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SUMMARY

This paper details a semi-analytical procedure to efficiently integrate the product of a smooth function and
a complex exponential over tetrahedral elements. These highly oscillatory integrals appear at the core of
different numerical techniques. Here, the Partition of Unity Method (PUM) enriched with plane waves is
used as motivation. The high computational cost or the lack of accuracy in computing these integrals is a
bottleneck for their application to engineering problems of industrial interest. In this integration rule, the
non-oscillatory function is expanded into a set of Lagrange polynomials. In addition, Lagrange polynomials
are expressed as a linear combination of the appropriate set of monomials, whose product with the complex
exponentials is analytically integrated, leading to 16 specific cases that are developed in detail. Finally, we
present several numerical examples to assess the accuracy and the computational efficiency of the proposed
method, compared to standard Gauss-Legendre quadratures.

KEY WORDS: highly oscillatory integral; semi-analytical integration rule; Lagrange polynomials;
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1. INTRODUCTION

During the last two decades special attention has been focused on the computation of highly
oscillatory integrals in applied sciences and engineering. The problem arises in several fields such
as quantum mechanics, image analysis, electrodynamics, and wave propagation problems. This type
of integrals cannot be efficiently computed with standard quadratures (such as the Gauss-Legendre
quadrature) because the highly oscillatory integrand is not properly represented by polynomial
interpolation. Thus, a very large number of integrations points is needed and the computational
cost becomes prohibitive, particularly in the case of medium or high frequencies, three-dimensional

problems or large domains.
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Wave problems lead to oscillatory solutions, which are poorly captured by the classical
polynomial shape functions, associated with the standard Finite Element Method (FEM). Moreover,
for high wavenumber applications, the numerical dispersion makes the discrete wavenumber differ
drastically from the exact solution. This is called the pollution effect, and it separates the solution
of the standard FEM from the best approximation [1] [2, Section 4.6] [3].

Although high-order methods and discontinuous formulations provide lower dissipation and
dispersion, alternative finite element formulations have been developed to overcome this limitation
by including special shape functions into the approximation space, see [4, 5] for continuous
formulations or [6, 7, 8, 9] for discontinuous formulations. These enriching functions include a
priori knowledge of the solution and improve the quality of the local and global approximation
properties. In the case of the Helmholtz equation, it is advantageous to include sets of plane waves
propagating in different directions, since they are free-space natural solutions when a uniform
wavenumber is considered and they form a so-called c-complete set of functions that allows
spanning the whole space of solutions, see [10, 11] for details. Thus, the enriched approximation
space allows a drastic reduction of the pollution error, see [1] and [2, Section 4.8] for a detailed
analysis. This alleviates the constraint of having a minimum number of elements per wavelength
(typically 10 or 12 as a rule of thumb), allowing the use of coarser meshes with several wavelengths
per element. These meshes provide a considerable reduction in the total number of unknowns (more
than 90% in some cases).

However, the enriching functions and their derivatives have to be integrated over each element.
In some of these plane-waves based methods the integrals are easier to compute, such as the Ultra
Weak Variational Formulation [12] or the Discontinuous Enrichment Method [6, 7, 8]. In the case
of the Partition of the Unity Method (PUM), the selection of standard Gauss-Legendre quadratures
becomes inadequate due to the highly oscillatory behavior of the resulting integrands, and alternative
efficient integration techniques are needed. Many classical and modern methods for solving 1D finite
regular Fourier integrals can be found in [13] and in [14, 15]. In the context of the Partition of the
Unity Method (PUM), Ortiz and Sanchez [16] introduced a local coordinate rotation over triangular
elements to obtain 1D oscillatory integrands and compute these integrals semi-analytically. Bettess
et al. [17, 18] developed semi-analytical rules for 2D problems that consider the special nature of
the integrand and profit from it to perform the integration. In these rules, the non-oscillatory part of
the integrands is approximated by a set of interpolating Lagrange polynomials. Then, the products
of these polynomials and the complex exponentials are integrated analytically. The result is a set
of integration weights, which are specific for each combination of element geometry and parameter
of the complex exponential. The key point of these rules is that the distribution of the integration
points captures the behavior of the smooth part of the integrand, rather than the whole oscillatory
behavior, which is analytically captured by the integration weights. Therefore, the spacing of the
integration points is larger, dramatically reducing their number and, hence, the number of function
evaluations, compared to the Gauss-Legendre quadrature. This approach has been recently applied
in the context of underwater acoustics in [19]. Gabard [20] presented an alternative approach to
compute the integral of the product of a polynomial and a complex exponential over arbitrary
polygons, polyhedral volumes and 3D surfaces, by rewriting volume integrals in terms of 1D

integrals along the element edges thanks to the Gauss and the Stokes theorems.
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The novelty of our contribution is a fast and robust semi-analytical rule to compute the volumetric
integrals of highly oscillatory functions (expressed as the product of a smooth function and a
complex exponential) on tetrahedral elements. In this sense, it is a generalization to a three
dimensional setting of the integration rule developed by [17, 18]. The method proposed here
follows the usual practice of standard quadratures and considers the evaluation of the non-oscillatory
function at the integration points. This is in contrast to [20] that considers as input data the
coefficients of the polynomial (non-oscilatory part of the integrand), and after applying the Gauss
and the Stokes theorems, performs one dimensional integrals along the element edges. The proposed
quadrature is better fitted to be implemented in a Finite Element like methodology. This is because
the information describing the (non-oscillatory part of the) function to be integrated is required
as values at a set of integration points, which is the standard practice in Finite Elements. On the
contrary, the quadrature introduced in [20] requires as input data the coefficients of the polynomial
in some basis. Thus, for the specific application in a Finite Element framework, using [20] requires
an additional step that consists in finding the analytical expression of the polynomial from point
values with some interpolation technique. Note that this new operation introduces an additional
interpolation error.

The rest of the paper is organized as follows: Section 2 describes the semi-analytical scheme,
detailing the Lagrange expansion in terms of a linear combination of a basis of monomials, and
the expression of the integration weights of the semi-analytical rule. Section 3 provides several
preliminary results required to develop Section 4, which presents the new scheme to compute
the target integral. Specifically, we detail how this scheme leads to 16 different cases. Section 5
summarizes how the PUM enriched with plane waves benefits from this semi-analytical scheme.
Section 6 presents several numerical examples to underline the main properties of the proposed
rule. Finally, the conclusions extracted from this work are collected in Section 7.

2. HIGHLY OSCILLATORY INTEGRAL OVER A TETRAHEDRON

The objective of this work is obtaining an efficient semi-analytical integration rule to compute the

following family of highly oscillatory integrals over a tetrahedron QTET:

K= f(x) exp (iv - x) de, (1)
QTET
where x is the vector of coordinates, f is a smooth (non-oscillatory) function, ¢ = y/—1 is the
imaginary unit, and v is an arbitrary and complex vector. The complex exponential is considered as
highly oscillatory if it oscillates several times inside the element, that is, if
[[v]|A

—>1
o > 1,

where h is a characteristic length. Since the methodology is conceived for an application in the
context of generalized finite elements, in the following & is denoted as the element size. This kind

of integral is also known as regular finite Fourier integral.
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Figure 1. Geometrical mapping between the reference and physical tetrahedral element.

2.1. Lagrange polynomials expansion and semi-analytical scheme

We rewrite the integral in Equation (1) at the reference tetrahedron ™, see Figure 1, as

K= | J@E)eviv z@)B@ld= [ Feeiv 2@ @
where € = (£,7,() is the vector of reference coordinates and F'(&) = f(x(&))|J(€)], and |J(&)|
stands for the Jacobian of mapping ¢ between the reference and the physical tetrahedron. Although
the Jacobian |J ()| is constant (independent of &) for linear tetrahedral elements, the dependence
on £ is however kept inside J to highlight that this framework is also valid for mappings with a
non-uniform Jacobian.

The non-oscillatory function F'(£) is now approximated by means of a set of Lagrange
interpolating polynomials:

F(&) =Y F(&)La(8), 3)
d=1

where L, is the Lagrange polynomial of degree p associated with the d-th integration point &,
d=1,...,n,, and n, is the number of integration points. Therefore, the integral in Equation (1) is

computed using the following integration rule:

K~ - (Z F(£d)Ld(£)> exp (iv - x(€)) dé = Y F(&,)wa,
d=1

d=1

where
wdz/ Lq(€)exp (iv-x(€)) d€ ford=1,...,n,, 4
Qref

is the complex integration weight corresponding to the d-th integration point. Note that the accuracy
of integral (1) strongly depends on the quality of the approximation in Equation (3).

The difficulty lies now in the evaluation of the integration weights wq, for d =1,...,n, . Their
values depend on vector v and the element geometry. Therefore, it is not possible to a priori compute
a set of weights for a given set of integration points that are valid for any element geometry. To
develop an efficient procedure, it is convenient to decompose the Lagrange polynomials into the
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appropriate set of 3D monomials:

La(§) = > Aa.aMa(€), )
la|<p
where
Ma (&) = £*n°¢°, (6)

and )\ 4 is the coefficient associated with the d-th polynomial and the a-th monomial. The multi-
index notation considers a = (a, b, ¢), where a, b, c are non-negative integers and |a| :=a + b+ ¢ <
p. Appendix A details a procedure to compute the coefficients A4 o of the monomial decomposition
in a straightforward manner.

Substituting Equation (5) into Equation (4), we obtain a new expression for the integration
weights:

wi= Y Ada | Ma(§)exp(iv-@(§)) dE. (7)

f
lal<p e

Remark 1

Other interpolation functions could be used to approximate F(£) in Equation (3). Nevertheless,
Lagrange polynomials are easily decomposed into a set of monomials, see Appendix A, leading
to the integration of products of monomials and complex exponential that can be performed semi-
analytically. The examples presented in Section 6 show that this procedure is also advantageous
from the computational point of view.

Remark 2

The number of integration points, n,,, can be determined by imposing that the quadrature integrates
Equation (2) exactly (up to round-off errors) when F'(&) is a polynomial of degree < p. This number
must coincide with the dimension of the polynomial space, which can be obtained from the Pascal’s
pyramid as

+(p+1)2+4(p+1)>.

6
If F(&) is not a polynomial function, an appropriate value for p fitting the behavior of the function
has to be selected.

Remark 3

Following the work of Bettess et al. [17, 18], we consider an equidistributed set of integration
points. Selecting optimal locations for the integration points as in the case of the Gauss-Legendre
quadratures is not possible in this context. This is because the oscillating term, exp (iv - (&)),
acting as kernel of a bilinear form that should be a scalar product, is a complex function.
Consequently, it cannot be used to define a scalar product (a complex kernel function is associated
with non-positive definite bilinear form). Even if the kernel was real valued, it would be dependent

on the geometry of the element and on the argument of the complex exponential, vector v.
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2.2. Tetrahedral finite elements

We consider the 3D linear mapping ¢ from the reference coordinates £ to the global coordinates :

x=¢) =al+PBn+v(+3, ®)
where
oa=x— T, B=z3—x, Y =Ty — Ty, 0 =ux,

defined on the reference domain 0 < <1—-(—1n,0<n<1-(, and 0 < <1, see Figure 1.

Introducing equations (6) and (8) into the expression for the integration weights, Equation (7), we

obtain
wq = exp (iD) Z M.ala; 9)
la|<p
where
1 pl1=¢ pl=C—nm
=[] enceniagen B e (o dnat. 10

A=v-a, B=v-0, C=wv-7v, D=wv-9,

and a, b, c being non-negative integers. Note that the weights depend on vector v and the element
geometry through the complex parameters A, B, C, and D.
The rest of the paper focuses on the analytical solution of the integral in Equation (10).

3. PRELIMINARY RESULTS: INTEGRATING 1D MONOMIALS-COMPLEX
EXPONENTIAL PRODUCTS

This section provides two basic results that will be used in Section 4 to obtain the analytical solution
of integral (10). Our semi-analytical procedure seeks successive 1D term collections that head
toward the analytical integration of the following one-dimensional product of a monomial and a
highly oscillatory term:

Iip = /s”exp (ips) ds, (1)

where v is a non-negative integer, and the value of the complex coefficient iz depends on the values
of coefficients A, B and C.

We consider this type of one-dimensional integral at two stages of the development of our
numerical procedure. On the one hand, the analytical manipulation of Equation (10) leads to 1D
highly oscillatory integrals such that the upper limit of the integral depends on the reference spatial
coordinates, see details in Section 4. On the other hand, these intermediate integrals are further
developed leading to 1D highly oscillatory integrals with fixed integration limits (between 0 and 1).
This section focuses on the first situation while Appendix B deals with the second one.

We consider two cases in the first situation, depending on the value of parameter p, as suggested

in [18]. First, if the modulus of x is not small, . - 0, and given that exponent v is a non-negative
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integer, after recursively applying the integration by parts theorem we have

711/1

/3 exp (ius) ds = V‘Z . (z,us) (12)

(v —r)lpr+t

Second, for certain combinations of the values of coefficients A, B and C' in Equation (10), the
analytical manipulations involve integrals of type (11) with a very small values of coefficient p,
1 — 0 and Equation (12) provides inaccurate results. Thus, it is preferable to apply a truncated
Taylor’s expansion to the exponential function before proceeding with the analytical integration.
Specifically, we set

T'max

exp (ips) = » (Bus)’

7!
r=0

where rm,x 1S the number of terms retained in the approximation. This number is adjusted so that
the truncation error in the series is of the order of the machine accuracy e. Since in this paper both

v and r are non-negative integer parameters, we have

Tmax . r gvtrtl

. . T'max Z r . 7,,
/s exp(z,us)dszz(:ﬁ)/ + Z IS (13)

r=0 =0

It remains to determine the threshold value, p, to switch between equations (12) and (13). In our
implementation we consider that j is small enough if |u|**! < tol. Thus, the threshold value for u
is

1
[h = tol 7T,

We set tol = 10~%, based on our experience.
Finally, the following type of integral also appears in Section 4:

/ s¥(t — 5)" exp (ips) ds.

This integral can be expressed as a sum of integrals from Equation (11) thanks to the binomial
theorem,

K - —1)" K—T) T
(t*S) H'Z([Q(—T))Lr"t( )S s
e r!

leading to

K

/s”(t — 8)"exp (ius) ds = ! =y /s”'” exp (ius) ds, (14)

s (k —1)!r!

that can be solved using equations (12) or (13), depending on the value of coefficient p.

4. ANALYTICAL DEVELOPMENT TO OBTAIN THE EXPRESSIONS FOR THE WEIGHTS

To obtain the integration weights (9) of the semi-analytical rule, in this Section we develop a

procedure to evaluate the highly oscillatory integral in Equation (10). Specifically, we first apply
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Table 1. Possible combinations of values for coefficients A, B, and C' to obtain integral I; from Equation
(10) leading to 16 cases of analytical expressions

Case | A B C C-B C-A B-A

1 -0 -0 =»0 -0 -0 - 0
-0 -»0 —0 — — -0
3 -0 —-»0 »0 -0 —0 -0
4 -0 -0 -=»0 —0 -0 -0
5 -0 -»0 -»0 —0 —0 -0
6 -0 —=0 -»0 — -0
7 -0 =0 -»0 — —0 —
8 -0 —=0 =0 — — —
9 -0 —-»0 -»0 — -0 —0
10 -0 -0 »0 — —0 —0
11 -0 -»0 —=0 — —0
12 -0 -»0 -»0 -0 — —
13 -0 -»0 -»0 —0 — —
14 -0 -»0 —0 — —
15 -0 —-0 -»0 — — —
16 -0 —=0 —0 — — —

the analytical expressions presented in the previous section, Equations (12) and (13), to perform
the inner integrals involving £ and 7. This procedure leads to 16 cases depending on the values of
coefficients A, B and C, and their respective differences, see Table 1. In all of them, we finally
have to compute a 1D highly oscillatory integral in terms of { between 0 and 1. This last integral is
performed using the procedure detailed in Appendix B.

From Equation (10) we first collect terms depending on &:

1 1-¢ 1—¢—np
B (% exp (i xp (2 “exp (1A .

The inner integral in Equation (15) corresponds to the type of integrals in Equation (11), presented
in Section 3. Thus, its evaluation depends on the value of A. Cases 1-11 in Table I consider A - 0
while cases 12—16 consider A — 0.

4.1. Cases from1to 1l (A -+ 0)
If A -» 0, we perform the 1D integral with respect to £ by means of Equation (12),

1-¢—n

a Z'r—lga—r

alexp (iA) ) (a—n)Iar+t

r=0

I dnd¢

1 pl-¢
/ / "¢ exp (iBn) exp (iCC)
0 0

0

1 pl—¢
= a!/ / n°¢¢ exp (iBn) exp (iC()
0 0

<exp (A= =) (ir(f_rimﬂ“) — lim <exp (1AE) W) ) dnd¢

r=0 r=0

) a 'L’T71 ,L'afl
= a (cxp (ZA)Z (WWH,?«) - Aa_HITRI> )

r=0

(16)
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where

1-¢
/ / °(1 = ¢ — )" " exp (i(B — A)p)exp (i(C — A)Q) dpd{  (17)

and -
J— / / 7PC° exp (iBr) exp (iCC) dnd(. (18)
0 0

Equation (18) is the 2D version over triangular elements of the integral in Equation (10). The
semi-analytical rule for this integral was proposed in [17], and it is detailed in Appendix C for
completeness.

Taking into account Equation (14), and collecting the terms of n, Equation (17) becomes

a—rT _1 s
L, = (G—T)!Z<(a_(r_)8)!8!

s=0

1 1—¢
/ C(1 =) " Fexp (i(C — A)) (/ "t exp (i(B — A)n) dn) dC>~ (19)
0 0

At this point, another split in the procedure is produced depending on the value of B — A.

4.1.1. Cases from 1 to 8 (A -+ 0,B — A - 0). Since B — A - 0 we rewrite the inner integral in
Equation (19) using Equation (12). Thus,

L, = (a—r)!i(1(b—|—s)!<exp(i(B—A))

(a—1—9)ls!

s=0
bts j25+t—1
Z((b+st (B — At+1/< — Q) exp (i(C - B)() dC)
t=0
b+5 1
e / CC(1 = Q)" exp (i(C — A)Q) dc>>. 20)

Eight different cases arise depending on the possible combinations of B, C, C' — A and C' — B. The
expressions for these integrals are obtained by developing equations (18) and (20), using the results
presented in Appendixes C and B, respectively.

4.1.2. Cases from9to 11 (A -+ 0,B—A—0). Since B— A — 0, we develop the inner integral
in Equation (19) using Equation (13). Thus,

L, = (G—T)!Z<(a_7,1_s>!s!

s=0

S = B A a+b7r+t+1 .
;(t,(bﬂﬂﬂ / ¢( exp (i(C — A)C) d<> .@D
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Three different cases arise depending on the possible combinations of C' and C' — A. Again, integral
(18) is computed using the procedure detailed in Appendix C. The expressions for Equation (21)
can be obtained by using the binomial theorem, Equation (14), and Appendix B.

4.2. Cases from 12to 16 (A — 0)

Starting again from Equation (15), and considering that A — 0, we perform the 1D integral with
respect to £ using Equation (13). Hence,

T'max

A) ¢
I“Zr'(a(im/ / (1 = ¢ =) exp (iBn) exp (iCC) dnd¢.

Applying the binomial theorem, Equation (14), and collecting terms depending on 7, we get

T r+1

max AT(CL + ’I")' a+r+ jrt2s
I - I TSs )
“ Z( 7! Z (a+r—s+1)s! >

r=0 s=0

where

1 1-¢
Iy s = / ¢e(1— ()‘”T“*S exp (iC() (/ 77b+8 exp (iBn) dn) d¢. (22)
0 0

The procedure to evaluate Equation (22) depends on the values of B. Hence, another branching is

considered.

4.2.1. Cases from 12 to 14 (A — 0,B - 0). If B - 0, we develop the integral over n applying
Equation (12). Thus,

b+s

12,7'5 = (b + S)' (exp (ZB) Z m / Cc a+b+r7t+1 exp (Z(C _ BC) dC

b+s 1
Bb+s+1/C — ()T exp (iCC) dC)- (23)

Three cases have to be considered depending on the values of C' and C' — B. All of them are solved
by first using the binomial theorem, Equation (14), second applying Equation (12) and/or Equation
(13), and finally using Appendix B.

4.2.2. Cases 15 and 16 (A — 0, B — 0). If B — 0, the integral over 7 in Equation (22) is carried
out using Equation (13). Thus,

tmax

I s = c . a+b+r+t+2 . de. 24
2, Zt'(b—l—s—l—t—i—l / ¢ exp (:CC) d¢ (24)

After applying the binomial theorem, Equation (14), both cases 15 and 16 are solved by using the
corresponding method in Appendix B.
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5. EXAMPLE OF A PRACTICAL APPLICATION: THE PUM ENRICHED WITH PLANE
WAVES

An important application of the semi-analytical rule presented in this work is the computation of the
highly oscillatory integrals that appear when the Helmholtz equation is solved using the Partition of
Unity Method enriched with plane waves. The Helmholtz equation is the time-harmonic version of
the wave equation, namely:

Au+ku=0 inQ, (25)

where k is the wavenumber, A is the Laplace operator, 2 is the problem domain, and the unknown
u is, for instance, the acoustic pressure, the wave height, or the electro-magnetic potential. Equation
(25) is complemented by a Robin boundary condition

ou

— —Thku=g in[' = 09, (26)
on

where n is the outward normal to the boundary, 7 is the complex transmission coefficient and g is the
Robin independent term. We assume that domain €2 is discretized into a tetrahedral mesh composed
of n,, nodes. The weak form of the problem is stated as: find uj 4, € W, 4 such that

/(k%h,qfv — Vup,g - V) dQ + /
Q

Thuy, g0 dl = — / gvdl, Yo eWn, (@27
r I

where - denotes complex conjugate,

Nn q
Wh,,q = {U v = Z Nm (Z anL,rWnL,r> } (28)
m=1

r=1

is the solution space corresponding to a mesh characterized by an element size i and ¢ plane waves
(enrichment functions) pasted at each node (patch), V,,, is the standard first-order polynomial shape
function (hat function) associated with the m-th node, and a,,, , is the unknown complex coefficient
associated with the r-th plane wave at the m-th node, namely

Wm,r(w) = exp (ik'm e - (r— wm))a (29)

k., and x,, being the wavenumber and coordinates vector of the m-th node, and e, the unit vector
corresponding to the r-th plane wave direction.
According to equations (28) and (29), the PUM approximation has the form
Nn q
Ung(@) =YY (),

m=1r=1

where ¢,, , is the approximation function associated with the m-th node and the r-th direction,

¢’m,7'(w) - N’m(m)Wm,r(w) = Nm(x) exp (ik’ln € - (SB - mm)) (30)



12 R. HOSPITAL-BRAVO ET AL.

The surface integrals appearing in Equation (27) can be computed using the 2D methods proposed in
[17, 18]. Here we focus on the efficient and accurate evaluation of the volume integral. Specifically,
the volumetric elemental contribution to the system matrix is obtained by introducing this set of
approximation functions into the weak form of the problem. Thus, integrating over the element £(¢)

we get

Kr(rz)",ns = / [k2¢n,s"/;m,r - V¢n,s : Vl/;m,r] dx
Qe

= exp (i(kmer - Tm — knes - x,)) frrns(@) exp (i(—kpme, + knes) - @) dz, (31)
Q)

where m,n=1,...,n,,r,s=1,...,q,
Smrms (@) = kQ(a:)Nm(a:)Nn(a:) — (VN (x) — z'l_cmNm(a:)eT) (VN () + ik, N, (x)es)

is a non-oscillatory function, and 1, , is the test function associated with the m-th node and the
r-th direction, which has the same form as the approximation function ¢,, , in Equation (30). Note

that the integral in Equation (31) is a particular case of Equation (1) with v = —k,,e, + k€.

6. NUMERICAL EXPERIMENTS

In this section we present three examples that involve the integration of highly oscillatory
functions over tetrahedra, in order to test the semi-analytical integration rule proposed in this work.
Specifically, we compare its performance with the one of the standard Gauss-Legendre quadrature.

In the first example, several non-oscillatory functions are considered and the product of each of
them and a complex exponential is integrated over a single tetrahedral element. They were run on a
personal computer with a processor 17-3770 8x3.40 GHz with 16 GB of RAM memory.

Examples 2 and 3 deal with practical acoustic problems solved with the PUM enriched with plane
waves. They have been computed in a machine Dell Power Edge R630 Xeon E5-2667 v3 (2x8x3.2
GHz/20MB cache, 2133Mhz FSB) with 62 GB of available memory.

In the legends of the figures, acronym SA denotes the solutions obtained with the Semi-Analytical
integration rule, and similarly GL denotes the solutions obtained with a Gauss-Legendre quadrature.
All the developments are coded in MATLAB R2013b.

6.1. Integration of the product of polynomials and a complex exponentials over a tetrahedron

The objective of this example is to test the performance of the semi-analytical rule by comparing
its accuracy and CPU time consumption with those of the standard Gauss-Legendre quadrature. To
this end, the product of smooth functions and a complex exponential is integrated over a single
tetrahedron, see Equation (1). The tetrahedron is defined by nodes x; = [1,1,1], =2 = [2,0,0],
x3 = [2,2,2] and x4 = [1,0, 3]. Vector v is written as v = v x [1,1, 1], with v = {2,4, 10, 20,40},
corresponding to 1.09, 2.19, 5.47, 10.94 and 21.88 wavelengths per element, respectively. We
consider three non-oscillatory functions: fi(x) = 1, fo(x) = r%(x) and f3(x) = r*(x), where r(x)

is the distance from x to the reference point xy = [0,0,0]. We have computed those integrals
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using the semi-analytical rule with ng4 = 1,2,...,10 integration points per dimension, and the
Gauss-Legendre quadrature with ngr, = 3,5, 7,10, 15, 20, 30, 40, 50 and 100 integration points per
dimension.

We measure the accuracy of the integration rules by computing the relative error

M = Ly

rr = ; (32)

|Iref |
where [ is the value computed using the corresponding method and I,..¢ is a reference value.
Since Gauss-Legendre quadratures converge to the exact value of the integral when the number
of integration points is increased [21], we set I,y equals to the value of the integral computed using
nar = 300 Gauss points per direction.

We have computed the relative error (32) of the integrals when the integrand is fi(«) = 1 using
the semi-analytical rule for all the detailed values of the wavelengths per element and number of
integration points per dimension, ngy,. For this integrand, the error is exclusively produced by the
integration of the weights, and the interpolation error of the integrand is null (apart from round-
off errors) regardless the number of integration points. The rule produces excellent results and the
relative error remains very low (r; < 10~'2) for all cases. Nevertheless, the error is still lower for
small values of v, for instance r; < 10~ for v = 2 and v = 4.

Figure 2 plots the relative error (32) of both integration methods against the integration CPU
time for fo(x) = r?(x) and f3(x) = r*(x). We observe that, as we increase the number of Gauss
points, the integrals calculated with the Gauss-Legendre quadrature tend to the reference value.
The behavior of this quadrature is the same for both functions, requiring an increasing number
of integration points to reach an acceptable accuracy when v grows, especially if the integrand
oscillates more than 10 times in an element (v > 20). The relative error of the semi-analytical rule
drastically decreases when we use ng4 = p + 1 integration points per dimension, p being the degree
of f(x). That is, ns4 = 3 and nga = 5 integration points for f(z) = r?(x) and f(z) = ri(x),
respectively. Note that, according to Equation (3), this number coincides with the minimum number
of Lagrange points required to exactly approximate the integrand except for round-off errors. It
is important to point out that for both functions, the semi-analytical rule outperforms the Gauss-
Legendre quadratures when the integrands have more than 10 wavelengths per element (v > 20).

Remark 4

The main cost of the semi-analytical rule comes from the computation of the integration weights.
In this sense, the scenario in the first example is unfavorable for the semi-analytical rule since
only a single integral is computed with the same set of weights. This is not the case of several
practical applications such as the PUM enriched with plane waves. In this case, the products of
several polynomial functions and the same complex exponential function have to be integrated
over the same reference element when computing the elemental contributions (31). Therefore, the
weights can be computed once for each element, drastically reducing the computational cost of the
semi-analytical rule. This reduction is obtained for any value of the number of oscillations in the
integration interval. In the context of highly-oscillatory integrands, this approach is competitive
compared with the Gauss-Legendre quadrature because it requires a much lower number of

integration points.
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Figure 2. Relative error against integration CPU time for two non-oscillatory functions in Example 1:
(@) fao(z) = r?(x); (b) f3(x) = r*(x). Number of integration points per dimension and element: ng, =
1,2,...,10; ngr, = 3,5,7,10, 15, 20, 30, 40, 50 and 100.

Figure 3 illustrates the behavior indicated in the previous remark, by plotting the evolution of the
CPU time against the number of times the same integral is computed over a given element for the
same level of accuracy. The time consumed by the Gauss-Legendre quadrature linearly increases
with a rate of 1.6 s for every 1000 integrals. On the contrary, the CPU time for the semi-analytical
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Figure 3. CPU time against number of integrals computed over the same element, with v = 30, ngy, = 20
and nsA= 3.

rule presents a moderate initial jump corresponding to the computation of the weights, and then
it grows with a small rate, that is practically flat with respect to the Gauss-Legendre slope. The
overhead cost for each integral computation is associated with /. the number of integration points
and 2. the cost of functional evaluation at the integration points (recall that for Gauss-Legendre
it involves computing costly complex exponential functions). Likewise, if the computational cost
of evaluating the non-oscillatory function f(x) is high, the Gauss-Legendre quadrature is further
penalized since the integrand has to be evaluated a larger number of times.

6.2. Simulation of a single traveling wave using PUM

In this example we assess the accuracy and the performance of the semi-analytical rule in a practical
application by comparing it with the standard Gauss-Legendre quadrature, when the propagation of
a single time-harmonic traveling wave through a cubic domain is computed using the PUM enriched
with plane waves.

First, we use the Frobenius norm to compare the global matrices obtained from the volumetric
contributions of the weak form (27). Second, we solve the global linear systems, including the
boundary conditions, and we compute the relative error in L?-norm of the PUM solution with respect
to the analytical solution. Specifically, we consider a single traveling plane wave with the following
form:

u(x) = Apw exp(ik epy - ) | (33)

where A, = 1 Pa is the amplitude, k = 0.52 m~!

is the wavenumber and e,,, = [0,0, 1] is the
direction vector of the wave (towards positive z-axis). The plane waves directions are obtained
thanks to the algorithm developed by Leopardi [22]. This algorithm has been recently used in [19].
In this example, the direction of propagation of the solution matches one of the directions of the

set of plane waves basis and, thus, the traveling wave (33) belongs to the solution space (28). This
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Figure 4. Relative error of the volume contribution to the system matrix in terms of the Frobenius norm
against the integration CPU time in Example 2. Number of integration points per dimension and element:
nsa =1,...,5;ngr =5,10,15,...,50.

cancels the error due to the quality of the approximation space, while focusing on the error produced
during the integration step.

The size of the domain is 72 x 72 x 72 m, and it is discretized using two different coarse meshes
composed of 6 and 48 tetrahedra (6 and 3 wavelengths per element, respectively), pasting ¢ = 150
plane waves at each node of the meshes. We solve Equation (25) for both geometry discretizations,
prescribing the appropriate boundary condition (26). Equation (33) is introduced into the Robin
conditions (26) with 7 =, and the resulting independent term ¢ is integrated over the whole
boundary. We use the procedure proposed by Bettess ef al. [17], summarized in Appendix C, to
compute the 2D integrals. The volume contributions to the global system matrix (31) are computed
using the semi-analytical rule with ng4 = 1,...,5 integration points per dimension and element,
and the Gauss-Legendre quadratures with ngr, = 5,10, 15,..., 50 integration points per dimension
and element.

First, the system matrices obtained with both methods are compared by computing the relative

CcIror
K = KeeyllF

T =
" ”Kf'ef”F ’

where K7 is the system matrix computed using a numerical integration rule, K,.; is the system

(34)

matrix computed using a reference quadrature, and || - | » denotes the Frobenius norm defined as

m n
DD lawl,

i=1 j=1

|Amxn)llF =

| - | being the complex modulus. We set as a reference value the matrix obtained using the Gauss-

Legendre quadrature with ng;, = 80 integration points per dimension and element.
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Figure 5. Relative error in L?-norm against integration CPU time in Example 2. Number of integration points
per dimension and element: ng4 = 1,...,5; ngr = 5,10, 15,...,50.

Figure 4 shows the relative error in terms of the Frobenius norm (34) versus the required CPU time
for the integration step. We observe that the semi-analytical rule with using 3 or 4 integration points
per dimension achieves an excellent accuracy (r,, < 10~!!) using less than one order of magnitude
of the CPU time required by the Gauss-Legendre quadrature. As expected, we realize that using
meshes with 6 waves per element (coarse meshes) is cheaper than using meshes with 3 waves per
element (fine meshes). Note that this is also true for Gauss-Legendre quadratures. However, they
require a larger number of integration points to achieve a similar accuracy. After solving the systems,
we measure the accuracy of the numerical solutions by computing the relative error in L2-norm with
respect to the analytical solution (33) as

[un,q(2) = va(®)| L2

= : (35)

[ua ()| 2

rr2

where uy, 4() is the numerical solution, u, () is the analytical solution (33), and

- lle = /|-|2dﬂ.
Q

Figure 5 plots the relative error (35) of the numerical solutions versus the CPU time required by the
integration step. We realize that the semi-analytical rule requires less than two orders of magnitude
in CPU time to obtain a solution with the same accuracy than the obtained with the Gauss-Legendre
quadrature. In addition, we also observe that using the semi-analytical procedure, the minimum

error is achieved using 2 integration points per dimension and element.
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Table II. CPU time and relative error in L2-norm in Example 3, for each of the three domains and both
integration methods.

Domain size (m) # of elements (with PML) \ Integration rule tint () T2
n | B E
n | % o
wscs  m | % by ool

6.3. Free-space propagation of a single noise source using PUM

This example compares the proposed semi-analytical rule and the standard Gauss-Legendre
quadrature in terms of accuracy and required CPU time, when the free propagation of underwater
noise is computed using the PUM enriched with plane waves. We consider three cubic domains, see
Table II, each of them is discretized using a tetrahedral mesh with 3 wavelengths per element, with ¢
=330 plane waves per node. The sound speed of the seawater is 1500 ms~!. The example considers
time-harmonic waves with a frequency of 250 Hz (k = 1.05 m~!) generated by a single noise source
located over the sea surface at ¢ = [0, 0, A/3], where ) is the wavelength (note that the noise source
is placed slightly outside of the domain to avoid the singularity, see [19, Section 2.5]). The intensity
of the source is selected such that it produces a pressure modulus of pg = 10 Pa at a reference distance
from the source of 7y = 1 m. The combination of the values for the frequency, the sound speed and
the number of wavelengths per element produces an element size of h = 18 m. The sea surface is
treated as fully reflective, 7 = 0, and the input noise is introduced through the independent term g
of the Robin condition, see Equation (26). Fully absorbing boundary conditions are prescribed at
the lateral boundaries and sea bottom, using the PML technique [23]. The PMLs include a linear
distribution for the attenuation parameter, characterized by a maximum value opmp, max = 30 s—1,

The analytical solution of the pressure field, p, (), for this problem (homogeneous medium and
uniform wavenumber) can be approximated by (see [24, Chapt. 5]):

pa(x) = po% exp (zk (r(w) - 7“())), (36)
where r(-) is the distance to the point source x,. We have performed the integration step of this
problem by means of the semi-analytic rule with ng4 = p + 1 = 4 integration points per element
and dimension, since the non-oscillatory part of the integrands has a degree of p = 3 (taking into
account the variation in the weak form produced by the PMLs), and the Gauss-Legendre quadrature
with 25 integration points per element and dimension. Figure 6 shows the real part of the pressure
field for the second domain obtained with the semi-analytical rule.

The accuracy of the numerical solutions is measured by computing the relative error in L?-norm,
according to (35). Table II details the accuracy and the required CPU time using both integration
methods. We notice that for each domain, and for the same level of accuracy, the CPU time required
by the semi-analytical rule is almost one order of magnitude smaller than the time required by the

Gauss-Legendre quadrature.
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Figure 6. Real part of the pressure field obtained using the semi-analytical integration rule for the second
domain in Example 3.

7. CONCLUDING REMARKS

In this work we detail a novel semi-analytical rule to compute the integral of highly oscillatory
functions over a tetrahedron. The integrand is expressed as the product of a non-oscillatory part and
a complex exponential function that models the oscillatory part. The rule is designed to be exact,
except round-off errors, for integrals with a polynomial non-oscillatory part. This is of interest
for a wide range of applications such us the numerical solution of the Helmholtz equation by the
PUM enriched with plane waves. In these cases, p + 1 integrations points per dimension should be
considered, p being the degree of the polynomial.

The key point of the proposed rule is to approximate the non-oscillatory part using Lagrange
interpolation, that is an exact representation (up to round-off errors) for polynomials. Then, the
Lagrange polynomials are linearly decomposed in terms of the appropriate set of monomials. In
order to integrate the products of these monomials with a complex exponential over a tetrahedral
element, our procedure identifies 16 possible cases that lead to a collection of one-dimensional
highly oscillatory integrals. For these kind of integrals we propose a scheme that selects an
appropriate 1D analytical integration procedure that provides the required accuracy with a reduced
computational cost.

The examples clearly show that the proposed rule efficiently integrates, both in terms of accuracy
and CPU time, the product of a polynomial and a complex exponential function over tetrahedra.
Specifically, it provides relevant CPU time savings for the same level of accuracy, compared to the
standard Gauss-Legendre rules, in either of these situations: /. when the integrands have more than
10 oscillations in the integration interval; 2. when the semi-analytical rule is applied to compute
multiple integrals with the same oscillatory part (same arguments for the complex exponential). In
this case, the integration weights can be pre-computed producing substantial CPU time reductions.
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It is important to highlight that this is the case of the integrals arising in the plane waves enriched
PUM.

It is worth to notice that if the evaluation of the integrand is computationally expensive, then
the semi-analytical rule is even more competitive since it involves a smaller number of integration
points than the Gauss-Legendre quadratures.

Several aspects of the proposed model should be investigated in the near future. We have used
a set of evenly spaced points in our implementation of the semi-analytical rule. However, other
distribution of points can be analyzed that provide better interpolation properties. In addition, we
also plan to analyze the relative performance of this rule against the promising integration method
presented by Gabard in [20]. Finally, further research is needed regarding the extension of the
present rule to hexahedra or other three-dimensional elements.

A. EXPANSION OF THE LAGRANGE POLYNOMIALS INTO SETS OF MONOMIALS

This appendix details a procedure to compute the coefficients of the Lagrange polynomials
decomposition into monomials. Our goal is to find the set of coefficients A4 4 such that

La(§) = > Aaa&™’¢c,  ford=1,...,m, (37)

la|<p

where a = (a, b, ¢), a, b, c being non-negative integers and |a| := a + b + ¢ < p. Let

1 a=(0,0,0)
£ a=(1,0,0)
m(§) =17 that corresponds to a=(0,1,0)
¢P a=(0,0,p)

be the column vector containing the values of the n,, monomials at point &, and let

L1(8)
L(§)
Ly, (€)

be the column vector containing the values of the n, Lagrange polynomials at point £. Therefore,
the n, equations in (37) can be written using a matrix notation as

1(&) = Am(§), (38)

where A is a square matrix collecting the n,, x n, unknown coefficients A, n(a)) = Ap,a> m(a) €
{1,...,n,} being a scalar that assigns a given order to each monomial with multi-index a satisfying

la| < p.
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Enforcing Equation (38) at the n,, interpolation points we have

L=AM,
where
L = l(sl) l(£n ) ’ and M= m(él) m(gnp)
Taking into account that
0 ifn#d
L, = forn,d=1,...,n,,
(8a) { L ifn=d "
we obtain
Id,, = AM,

where Idnp is the identity matrix of order n,. Hence, matrix A can be obtained as
A=M1

Note that matrix A only depends on the set of interpolation points that are defined on the reference
element. Thus, it is evaluated once for a given set of integration points.

Finally, it is important to point out that Equation (38) allows writing the integration weights from
Equation (9) in a compact vectorial notation:

w=A [ m(Eexp(iv-2(6) d€ = Aexp (D) | mi(€)exp (iAG) exp (iBy) exp (iC) de.
Qref Q

ref

B. INTEGRATION OF DEFINITE 1D HIGHLY OSCILLATORY FUNCTIONS

The computation of highly oscillatory integrals over a tetrahedron using the proposed semi-
analytical method involves the computation of a considerable number of one-dimensional highly
oscillatory integrals with the following form, see Section 4:

1
Loy = / s” exp (ips) ds, (39)
0

where v is a non-negative integer and and p a complex coefficient.

There are several methods to compute these integrals, either analytical or numerical. The accuracy
and computational efficiency of some of them depend on the combination of both parameters y and
v. In this appendix we present a heuristic procedure to select a method for each combination of
these parameters. Our objective is to reduce the CPU cost while keeping the relative error of these
1D integrals below 10~*2. This will allow us computing the integral over the tetrahedron with an

acceptable accuracy.
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Bakhvalov and Vasileva [25] proposed an accurate and robust method to compute integral (39). It
gives an analytical expression when the non-oscillatory part of the integral is a polynomial functions,
as in Equation (39), provided that at least v + 1 points are used. However, in 3D real simulations
involving medium or high frequencies the computational of the method becomes too expensive due
to the high number of evaluations of Bessel functions.

To overcome this shortcoming, we propose to use equations (12) and (13) for combinations of p
and v that allows achieving the desired accuracy. Note that the most expensive function involved in
these expressions is the factorial function of natural numbers, that in fact, are precomputed.

From our experience, for values of 1, whose modulus are not close to 0, || - 0, the most efficient
method in terms of CPU time is obtained by applying Equation (12):

sr—1

1 v . . _
y ) 1" (exp (i) — limg—y0 s¥77)
s” exp (ius) ds = v! - . (40)
/0 ; (v —r)lpr+t

Unfortunately, expression (40) loses accuracy when the modulus of y is small, |u| — 0, as stated
by Bettess et al. [17, 18]. In addition, we highlight that when using PUM in 3D applications the
value of v is much more higher than in 2D applications. Therefore, the modulus of each one of the
addends in Equation (40) may differ by several orders of magnitude. This lead to inaccurate results
since it implies the subtraction of similar terms whose modulus are much higher than the result of
this operation. Therefore, the criterion for using Equation (40) depends on the combination of both
values p and v. For this reason, we use Equation (40) when the following relations are satisfied:

|| > toly
v!
T > t012
1z
M > t013
v!
1- !
M > t014
a0
1 _ | av
0l
v!
where a € [0, 1]. Based in our numerical experiments, we set a = 0.6 and tol; = 10! fori = 1,...,5

in order to obtain the desired accuracy while reducing the CPU time.
When any of the above conditions is not satisfied, and at the same time the modulus of y is

moderate, |u| < pm, we apply Equation (13). Thus:

T'max

/1 5" ex (Z 5) ds_z (iu)r (l_hms—ms
0 o _r:0 ’f’! V+7'+].

u+r+1)

(41)

As stated in Section 3, the value of r,,x is adjusted so that the truncation error in the series is of the
order of the machine accuracy e. Our numerical experiments show that the number of addends in
the truncated series, mmax, depends on the value of . Therefore, in order to limit it, and to reduce
the computational cost of the integration step, we set ug = 4.

When the values of 1 and v do not satisfy the conditions to use Equation (40) nor Equation (41),
our implementation resorts to the Bakhvalov and Vasileva (BV) method [25] due to its accuracy
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and robustness. This method is more expensive from the computational point of view than the
previous analytical methods, equations (40) and (41), but it provides more accurate results. Next
we summarize the BV method for completeness, and we also detail an alternative expression to
preserve the accuracy while reducing the CPU cost when the modulus of 4 is small.

The BV method is based on an extension of the Gauss-Legendre rule to the highly oscillatory

case. It is designed to compute efficiently the following type of definite integral:

+1
Igv(f, Q) = f(z) exp (i€2x) dz,
—1
where f(x) is a non-oscillatory (smooth) function. This function is approximated by a set of ny, + 1

Legendre polynomials:
nr

fla) =) caPalw), (42)

d=0

where Py(z) is the Legendre polynomial of degree d in [-1,+1]. The coefficient ¢, is obtained as

%:(ﬁjﬂgzm£MMﬂm»

where x,, and w,, are the m-th point and weight of the Gauss-Legendre quadrature of (ny + 1)

points, respectively. Taking into account that

t/“mmwmummmzﬁ(z>hﬂmmx

-1

where J;(£2) is the Bessel function of the first kind and order d, we have

—+1 nr T 1/2 nr
f(a)exp (iQx) dow ~ Y i%(2d + 1) (ﬁ) Jar1/2(Q) (Z Wi Pa(m) f(:cm)> . (43)
-1 d=0 m=0

The main drawback of Equation (43) is that its accuracy is reduced when the value of 2 is small,
|2| — 0. To mitigate this issue, we consider the Taylor expansion of the Bessel function for small

values of €). In this case we have

Jav1/2(€) 1 Qd
QU2 7 I(d+3/2) 24+1/2

(44)

where I'(+) is the Gamma function. Note that in Equation (44) the Gamma function depends on
a natural number. Therefore, their values can be precomputed, reducing the computational cost of
Equation (43) when |Q| — 0. Based on our experience we consider the threshold value Oy, = 1077,

In order to apply the BV method to compute Equation (39) we consider the transformation
s(x) = (x +1)/2, giving

1 . v
Iy = 5 exp (ip/2) Igy (s” (), 11/2).

Finally, note that when f(x) is a polynomial of degree np,, the expansion in (42) is exact. Thus, the

BV method with ny, + 1 points is analytical and provides the exact value of the integral except (up

to round-off errors).
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Table III. Possible combinations of the values of coefficients B and C' in the semi-analytical rule for
triangles, generating 5 special cases.

Case | B C C-B

1 -0 —-»0 -0
2 -0 -0 —0
3 -»0 =0 —
4 —0 -»0

5 -0 —=0 —

C. SEMI-ANALYTICAL RULE FOR TRIANGULAR ELEMENTS

In Section 4.1, the analytical development of cases 1-11, A - 0, leads to Equation (16), which
includes the following 2D integral

1 pl—¢
It = / / 1°¢¢ exp (iBn) exp (iC¢) dndg. 45
0 0

Bettess et al. [17] developed a semi-analytical rule to compute this type of integrals. For the sake of
consistency, we summarize it here detailing our implementation and preserving the notation used in
our work. They identify 5 cases, see Table III, depending on the values of B, C'and C — B.

C.1. Cases from 1to3 (B - 0)

If B - 0, Equation (12) is introduced into Equation (45) leading to

b ju—1 1
Itgr = 0! <exp (iB) ZO ((b—u)'B“‘H /0 (1 — g)b*“ exp (i(C' — B)() dC)

Bb+1/ ¢Cexp (1CQ) dC)

The binomial theorem, Equation (14), is used to develop the first integral. Then, we apply the
procedure presented in Appendix B to the resulting expression, depending on the values of the
resulting monomial exponents and C' — B. Similarly, for the second integral we use the procedure
detailed in Appendix B depending on the values of ¢ and C.

C.2. Cases4and5 (B — 0)

If B — 0, Equation (13) is introduced into Equation (45), leading to

IR =~ Z b+u+ / ¢(1 = )P exp (iCC) dC.

The binomial theorem, Equation (14), is used again to develop this integral. Then, the procedure

presented in Appendix B is applied depending on the values of the monomial exponents and C'.
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