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Executive summary

This deliverable focuses on the profiling activities developed in the project with the part-
ner’s applications. To perform this profiling activities, a couple of benchmarks were
defined in collaboration with WP5. The first benchmark is an embarrassingly parallel
benchmark that performs a read and then multiple writes of the same object, with the
objective of stressing the memory and storage systems and evaluate the overhead when
these reads and writes are performed in parallel.

A second benchmark is defined based on the Continuation Multi Level Monte Carlo
(C-MLMC) algorithm. While this algorithm is normally executed using multiple levels,
for the profiling and performance analysis objectives, the execution of a single level was
enough since the forthcoming levels have similar performance characteristics. Addition-
ally, while the simulation tasks can be executed as parallel (multi-threaded tasks), in the
benchmark, single threaded tasks were executed to increase the number of simulations to
be scheduled and stress the scheduling engines.

A set of experiments based on these two benchmarks have been executed in the
MareNostrum 4 supercomputer and using PyCOMPSs as underlying programming model
and dynamic scheduler of the tasks involved in the executions.

While the first benchmark was executed several times in a single iteration, the second
benchmark was executed in an iterative manner, with cycles of 1) Execution and trace
generation; 2) Performance analysis; 3) Improvements. This had enabled to perform
several improvements in the benchmark and in the scheduler of PyCOMPSs.

The initial iterations focused on the C-MLMC structure itself, performing re-factors of
the code to remove fine grain and sequential tasks and merging them in larger granularity
tasks. The next iterations focused on improving the PyCOMPSs scheduler, removing
existent bottlenecks and increasing its performance by making the scheduler a multi-
threaded engine. While the results can still be improved, we are satisfied with the results
since the granularity of the simulations run in this evaluation step are much finer than
the one that will be used for the real scenarios.

The deliverable finishes with some recommendations that should be followed along the
project in order to obtain good performance in the execution of the project codes.
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Nomenclature / Acronym list

Acronym Meaning
API Application Programming Interface

ExaQUte
EXAscale Quantification of Uncertainties for Technology
and Science Simulation

DAG Directed Acyclic Graph
FILE IN Path to a file passed to a function that is not modified
FILE INOUT Path to a file passed to a function that is modified during the call
FILE OUT Path to a file passed to a function that is created during the call
HPC High Performance Computing
IN Parameter of a function that is not modified
INOUT Parameter of a function that is modified during the call
OpenMP Open Multi Processing
MPI Message Passing Interface
PBS Portable Batch System
PyCOMPSs Python binding for COMPS Superscalar
SLURM Simple Linux Utility for Resource Management
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1 Introduction

One of the challenges addressed by the project ExaQUte is the dynamic scheduling of
Multi Level Monte Carlo (MLMC) [1–4] workloads aiming at achieving good efficiencies
in distributed computing platforms.

In ExaQUte, the orchestration of the computations and the management of the sta-
tistical outputs will be done at a very high level employing a Python layer, which will
also be in charge of handling any robustness issues (both related to hardware failure or
to lack of convergence in the solvers). This Python layer run on top of PyCOMPSs [5, 6],
a task-based programming model that enables automatic parallelization and execution of
the codes in distributed computing platforms, and on top of HyperLoom [7], a dynamic
scheduler also able to run a large number tasks in the same type of platforms.

The objective of ExaQUTE WP4 is the deployment of programming models and re-
lated runtimes HyperLoom and PyCOMPSs on the supercomputer infrastructure, their
configuration and optimization.

The task 4.3 focuses at the performance analysis of partners’ applications through post-
portem profiling. This deliverable shows the results obtained in the task that has gone
through an incremental process of testing initial algorithms and analysing its performance,
proposing improvements and testing again.

Section 2 describe the algorithms that have been used in the experiments. Section 3
describe the results obtained with PyCOMPSs and by doing performance analysis with
Extrae and Paraver. Section 4 presents the results obtained with HyperLoom. Finally,
section 5 presents some recommendations to follow in the algorithms’ development in
order to achieve good performance.

2 Experiments description

The goal of the task is to perform profiling and performance analysis of the project
applications with the objective of providing feedback to the partners involved in their
development.

The profiling and performance analysis of the examples run with PyCOMPSs have
been performed with the BSC set of performance tools. More specifically, the Extrae
library is used to generate post-mortem tracefiles of the execution of the applications
that can be later analysed with the Paraver performance analysis tool1. In the case
of PyCOMPSs, the runtime is instrumented to automatically generate the traces as an
execution option, but Extrae is a generic tool that can be used to generate tracefiles of
all kind of applications.

The focus of the analysis has been in special on the task scheduling and how the
different bottlenecks that this scheduling can cause. The analysis has been based in
a set of experiments performed with different algorithms that represent the codes under
development in the project. This section describes the algorithms used in the experiments.

1https://tools.bsc.es
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2.1 Algorithm description

A first version of the Monte Carlo (MC) algorithm was defined. This algorithm performs
a conditional loop until a convergence criteria is met. In the first iteration, an initial set of
samples (initial hierarchy) is defined. This set of samples is updated in each iteration, and
the number of samples under evaluation in each iteration may change. For each iteration,
the Quantity of Interest (QoI) values are evaluated, by throwing for each random value
a simulation. When all simulations of the iteration have finished, the statistics, such as
expectations and variances of the results, are evaluated. This phase requires a reduction of
the results generated by the simulations by accumulating them. Finally the convergence
is evaluated to decide if a new iteration is necessary. The description of the sequential
MC algorithm is described in Algorithm 1.

Algorithm 1: Sequential MC

begin
given initial hierarchy N,M
while convergence is not True do

N ←− N(N, it)
for i = 0 : N do

QoIM ←− solver(w(i))

compute statistics EMC[QoIM ], VarMC[QoIM ], · · ·
estimate convergence
it = it+ 1

While the previous is the simple version of a Monte Carlo algorithm, in the project
the partners will focus their experiments on the Multi Level Monte Carlo and Continua-
tion Multi Level Monte Carlo (C-MLMC) algorithms. MLMC and C-MLMC algorithms
basically differ from the sequential MC because they exploit a hierarchy of levels. These
levels present an increasing computational cost and an increasing accuracy, and at each
iteration we compute the simulation with finer granularity of the models (levels). This
enables a more efficient exploration of the design space only simulating for finer levels of
granularity the areas of interest. The description of the MLMC and C-MLMC algorithm
is described in Algorithm 2.

These are the algorithms (defined in collaboration with WP5) taken as basis to encode
the distributed versions which are then profiled and analysed . In both cases the algorithm
executes sets of Kratos simulations that generate the QoI values. These values will depend
on the application and the function to optimize. Nevertheless, the general schema is
the same in both cases. First of all, some simulations are launched. Afterwards, the
useful information to compute the QoI is extracted. Afterwards, these extracted values
are accumulated in order to obtain the convergence criteria. Finally, a stop criterion is
checked in order to know if more simulations are needed to obtain the desired precision.

2.2 Description of the experiments

Considering the nature of the algorithms, the experiments have been designed in order to
incrementally check the possible bottlenecks of their distributed execution. More precisely,
the following steps have been followed:
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Algorithm 2: Standard MLMC/CMLMC

begin
given initial hierarchy N,M,L
for l = 0 : L do

for i = 0 : Nl do
generate r.v. w(i,l)

QoIMl
←− solver(w(i,l))

QoIMl−1
←− solver(w(i,l−1))

Y i
l = QoIMl

−QoIMl−1

compute statistics EMC[Yl],VarMC[Yl],EMLMC[QoIM ], · · ·
compute parameters P
I ←− I(ε, ε0) (CMLMC)

begin
while convergence is not True do

εit ←− εit(it) (CMLMC)
εit ←− ε (MLMC)
L←− L(θ, εit,P)

N ←− N(φ, θ, εit,VarMC[Yl], L)
for l = 0 : L do

for i = 0 : Nl do
generate r.v. w(i,l)

QoIMl
←− solver(w(i,l))

QoIMl−1
←− solver(w(i,l−1))

Y i
l = QoIMl

−QoIMl−1

compute P
compute statistics EMC[Yl],VarMC[Yl],EMLMC[QoIM ], · · ·
estimate convergence
it = it+ 1
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• Object transference:
First of all, an experiment has been designed in order to compute the overhead due
to sharing a single object along all the worker nodes. In the final application, a lot
of concurrent reads on the same model will be done. In this first step, we quantify
the capability of the frameworks to make available the model in all the worker nodes
in an efficient way.

• First distributed version:
Afterwards, the first distributed version is encoded. In this step, we demonstrate
that the application have enough parallelism to be efficiently executed in a dis-
tributed environment with a high amount of resources.

• Optimization of the distributed version:
In the next steps, the application is profiled in order to detect the problems that
limit its performance. At each iteration, one or more problems are detected and
solved in order to increase the efficiency of the execution.
It is at this stage where we explain the procedure followed to detect each one of the
improvable behaviors. This is the methodology that should be followed in the future
to correctly analyze the application. We give some guidelines to understand how
the profiling has been done. Since more implementations will be done, this profiling
methodology should be used in order to reach the best possible performance.
Basically, we analyze the Paraver traces to detect the points in which the resources
are idle, analyze the algorithm to detect the reason why this is happening and
propose solutions to minimize this effect. Although at this stage all the detected
problems have been solved, this work sould be done all along the project with each
one of the new implementations added to the framework.

3 Description of PyCOMPSs’ experiments

Here we will describe the results of the experiments performed with PyCOMPSs, including
screenshots with the Paraver tracefiles obtained with Extrae. Most of the Paraver views
shown in the figures are timelines that show the execution of the tasks on the different
processors. Each line represent a processor and different colours represent invocations to
different tasks types.

All the new implementation and small bug fixes done during the process can be found
on the ExaQUte’s branch of the COMPSs official github repository [8].

3.1 Platform description

The results presented in this section have been obtained using the MareNostrum IV Su-
percomputer [9] located at the Barcelona Supercomputing Center (BSC). Its current peak
performance is 11.15 Petaflops, ten times more than its previous version, MareNostrum
III. The supercomputer is composed by 3,456 nodes, each of them with two Intel R©Xeon
Platinum 8160 (24 cores at 2,1 GHz each). It has 384.75 TB of main memory, 100Gb
Intel R©Omni-Path Full-Fat Tree Interconnection, and 14 PB of shared disk storage man-
aged by the Global Parallel File System.
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3.2 Concurrent distributed model loading

In this case, a 90 MB model with 1,006,972 elements has been used as input. A first
totally sequential execution was done, performing several writes in sequential, each of
them requiring a deserialization. When running 10 deserializations in sequential, each
one of them takes 7.43 seconds in average with a standard deviation of 0.25.

Next, we have launched a parallel run with 48,000 tasks that build again the object
in memory with 100 worker nodes, with a total of 4,800 cores. The total elapsed time
has been 127.97 seconds. When inspecting the tasks, we have stated that the time spent
inside the user code is 9.87 seconds in average with an standard deviation of 0.24 for the
deserialization. When considering only the user’s sequential code, there is already a small
performance lose. It has to be noted here that there are much more accesses to memory
in the parallel case, which will imply a lower memory bandwidth available and more cache
misses. In the first test, the program was running alone in a whole node. In the second
case, there are 48 concurrent processes running in each one of the nodes.

In addition, each one of the cores is responsible to execute 10 tasks in the ideal case
where there is no unbalance at all. The real mean time spent by each one of these cores
is 12.97 seconds. There are still 3 seconds of overhead that have not been explained.
Figure 1 shows the histogram graph of task duration. In the horizontal axis, there is the
time duration of a task. In the vertical axis, the core in which that task has been executed.
There is a batch of tasks that last on the order of 4 seconds more than the others. These
are the first task executions per node, where all the Python modules are imported and
initialized. Nevertheless, this work is done just once. This is why afterwards all the tasks
are faster. A red line has been drawn at 12 seconds.

Figure 1: Histogram of task duration

Indeed, this is the mean task duration once the longer tasks are discarded. We can
so consider that the difference between 9.87 and 12 is due to the transference and task
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initialization time. Indeed, this can be seen in the execution trace shown in Figure 2. The
first dark red segment corresponds to the imports due to the initialization in each node.
The light red corresponds to transference time and task creation. Finally, the white color
corresponds to the actual user code execution time.

Figure 2: Events inside task view of the serialization benchmark execution with 25 worker
nodes

We consider the numbers obtained to be more than reasonable taking into account
the benefit of running in parallel.

3.3 First distributed version

Once verified that PyCOMPSs was capable to load the model concurrently with a more
than acceptable performance, the first Montecarlo and Multilevel Montecarlo versions
have been coded and analyzed in order to guide the future developments. The task-graph
corresponding to the first distributed Multilevel Montecarlo is shown on Figure 3. In this
graph, nodes represent tasks’ invocations and edges represent actual data-dependences
between the tasks. These dependences are detected by the PyCOMPSs runtime at ex-
ecution time. First of all, there is a first batch of tasks corresponding to the Kratos
simulations. Afte each of these tasks, there is a task responsible to extract the useful
information from the simulation results. Next, another task adds the current result to the
convergence criteria. Finally, once all the partial results has been added, a task checks
if new executions should be launched. More precisely, in this example two iterations
are performed. In addition, each one of the tasks updating the convergence criterion is
responsible to add a given result into a certain level. This is why we can see as many
dependency pipelines as levels considered.

In the first version all the accumulations at the end of the algorithm were done one by
one following a sequential schema. This can be shown in the chains of 3 different tasks
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Figure 3: Initial Multilevel Montecarlo dependency graph

that are created in the dependency graph below the simulations. Once demonstrated
that both the Multilevel and standard Montecarlo algorithm were working in a distributed
environment, we focused in the single level algorithm. The strategy followed was to reduce
the complexity of the problem with the objective of isolating the potential problems in
the system. Indeed, we have been launching the Multilevel code considering just one
level. This way, even if we are considering the most simple case, we are already running
the Multilevel code. This makes smaller the change from single to several levels of the
algorithm and allows an easier debug phase of the code.

Regarding the approach followed, an important aspect to take into account with regard
the previous subsections and the results in which they are based [10], is that the first four
moments considered to compute the convergence can be expressed as a combination of
the following parameters:

• S1 =
∑

iQoIi

• S2 =
∑

iQoI
2
i

• S3 =
∑

iQoI
3
i

• S4 =
∑

iQoI
4
i

This is indeed an embarrassingly parallel operation depending on the simulation results
that can be performed in whichever order [4].

Figure 4 helps understand how this fact affects to the final performance. In this case,
a single iteration involving 2,000 simulations is executed in 2 worker nodes (48 cores each)
and 24 worker cores in the master node is shown. Indeed, since all the values are added
one after the other, there is an almost sequential portion of code executed once all the
simulations (represented in red in the image) have been computed.

At this point, it is important to emphasize that all the profiling executions are done
using a single CPU for each of the simulations. This is done this way since we focus on
maximizing the concurrency level, and in this way we can detect the maximum amount of
issues when using a given amount of resources. But we can opt, for instance, for launching
an execution with 1,000 simulations, using 16 worker nodes and assigning 4 cores to each
one of the simulations, and the obtained execution trace is the one shown in Figure 5.
Even if the sequential part remains the same, it can start as soon as the first simulations
finish. This is possible thanks to the dynamic scheduling performed by the PyCOMPSs
runtime.
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(a) Complete initial Multilevel Montecarlo execution trace

(b) Initial Multilevel Montecarlo execution trace sequential portion

Figure 4: Initial Multilevel Montecarlo execution trace

Since it has been demonstrated that keeping one core per simulation is the best way to
discover the Workflow/PyCOMPSs limitations, we have kept this strategy in the following
subsections. Indeed, it has revealed as a really successful strategy that has enabled us to
increase the scalability while using a relatively small amount of resources.

3.4 Distributed version with grouped convergence extraction

The first aspect that has been improved is the treatment of the simulations’ results after
the simulation, processing in each task groups of data with size greater than one. This
way, a single task can extract the results of several simulations and accumulate them into
the convergence criteria. Considering that the overhead of creating and scheduling a task
is at least constant, this mechanism highly reduces the amount of overhead. This reduces
the overhead from a time proportional to the number of simulations to the number of
simulations divided by the amount of extractions done in a single task. For example, with
100 extractions per task and 20,000 simulations, this overhead is only added 200 times
instead of 20,000.

Figure 6 shows the execution trace of a single iteration of a Montecarlo algorithm
with 16,000 simulations and 16 worker nodes (768 cores). Although difficult to see in
the current view, is not only that there are less tasks that are serialized at the end of
the execution to the reduction performed, but also that the COMPSs runtime is able to
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Figure 5: Initial Multilevel Montecarlo execution trace with OpenMP

interleave them between the simulations, almost eliminating the sequential part at the
end.

Figure 6: Improved Montecarlo execution trace

For an execution with 8 times more simulations, this tail at the end of the execution
to compute the convergence criterias has disappeared (it is partially overlapped with
the simulations’ executions). Nevertheless, solving this problem has raised another one:
it seems that the scheduler struggles at the beginning of the execution and has minor
problems afterwards (black holes after the first iteration of simulation tasks).

Analysing the runtime behaviour with more detail, we observed that the issue appears
while the algorithm is creating tasks at the beginning of the execution, due to the large
amount of tasks generated in a short period of time (16,070). While this is not a problem
with larger task granularities or with smaller number of nodes, when the runtime is
stressed with large number of tasks and large number of cores to schedule tasks this
problem becomes more important. Figure 7 shows a view of the COMPSs runtime threads.
Different colors represent different states of the runtime. More specifically, when the
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second thread is represented in purple, the runtime is creating tasks. We can see that this
period corresponds with the initial part of the execution where the issue is present.

Figure 7: COMPSs runtime view

3.5 Distributed version with the scheduling improvements

3.5.1 Problem diagnosis

On the first hand, the current scheduler has been studied in order to detect where it could
be improved. COMPSs has several scheduling policies available. The focus has been put
in the ready scheduler, which only takes into account the tasks that have already been
freed from dependencies, ant therefore are ready to be executed at that moment. Figure 8
shows the code corresponding to the starting point at this stage. This function is called
every time that a tasks frees an execution slot.

There are three main things that could be improved:

• Keep track of idling worker nodes
The scheduler evaluates the possibility of executing every free task in all the re-
sources, verifying the available slots for each one of them. Hence, the complexity
increases linearly with the amount of available resources. In addition, the scheduler
tries to execute all the available tasks even when all the available resources are busy.

• Parallelize the scheduling process
The scheduling process is done in a single thread. Hence, all the tasks are treated
sequentially.

• Avoid computing the ordered list with the actions to be performed in each resource
each time that a slot is freed
The scheduler maintains an ordered list of actions to be performed, which is up-
dated very often. A score of the suitability to execute each task in each resource is
evaluated. Assuming that the scores associated to each pair resource - task do
not vary all along the execution, this ordered list could be maintained between calls
to the scheduler. This can avoid reordering the list each time as long as the amount
of available tasks does not change. For big executions, this list can contain tens of
thousands of tasks. Thus, this fact cannot be overlooked.
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1 private <T extends WorkerResourceDescription > void tryToLaunchFreeActions(
2 List <AllocatableAction > dataFreeActions , List <AllocatableAction >

resourceFreeActions ,
3 List <AllocatableAction > blockedCandidates , ResourceScheduler <T> resource) {
4
5 // Try to launch all the data free actions and the resource free actions
6 PriorityQueue <ObjectValue <AllocatableAction >> executableActions = new

PriorityQueue <>();
7 for (AllocatableAction freeAction : dataFreeActions) {
8 Score actionScore = generateActionScore(freeAction);
9 Score fullScore = freeAction.schedulingScore(resource , actionScore);

10 ObjectValue <AllocatableAction > obj = new ObjectValue <>(freeAction ,fullScore);
11 executableActions.add(obj);
12 }
13
14 for (AllocatableAction freeAction : resourceFreeActions) {
15 Score actionScore = generateActionScore(freeAction);
16 Score fullScore = freeAction.schedulingScore(resource , actionScore);
17 ObjectValue <AllocatableAction > obj = new ObjectValue <>(freeAction ,fullScore);
18 if (!executableActions.contains(obj)) {
19 executableActions.add(obj);
20 }
21 }
22
23 while (!executableActions.isEmpty ()) {
24 ObjectValue <AllocatableAction > obj = executableActions.poll();
25 AllocatableAction freeAction = obj.getObject ();
26 Score actionScore = obj.getScore ();
27
28 // LOGGER.debug("Trying to launch action " + freeAction);
29 try {
30 scheduleAction(freeAction , actionScore);
31 tryToLaunch(freeAction);
32 } catch (BlockedActionException e) {
33 blockedCandidates.add(freeAction);
34 }
35 }
36 }
37

Figure 8: Original COMPSs ready scheduler

3.5.2 Implementation proposed

Considering the problems detected in the previous section, a solution has been proposed
that both includes a multi-threaded treatment that keeps the ordered lists and a control
of the available resources in order to stop the scheduling operations once all the resources
are busy.

Figure 9 shows how the main while has been changed and Figure 10 shows the chosen
mechanism to asynchronously update the scheduler structures. This should be enough to
briefly understand the basis on which the full implementation is based.

The implemented solution is based in three main ideas:

• Keep track of the available workers in a HashMap
This data structure has been chosen in order to guarantee a constant complexity
access to this information which highly reduces the original overhead.

• Keep a different list for each one of the resources
This fact allows to store a list with the priority order of the available tasks for each
one of the resources considering the chosen policy. The current implemented policies
are FIFO, LIFO, data locality and load balancing (in case of equal data locality,
tasks are sent to the workers with less workload).

• Spawn threads to update the scheduling structures
Since each one of the resources has its own priority queue,its update can be done
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1
2 Future <?> lastToken = this.resourceTokens.get(resource);
3 if (lastToken != null) {
4 try {
5 lastToken.get();
6 } catch (InterruptedException | ExecutionException e) {
7 e.printStackTrace ();
8 LOGGER.fatal("Unexpected thread interruption");
9 ErrorManager.fatal("Unexpected thread interruption");

10 }
11 }
12 this.resourceTokens.put(resource , null);
13
14 Iterator <ObjectValue <AllocatableAction >> executableActionsIterator =
15 this.unassignedReadyActions.get(resource).iterator ();
16 HashSet <ObjectValue <AllocatableAction >> objectValueToErase =
17 new HashSet <ObjectValue <AllocatableAction >>();
18 while (executableActionsIterator.hasNext () && !this.availableWorkers.isEmpty ()) {
19 ObjectValue <AllocatableAction > obj = executableActionsIterator.next();
20 AllocatableAction freeAction = obj.getObject ();
21 try {
22 if (Tracer.isActivated ()) {
23 Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId (),
24 Tracer.Event.TRY_TO_SCHEDULE.getType ());
25 }
26 freeAction.tryToSchedule(obj.getScore (), this.availableWorkers);
27 if (Tracer.isActivated ()) {
28 Tracer.emitEvent(Tracer.EVENT_END ,
29 Tracer.Event.TRY_TO_SCHEDULE.getType ());
30 }
31 ResourceScheduler <? extends WorkerResourceDescription > assignedResource =
32 freeAction.getAssignedResource ();
33 tryToLaunch(freeAction);
34 if (!assignedResource.canRunSomething ()) {
35 this.availableWorkers.remove(assignedResource);
36 }
37 objectValueToErase.add(obj);
38 } catch (BlockedActionException e) {
39 ...
40 } catch (UnassignedActionException e) {
41 ...
42 }
43 }
44

Figure 9: Asynchronous scheduling structures update

1 private Runnable createAddRunnable(
2 final Map.Entry <ResourceScheduler <?>,
3 TreeSet <ObjectValue <AllocatableAction >>> currentEntry , final AllocatableAction

action , final Future <?> token) {
4 Runnable addRunnable = new Runnable () {
5 public void run() {
6 if (token != null) {
7 try {
8 token.get();
9 } catch (InterruptedException | ExecutionException e) {

10 e.printStackTrace ();
11 LOGGER.fatal("Unexpected thread interruption");
12 ErrorManager.fatal("Unexpected thread interruption");
13 }
14 }
15 addActionToResource(currentEntry , action);
16 }
17 };
18 return addRunnable;
19 }
20

Figure 10: Asynchronous scheduling structures update

asynchronously and just wait for the result in case a certain resource frees a slot to
perform some computations.

In order to achieve the desired behavior without making the code too complicated,
a strategy based on tokens has been followed. This way, each time that a list must be
modified, the thread in charge of this modification waits for the token corresponding to
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the last modification for each one of the lists to be generated. In addition, each time
that a modification is added to the thread scheduler, the token is updated so the next
time that a new thread is spawned it waits for the previous modifying thread to finish.
Afterwards, when the queue needs to be accessed, the main thread waits for the token
corresponding to the last modification to be generated. This way, it is guaranteed that
the queue contains all the modifications needed until the moment and that they have been
done in the same order that they were requested.

These modifications are basically erasing tasks that are already running on another
resource and adding tasks that has been freed from the last resource scheduling. This
way, the modification of the scheduling structures is removed from the scheduling critical
path.

3.5.3 Obtained results

With these improvements, we have been able to launch the execution shown on Figure 11.
In this case, we have 20 worker nodes (960 cores) and 49,380 simulations. For this case,
the amount of simulations is kept almost constant while the concurrence degree (and
the amount of resources to be managed) has been increased. Although the issue at the
beginning of the executions remain (the black hole after the first set of simulations),
the general behavior is much better than the obtained with the previous version of the
scheduler.

Figure 11: Improved Montecarlo execution trace with the first scheduling improvements

3.6 Distributed version with dynamic convergence checking

Since the obtained results at this stage were already good enough, we have decided to im-
plement a code improvement while still looking after the scheduling issue at the beginning
of the execution.

In fact, each one of the Montecarlo iterations was done in an efficient way. Neverthe-
less, the convergence was checked once all the simulations of a single batch were finished.
The computation of the stop criterion must wait until all the simulations of a whole batch
have finished in order to avoid having a biased result. Launching the batches one by one
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can lead to resource wasting in case another iteration is needed since no new simulations
are started until the convergence has been computed. This is not the case for a single level
execution because all the simulations take approximately the same time. Nevertheless, in
the Multilevel scenario we could end up in a case where the most long and demanding
simulation is launched at the end with some resources and all the other blocked waiting
for this simulation to finish. Hence, we have started working in the following actions in
parallel:

• Adapt the Montecarlo code in order to launch several batches of executions
This has been done in a way that the convergence is checked when the batches
in an incremental way once the different simulations in a batch starts to finish.
Nevertheless, the resources are filled with the executions of the following batches in
order to increase the resource efficiency in case the convergence is not reached.

• Improve the scheduling behavior
Since the bad behavior was found at the beginning of the execution, we have checked
all the task registration process and we have found some parts of the runtime code
that could be improved. Despite the modifications shown in the previous subsection,
in this case we have not changed the global architecture of the scheduler. Instead,
we have done some minor modifications that have apparently solved the problem.

Once the previous improvements have been implemented, they have been tested in
a production environment. More precisely, a first execution with 25 worker nodes and
130,000 simulations. The execution trace is shown in Figure 12. Considering the starting
point, this could be considered as a very good execution.

Figure 12: Improved Montecarlo execution trace with all the scheduling improvements
with 130,000 simulations and 25 worker nodes

Afterwards, the same execution with more available resources has been done. More
precisely, Figure 13 shows an execution with 50 worker nodes and Figure 14 shows an
execution with 100 worker nodes. It seems clear that the scheduling system struggles with
this amount of resources and available tasks. We can then fix the limit of concurrency
at this stage of the development to 25 worker nodes, that is 1200 cores, for simulations
lasting about 25 seconds.
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Figure 13: Improved Montecarlo execution trace with all the scheduling improvements
with 130000 simulations and 50 worker nodes

Figure 14: Improved Montecarlo execution trace with all the scheduling improvements
with 130000 simulations and 100 worker nodes

It is important to realize that executions of only 25 seconds are really fine grain tasks
when taking into account the amount of concurrency level and the amount of spawned
tasks.

4 Description of experiments performed with Hyper-

Loom

(it4i)
Describe here the results of the experiments performed with HyperLoom.

4.1 Platform description

TODO: Describe computing platform (Salomon, others?)
The Salomon cluster consists of 1009 compute nodes, totaling 24192 compute cores

with 129 TB RAM and giving over 2 PFLOP/s theoretical peak performance. Each node is
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a powerful x86-64 computer, equipped with 24 cores, and at least 128 GB RAM. Nodes are
interconnected through a 7D Enhanced hypercube InfiniBand network and are equipped
with Intel Xeon E5-2680v3 processors. The Salomon cluster consists of 576 nodes without
accelerators, and 432 nodes equipped with Intel Xeon Phi MIC accelerators. The cluster
runs with a CentOS Linux operating system, which is compatible with the RedHat Linux
family.

4.2 Experiments description

Due to technical problems, the results of performance at Hyperloom are not available at
the time of submitting this deliverable D4.2. An addenda to that deliverable, including
the results of the performace of the partners’ software tools at Hyperloom, will be sent to
the Commision at the shortest possible notice.

5 Performance recommendations

The aim of this section is to summarize the methodology that should be followed all along
the project in order to maximize the obtained performance.

First of all, it is really important to detect tasks that are executed in a sequential
way in order to find alternatives that increase the parallelism degree of the applications.
Although this is not possible in all the cases, the most part of times it is indeed possible
by doing a refactor in the code.

Next, the task execution time should be profiled in order to verify that it fits the both
the programming model needs regarding the magnitude of the overheads and the amount
of the requested resources.

Finally, all the modifications in the code should be tested executing as big executions
as possible with one core per task in order to check the programming model capabilities
to adapt to this new functionalities. This mechanism has revealed as the fastest way to
check the scalability of a given program.
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rizio Marozzo, Daniele Lezzi, Raül Sirvent, Domenico Talia, and Rosa M Badia.
Servicess: An interoperable programming framework for the cloud. Journal of grid
computing, 12(1):67–91, 2014.
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