
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020

Virtual Congress: 11–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

SURROGATE MODELING BASED ON DYNAMIC NUMERICAL
SIMULATION AND MEASUREMENTS FOR FAST EMULATION

Manuel A. Röhrl1,2, Franz G. Listl1,3, Veronika Brandstetter1, Tobias Schulze4 and
Thomas A. Runkler 1,2

1 Siemens AG, Otto-Hahn-Ring 6, 81739 München, manuel.roehrl@siemens.com, www.siemens.com

2 Technical University of Munich, Boltzmannstraße 3, 85748 Garching b. München, www.in.tum.de

3 University of Stuttgart, Keplerstraße 7, 70174 Stuttgart, www.uni-stuttgart.de

4 Siemens Energy Global GmbH & Co. KG, Freyeslebenstr. 1, 91058 Erlangen,
www.siemens-energy.com

Key words: Machine Learning, Neural Networks, Surrogate Modeling, Hybrid Modeling, Combined
Cycle Power Plant, Simulation

Abstract. Today, in many complex real-world systems, physics-based simulation models often provide
sufficient precision but are computationally intensive. Machine learning surrogates, once trained, can
achieve simulations by orders of magnitude faster than their original physical model without sacrificing
much accuracy.

In this paper, we present a surrogate model in form of a neural network that is fitted to a set of different
time series. The time series data are generated partly by a physical model and partly by measurement.
This is because a physical model is available only for a part of the entire state space that is to be modeled.
This method is used to predict the flue gas temperature at the output of the evaporator in the heat recovery
steam generator of a combined cycle power plant. For simulation we use a specialized in house tool
for transient power plant processes, called “Dynaplant”. The generated surrogate model is fast and
captures the major dynamics. Consequently, the model can be used in applications where fast evaluation
is required, e.g., in parallel to operation. One form of such usage is virtual sensors, whereby, physical
detectors can be omitted, and thus costs are reduced.

With this, we demonstrate a method that beneficially merges physical insight from simulation with real-
life data and machine learning. Our findings are of interest to applications where either simulated or
measured time series data or both of different operating points are available and a fast simulation model
is required.

1 INTRODUCTION

Generally, fast and accurate dynamic models are required for the control and optimization of technical
systems and visions, such as the digital twin [1]. One example is the modeling of transient processes in
combined cycle power plants (CCPPs), see Figure 1. The ever-increasing share of renewable energies in
the energy mix leads to natural fluctuations in electrical grids. These variations need to be balanced out,

1



e.g., by on demand operation of conventional power plants. Therefore, the demands for flexible operation
are increasing steadily, and accurate simulation in plant engineering is gaining importance.

Gas

Air

Combustor

Compressor

Gas turbine Steam turbine

Flue gas

Condenser

Pump

Heat recovery
steam generator
(main subject
of this study)

Figure 1: Simplified scheme of the CCPP Process.

However, detailed numerical simulations are computationally intensive and often unsuitable for application
during operation. Hence, novel highly efficient machine learning (ML) methods are used exploit the huge
amount of data acquired by such simulations.

In this study, we investigate the extent to which the data obtained from a precise numerical simulation
model of a heat recovery steam generator (HRSG) and sensors can be used to train deep neural networks
(NNs) or other ML models to forecast the system state, which is somewhat correlated to the model inputs.
The working hypothesis is that the model learns a physical understanding of the system to generate a
plausible solution for states similar to the ones from training without any further simulation effort. This
data-driven solution could then be generated, orders of magnitude faster, and thus, achieve a considerable
reduction in computing time compared to the numerical solution.

After this introduction, we give an overview of related work. Then, we explain the proposed methodology
and discuss our results. Lastly, we summarize the results and give an outlook on future work.

2 RELATED WORK

Traditionally, dynamic processes in HRSGs have been assessed by detailed numerical simulations. By
contrast, this work exploits such a model and combines it with sensor data to generate a fast emulation.

2.1 Simulations in Power Plant Engineering

Today, there are considerable number of different simulation tools for power plant design, optimization
and performance prediction on component and system level. Depending on the intended purpose, one- or
three-dimensional approaches and steady-state or transient simulation methods may be applied. For fluid
mechanical and thermodynamic processes, the mathematical model description is based on the problem-
specific formulation of balance equations for the mass, momentum, and energy. Then, the mathematical
problem is solved using various numerical methods. A comprehensive overview of state-of-the-art
numerical simulation methods in power plant engineering is given in [2].

2



In practice, dynamic simulations significantly contribute to a deeper understanding of the transient
operational characteristics of a power plant. For instance, they help to develop and optimize control loops
for power plant operation [3]. This way, the simulation model can facilitate smooth commissioning of the
real power plant and reducing the risk of unplanned and expensive time delays.

2.2 Learning Models from Time Series Data

Research on time series forecasting has a long history. Linear statistical methods such as linear regression,
Box-Jenkins and autoregressive integrated moving average have shaped time series forecasting. As a
baseline, we apply linear regression to our problem. At the same time autoregressive methods were
proposed, but they do not apply to our problem since our target value is not an input variable. However, in
the last two decades ML methods outperformed classical approaches [4, 5]. These models can represent
nonlinear relations. Our approach follows this line and applies two ML methods, which have gained
prominence in recent years, namely long short-term memory (LSTM) and dual-stage attention-based
recurrent neural network (DA-RNN) [6, 7, 8].

2.3 Integrating Simulation Results into ML

Numerous studies have described the augmentation of training data by making use of simulation results.
Surveys, such as that conducted by von Rueden et al. give a broad overview of integrating knowledge
into learning systems in general. Our approach, also called serial semi parametric hybrid modeling [9], is
often employed to complement the training data with simulating scenarios not yet covered. Further, since
numerical simulations are generally very complex software products requiring extensive computing time,
data-driven surrogate models are often used to reduce the computation efforts [10, 11, 12].

3 METHODS

The following is a brief description of a numerical simulation model, the training data generation, and the
fitting process for the surrogate model.

3.1 Modeling Dynamic Processes in the HRSG

We conducted dynamic simulations of HRSG and related systems using the in house software, Dyna-
plant. This is a one-dimensional numerical simulation software, which allows modeling of the physical
process itself and the associated control structures. The distinguishing characteristic of the HRSG model
is the detailed representation of the water/steam side in the heating surface tubes. The tube model is based
on the balance equations for mass, momentum, and energy. Further, it includes proprietary know-how on
heat transfer and pressure drop in two-phase flows.

Figure 2 shows a simplified sketch of the physical domain of the simulation model. Here, the investigated
CCPP features the vertical, triple-pressure Benson HRSG. The hot flue gas from the gas turbine flows
vertically upwards through the HRSG. On the water/steam side the incoming liquid feed water is heated
up to saturation temperature, evaporated and further superheated on three pressure levels low, intermediate
and high pressure to optimize the heat transfer from the flue gas to the water/steam side. While both the
low- and intermediate-pressure stage feature drum-type evaporators, the high-pressure stage is equipped
with a once-through Benson evaporator [3]. As an example, the heating surface design of the Benson
evaporator with its meandering tubes is displayed magnified on the left side of Figure 2. The flue gas

3



LP stage
(Ev & SH)

HP Ev

IP stage
(Eco, Ev & SH)

HP Eco

IP RH
&

HP SH

p,h

p,h

DCS

Vertically oriented
triple-pressure
Benson HRSG

p,h

p,h

M,h

Flue gas: M, T

p

p

in out

LP: Low pressure Eco:Economizer
IP: Intermediate pressure Ev: Evaporator
HP: High pressure SH: Superheater

RH: Reheater
DCS:Distributed control system

Tsensor

LP steam
drum

IP steam
drum

Steam/water
separator

Figure 2: Schematic sketch of the numerical simulation for the transient operational characteristics of the HRSG
and related systems.

temperature sensor “T sensor”, which we want to replace with our emulation, is located in between the
high-pressure evaporator and economizer-heating surfaces. Its sensor values are processed in a distributed
control system to determine the instantaneous heat flow from the flue gas to the water/steam side in the
high-pressure evaporator, which in turn is required to control the feed water mass flow to the evaporator.

3.2 Training Data Generation

The development of the surrogate model, i.e., the flue gas temperature emulation, is based on time series
analysis of the considered flue gas temperature and correlated quantities. The data stem from two sources:
First, from Dynaplant simulations of different gas turbine load ramps in normal plant operation (see Figure
3(a)). Second, from measurements in the real plant during plant start ups, i.e., cold, warm, hot, and restart
(see Figure 3(b)). Notably, the application of a virtual sensor inevitably requires all data to be acquired by
simulation. Some scenarios, i.e., start up procedures, just cannot be simulated with the Dynaplant model
existing at the time of this study.

To generate different gas turbine load ramps, we modify three variables: the initial load, slope, and final
load. The initial selection of the variables contains five values for the initial and final load and six slopes of
the load change (see Figure 3(a)). This results in a total of sixty different gas turbine load ramp scenarios,
which were simulated with Dynaplant. In our model, the gas turbine load ramps are realized by setting
the corresponding time-dependent boundary conditions of the flue gas mass flow and temperature at the
HRSG flue gas inlet (Figure 2). Due to the limited availability of measured data from plant start ups only
four, representative datasets (see Figure 3(b)) could be included in the training data.

4



0

20

40

60

80

100

0 5 10 15 20 25 30

P G
T
(n

or
m
)/

%

t/min

from to

±5/10/15%/min

(a) Load ramps with different initial loads, final loads, and
slopes.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

P G
T
(n

or
m
)/

%
;p

H
P

in
it
(n

or
m
)/

%

t/h

CSHS WSRS

pHPinit(norm)

RS: 51%
HS: 24%
WS: 3%
CS: < 1%

(b) Four start ups: restart (RS), hot start (HS), warm start
(WS), and cold start (CS).

Figure 3: The training data: (a) simulated load ramps and (b) measured start up procedures

However, the initial selection of training data causes two problems. First, the variables skew to certain
values, so that the population of load variables is represented only to a certain extent, in addition, the
initial choice of variables leads to an unnecessarily high computational effort since the simulation of
one load ramp already takes about one and a half hours on an average processor unit. Second, the
unbalanced ratio of the number of start up scenarios to the number of load ramps results in the former
being underrepresented in the training of the NN.

To improve the selection of variables and thus reduce the simulation effort simultaneously, we use Latin
hypercube sampling [13]. This ensures that data are selected from each area of the population, and at the
same time randomly selected, which in general better reflects the distribution of the data. After some tests,
we decided to use twenty Latin hypercube samples instead of the sixty initial samples. To address the
second problem, the imbalance between the load changes and the start ups, we use a variant of stratified
sampling. Here, a random number of variables were sampled with replacement from each of the two
groups the simulated and the measured data so that the size of the groups was balanced. Some data points
of the measured data thus entered the training loop more than once.

3.3 Building the Surrogate Model

In this study, we use a serial hybrid model structure [9]. Figure 4 shows the information flow. We use
sensor data and simulation results for the surrogate model. The two data sources are used jointly as
training data.

Data

Simul.
Results

ML Pipeline

Tr. Data

Hyp. Set

Learn Alg.

Final Hyp.

Simul.
Model

Problem

Figure 4: Information flow for the training of a surrogate model based on simulation results and measurements.

The problem of forecasting the temperature based on correlated quantities can be tackled as a problem of
supervised learning. This means we learn, based on a finite set of observations, the relation between a set

5



of input variables and one output variable, that is somewhat dependent on the inputs. Such a mapping
can then be used for one-step forecasting. In the one-step forecasting, a problem is cast in the form of a
generic regression problem by creating an input data matrix,

X =


x1 x2 . . . xn

x2 x3 . . . xn+1
...

...
...

...
xN−n−1 xN−n . . . xN−1

 (1)

where n previous values are available and N is the number of samples. Hence, the output vector is

Y =


yn+1
yn+2

...
yN

 . (2)

After this formalization of the one-step forecasting problem as supervised learning task, any regression
model can be fitted to the data.

4 RESULTS AND DISCUSSION

Table 1 compares the performance of three regression models. It shows the best results after tuning
the hyperparameters: batch size, learning rate, hidden size and lookback. Further, we tested different
optimizers and loss functions. In addition, we applied stratified sampling to increase model accuracy. We
trained the models with five-fold cross validation on 90% of the dataset described in Section 3.2, while
10% is held out for testing. This procedure was chosen because the available dataset is not particularly
large.

Table 1: Comparison of different regression models.

Model
Test on load ramps Test on start ups

MSE (normalized) Variance MSE (normalized) Variance

Linear Regression 1,3 NA 8,22 NA
LSTM 0,0627 0,560 0,0491 9,315
DA-RNN 0,0261 0,206 0,0569 9,444

The table shows three models: a simple linear regression model for comparison, an LSTM model, and a
DA-RNN model. The former cannot capture the underlying dynamics; thus, the error is large. The latter
two models similarly show better performance, while the DA-RNN model can fit the load ramps better, it
performs worse than the LSTM model on the start ups. Overall, the differences are marginal and in the
range of the non determinism of the NNs. Since, the LSTM model is less complex and faster, it is the
preferred choice for our application.

Table 2 compares the initial setting of the variables with those selected by Latin hypercube sampling
within the LSTM model from Table 1. For both variants, we performed stratified sampling after simulating

6



Table 2: Sampling of load ramp variables within the LSTM models.

Sampling strategy
Test on load ramps Train. time

(Avg. p. Fold)MSE (normalized) Variance

Initial setting 0,0627 0,560 413,8 s
Latin hybercube sampling 0,0205 0,0504 257,6 s

the load changes, as described above. Latin hypercube sampling is used to reproduce the parameter
distribution of the load ramp variables with as few samples as possible. Testing the model trained on these
samples shows that the accuracy is maintained, and the time for training is almost cut in half. This is
because only twenty instead of the initial sixty simulation runs were performed when using the Latin
hypercube sampling. Thus, the NN uses significantly fewer data points for training, reducing training
time in addition to the originally planned reduction in simulation effort.

0 200 400 600

330

335

340

Te
m

pe
ra

tu
re

/◦
C

LSTM
Simulation

0 200 400 600
0

1

2

3

Time /s

A
bs

.e
rr

or
/◦

K

(a) Top: Predicted target quantity of one load ramp com-
pared to simulation results over time; Bottom: Absolute
error between both over time

0 200 400 600 800 1,000

260
280
300
320
340

LSTM
Measurement

0 200 400 600 800 1,000
0
2
4
6
8

Time /s

(b) Top: Predicted target quantity of one start up
compared to measurements over time; Bottom: Ab-
solute error between both over time

Figure 5: LSTM model compared to one simulated load ramp (a) and one measured start up (b)

Figure 5 shows time series plots of the LSTM model from Table 1 compared to simulation results and
measurements, respectively, along with as the absolute error between the two. Figure 5(a) shows one
exemplary load ramp, while Figure 5(b) shows one start up procedure, the so called “warm start”. Both
figures show that the overall dynamics are represented. The stationary regions are well predicted, whereas
the transient sections are represented less accurately, and for short times, large errors occur.

The shown LSTM model is significantly faster in simulating one load ramp than the Dynaplant model,
while the former only takes seconds the latter roughly takes one and a half hours for the same load ramp,
on the same processing unit.

7



5 CONCLUSION

The research question in the current project sought to determine whether a surrogate model can rapidly
and accurately emulate the dynamics in the HRSG of a CCPP. The results of this study indicate that this is
possible. The major dynamics are represented, but the small sample size inhibited accurate modeling of
transient sections.

We demonstrate an interesting concept to replace cost-intensive physical sensors using physical insight
from simulation and real data to build a fast emulation. It should be mentioned, that the training data may
also be acquired purely by accurate physics-based simulation. Unlike classical reduced-order models,
owing to the NN approach, the physical and space-time resolution do not reduce. The study contributes
to the rapidly expanding field of combining physical simulations with ML by providing an interesting
example where simulation and measurement data are jointly used to train a data-driven model.

A limitation of this study is that the offline model generation required beforehand is computationally
intensive since many simulation runs have to be calculated.

A bigger sample size should be adopted to answer the question of what critical amount of data is required
to eliminate the current deviations. In addition, further research could usefully explore how to generalize
the automatic synthetic training data generation for arbitrary problems. More broadly, further research
could be conducted to determine the effectiveness of recent hybrid model architectures, such as physic
informed NNs [14, 15].

ACKNOWLEDGMENT

The work this report is based on was supported with funds from the German Federal Ministry of Education
and Research within the project “ALICE-III: Autonomous Learning in Complex Environments” under the
identification number 01 IS 18049 A.

REFERENCES

[1] D. Hartmann and H. van der Auweraer, “Digital twins,” arXiv:2001.09747 [cs], Jan 2020.

[2] B. Epple, R. Leithner, W. Linzer, and H. Walter, “Simulation von Kraftwerken und Feuerungen,”
Springer-Verlag, 2012.

[3] G. Schlund, T. Schulze, F. Thomas, and J. Brückner, “New benson evaporator for vertical hrsgs
exceeds expectations,” Modern Power Systems, p. 39–41, Oct 2019.

[4] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine learning forecasting
methods: Concerns and ways forward,” PLOS ONE, vol. 13, p. e0194889, Mar 2018.

[5] G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne, Machine Learning Strategies for Time Series
Forecasting, vol. 138 of Lecture Notes in Business Information Processing, p. 62–77. Springer
Berlin Heidelberg, 2013.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning Book. MIT Press, 2016.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,
p. 1735–1780, 1997.

[8] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, “A dual-stage attention-based

8



recurrent neural network for time series prediction,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence (IJCAI-17), Aug 2017.

[9] M. von Stosch, R. Oliveira, J. Peres, and S. F. de Azevedo, “Hybrid semi-parametric modeling
in process systems engineering: Past, present and future,” Computers and Chemical Engineering,
vol. 60, p. 86–101, 2014.

[10] R. van der Merwe, T. K. Leen, Z. Lu, S. Frolov, and A. M. Baptista, “Fast neural network surrogates
for very high dimensional physics-based models in computational oceanography,” Neural Networks,
vol. 20, no. 4, pp. 462–478, 2007.

[11] N. Ruiz, S. Schulter, and M. Chandraker, “Learning to simulate,” in International Conference on
Learning Representations, 2018.

[12] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer,
A. Pick, R. Ramamurthy, and et al., “Informed machine learning – a taxonomy and survey of
integrating knowledge into learning systems,” arXiv:1903.12394 [cs, stat], Feb 2020.

[13] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code,” Technometrics, vol. 21,
no. 2, pp. 239–245, 1979.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[15] M. A. Röhrl, T. A. Runkler, V. Brandstetter, M. Tokic, and S. Obermayer, “Modeling system dynam-
ics with physics-informed neural networks based on Lagrangian mechanics,” in IFAC- PapersOnLine,
2020.

A Hyperparameters

Hperparameters of final LSTM model

Hidden layers 2 with each 16 units
Activation functions rectified linear unit
Lookback 20
Loss mean squared error
Batch size 16
Optimizer Adam

9


