis for structural integrity and durability of composite materials. Fatigue and

Fracture of Engineering Materials and Structures 29: 481–506.
Tan SC (1991) A progressive failure model for composite laminates containing openings. Journal of Composite

Materials 25(5): 556–577.
Tsai SW and Wu EM (1971) General theory of strength for anisotropic materials. Journal of Composite

Materials 5: 58–80.

Turon A, Camanho PP, Costa J, et al. (2006) A damage model for the simulation of delamination in advanced
composites under variable–mode loading. Mechanics of Materials 38(11): 1072–1089.

Tvergaard V (2004) Predictions of mixed mode interface crack growth using a cohesive zone model for ductile

fracture. Journal of Mechanics and Physics of Solids 52(4): 925–940.
Wisnom MR (2010) Modelling discrete failures in composites with interface elements. Composites Part A:

Applied Science and Manufacturing 41(7): 795–805.
Yang Q, Zhou W-Y and Chen X (2010) Thermodynamic significance and basis of damage variables and

equivalences. International Journalof Damage Mechanics 19(08): 898–910.
Zienkiewicz OC and Taylor RL (2000) The Finite Element Method: The Basis, 1. 5th edn. Oxford: Butterworth–

Heinemann.

Appendix

Second-order tensors

‘Damaged’ stiffness matrix in orthotropic directions for a lamina

Cð�Þ ¼

ð1��11Þð1��23�32Þ
E22E33


ð1��11Þð�12þ�32�13Þ
E11E33


ð1��11Þð�13þ�12�23Þ
E11E22


0 0 0

ð1��22Þð�12þ�32�13Þ
E11E33


ð1��22Þð1��13�31Þ
E11E33


ð1��22Þð�23þ�21�13Þ
E11E22


0 0 0

ð1��33Þð�13þ�12�23Þ
E11E22


ð1��33Þð�23þ�21�13Þ
E11E22


ð1��33Þð1��12�21Þ
E11E22


0 0 0

0 0 0 ð1� �12S12Þ 0 0

0 0 0 0 ð1� �23S23Þ 0

0 0 0 0 0 ð1� �31S31Þ

2
66666666666666664

3
77777777777777775


 ¼
ð1� �12�21 � �23�32 � �31�13 � 2�21�32�13Þ

E11E22E33
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Second-order tensors used in the tests for distinct damage modes (m¼ 6)

Superscript index denotes damage mode. The tensors evolve with time as internal damage variables
change. Thus, the subscript n – time step counter – is written to emphasise this time dependence.

. Fibre rupture or breakage (x¼ 1)

F1

n ¼

1=ð2E1ð1� �
2

11
ÞXðtÞ

11
Þ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1=ð2S12ð1� �
2

12
ÞX12Þ 0 0

0 0 0 0 0 0

0 0 0 0 0 1=ð2E31ð1� �
2

31
ÞX31Þ

2
666666664

3
777777775

n

ð30Þ

. Fibre kinking (x¼ 2)

F2

n ¼

1=ð2E1ð1� �
2

11
ÞXðcÞ

11
Þ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1=ð2S12ð1� �
2

12
ÞX12Þ 0 0

0 0 0 0 0 0

0 0 0 0 0 1=ð2E31ð1� �
2

31
ÞX31Þ

2
666666664

3
777777775

n

ð31Þ

. Interply damage, mode II (x¼ 3)

F3

n ¼

0 0 0 0 0 0

0 1=ð2E2ð1� �
2

22
ÞXðtÞ

22
Þ 0 0 0 0

0 0 0 0 0 0

0 0 0 1=ð2E12ð1� �
2

12
ÞX12Þ 0 0

0 0 0 0 1=ð2E23ð1� �
2

23
ÞX23Þ 0

0 0 0 0 0 0

2
666666664

3
777777775

n

ð32Þ

. Matrix crushing in 2-direction – in-plane perpendicular to fibre – (x¼ 4)

F4

n ¼

0 0 0 0 0 0

0 1=ð2E2ð1� �
2

22
ÞXðcÞ

22
Þ 0 0 0 0

0 0 0 0 0 0

0 0 0 1=ð2E12ð1� �
2

12
ÞX12Þ 0 0

0 0 0 0 1=ð2E23ð1� �
2

23
ÞX23Þ 0

0 0 0 0 0 0

2
666666664

3
777777775

n

ð33Þ
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. Interply damage, mode I (x¼ 5)

F5

n ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1=ð2E3ð1� �

2

33
ÞXðtÞ

33
Þ 0 0 0

0 0 0 0 0 0
0 0 0 0 1=ð2E23ð1� �

2

23
ÞX23Þ 0

0 0 0 0 0 1=ð2E31ð1� �
2

31
ÞX31Þ

2
6666664

3
7777775

n

ð34Þ

. Matrix crushing in 3-direction through thickness, i.e. out-of-plane perpendicular to fibres (x¼ 6)

F6

n ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1=ð2E3ð1� �

2

33
ÞXðcÞ

33
Þ 0 0 0

0 0 0 0 0 0
0 0 0 0 1=ð2E23ð1� �

2

23
ÞX23Þ 0

0 0 0 0 0 1=ð2E31ð1� �
2

31
ÞX31Þ

2
6666664

3
7777775

n

ð35Þ
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