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Abstract

A new formulation to model the mechanical behawbhigh performance fiber reinforced
cement composites with arbitrarily oriented shiméffs is presented.

The formulation can be considered as a two scgbeoaph, in which the macroscopic
model, at the structural level, takes into accdtet mesostructural phenomenon associated
with the fiber-matrix interface bond/slip procesghis phenomenon is contemplated by

including, in the macroscopic description, a micoophic field representing the relative
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fiber-cement displacement. Then, the theoreticam&work, from which the governing
equations of the problem are derived, can be alsdedito a specific case of the Material
Multifield Theory.

The balance equation derived for this model, cotimgcthe micro stresses with the
micromorphic forces, has a physical meaning relateth the fiber-matrix bond slip
mechanism. Differently to previous procedures ia titerature, addressed to model fiber
reinforced composites, where this equation has lzelted as an additional independent
ingredient of the methodology, in the present apgioit arises as a natural result derived
from the multifield theory.

Every component of the composite is defined wittpacific free energy and constitutive
relation. The mixture theory is adopted to defihe bverall free energy of the composite,
which is assumed to be homogeneously constitutedhe sense that every infinitesimal
volume is occupied by all the components in a prido given by the corresponding volume
fraction.

The numerical model is assessed by means of aeglset of experiments that prove the

viability of the present approach.

1 INTRODUCTION

Composite materials are the result of the combomatf two or more components, and
such that the properties of every one of them dearly different from those of the

composite. Generally, the composite material hateberoperties (with reference to
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overall strength, heat resistance, stiffness, dttan each one of the components. In
particular, ceramic materials like cement, or ceber are brittle in resisting tensile
stresses, but the addition of discontinuous filbeasls to a dramatic improvement in their
toughness during the fracture process. It is gdiyeemgreed that the fibers contribute
primarily to the post-cracking response of the matry providing resistance to the crack

opening.

A classification proposed by Naaman (2007a) to meitee if a fiber reinforced cement
(FRC) composite qualifies as “high performance”bmsed on the shape of its average
stress-elongation curve in the tensile tésr conventional FRC composite, this curve
would show a response with softening behavior imidety after the cement cracking
initiates. Alternatively, the qualification: “higlperformance”, is used if this response
shows a strain-hardening behavior after the indratof cement cracking. Thus, high
performance fiber reinforced cement compositesgditer denoted HPFRC composite,
exhibit a much higher ductility during the fractugi process than the conventional FRC
composites. In this paper, we consider that theirat the HPFRC composite is constituted

indistinctly of cement or concrete.

Experimental studies on HPFRC composites confirat the mechanisms responsible for
the macroscopic mechanical response mainly invgivenomena that occur at the
mesostructural level. They are caused by the cenfracture and the ability of this
component to transfer, during the fracture procebsaring stresses to the fibers through

the interface bond. Consequently, the parametersrgang the fiber-matrix bond response
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are a key aspect influencing significantly the nagcopic behavior (Guerrero and Naaman,
2000). From these considerations, an adequate matieal model should contemplate this

effect in order to capture the most salient meatarfeatures of the composite.

There exist several micromechanics-based modelsding the effective elastic properties
in composites, whose mechanical behavior is magilyerned by the fiber-matrix interaction
at the mesostructural level: typically, the metlodaells, the Mori-Tanaka method, Aveston-
Cooper-Kelly theory (ACK theory), etc. The analysis these methods is limited to a
representative volume element (RVE) that includese Gber and the surrounding matrix
material. However, in spite of the useful predietisapabilities proven by these techniques,

they still have limitations in analyzing compositeish fibers randomly oriented.

A number of approaches to analyze HPFRC compogéks, explicitly into account the
above mentioned mesoscale phenomena, such as tietsnod Kabele (2007), Bolander and
Sukumar (2005), Bolander et al. (2008) , Pros et(2012), etc. Alternatively, other
approaches simulate the mechanical response o ¢tomposites by means of
phenomenological macroscopic models combined wahbtdire mechanics techniques, such
as the models proposed by Boulfiza (1998), Felrdtarato (2000), Peng and Meyer (2000),
Li and Li (2000), Zhang et al. (2002), Ferreira@2}) Sirijaroonchai et al. (2010), etc. We

include in these type of approaches, the simplifretiel of Naaman (2007b).

In this paper, we describe a novel formulation Hase the material multifield theory

(Capriz, 1989, Mariano, 2002, Fremond and Nedj@96) that also uses the classical mixture
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theory of Trusdell and Toupin (1960). The multidigheory is widely used in continuum
mechanics; a number of applications were presemetie volume 38, issue 6-7 of this
Journal, and mentioned in the Preface written bgri@aand Mariano (2001). Specifically, a
large class of Multifield Theories covers the areh materials with microstructure,

micromorphic materials, based on the addition ofphological descriptors.

The expression micromorphic material is used tatiethose materials whose continuum
behavior depends on the material micro-structurkerAatively, they can be thought as
macroscopic models endowed with properties conmoig fthe structural interactions at lower
length scales. This conceptual framework was intced by Eringen (see Eringen and
Suhubi, 1964) and Mindlin (1964) in the sixtiesdgorovides a more general theoretical
approach accounting for the microstrucural inteoast than that given by the classical
internal variable approach. Subsequently, a coreditiee number of authors have followed this
idea; see for example, the works of Forest (2088shberger et al. (2008), Marco (2006) and

references cited therein.

Is within this type of theoretical context where define the present HPFRC composite
model. The main idea behind this formulation isetalow the macroscopic model with an
internal morphology taking into account the fibeatnx sliding mechanism, in such a way
that the fiber can stretch independently of thermxatrain. The stretching along the fiber
direction of both components, the cement and ther fiare coupled by means of an interface
having a specific constitutive response. As ivedl known, the mixture theory alone cannot

take into account this kind of mesostructural iatéions among the components. Then, based
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on the multifield theory, we are able to add theatfire into the model through the
introduction of a new kinematical independent Jaga the morphological descriptor that
accounts for the mentioned fiber-matrix sliding hmgism. Then, the mechanical model of
the composite can be described as a combinatitired individual constitutive domains: the

cement matrix, the fiber and the interface zone.

We emphasize at this point, that the main objegiiusued in the present contribution is to
describe the mathematical model of HPFRC compositéise context of a multifield theory.
Then, those issues related with the numerical modplementation, as also, the detailed
aspects about the fracture model approach heretetjogre only sketched in this work and

they will be addressed in detail by the authora farthcoming paper.

An overview of the paper is as follows: Sectiopr2sents a brief description about the
material multifield theory which is the backgroufat the subsequent development of the
HPFRC model. This model is presented in SectiorBé&ction 4 describes the problem
governing equations connected with this compositgenal model. In Section 5, a short
summary about the numerical implementation of tleeleh the finite element technology and
the fracture model are only roughly outlined. TlstlSection of the paper provides the
numerical assessment of the proposed formulatiandgns of the simulation of experimental

tests published in the literature.

2. BRIEF DESCRIPTION OF A MATERIAL MULTIFIELD THEORY

A short summary of fundamental topics drawn frone tho called multifield theory
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(Capriz, 1989, Mariano, 2002, Capriz and Marian020s presented in this Section. The
only objective that we pursue is to introduce thecassary ingredients providing the
background for the posterior development of the REFcomposite material model.

Specific additional details of this theory can berid in the above mentioned works.

2.1 Configuration space

Les us consider a bod§8, with a reference placemer, in the three dimensional
Euclidean space, undergoing a quasi-static loapgimgess. The set of generalized external
forces applied to the body are going to be pregidefined in the following Section. The
parametert represents a pseudo-time defining the sequendacodéasing external loads

during the interval of analysi$0,7'|.

The key idea of a material multifield theory isassign to each material poiit, of B,
the pair of kinematical variablegs,p) that completely defines the configuration spacéhef
body. The first element of the paix,, specifies the placement in the Euclidean spadbeof
material particleX for all ¢, and the second onf,, is a morphological descriptor collecting
information about the mesostructure configuratiovhich is considered a kinematical
descriptor being independent &f. Both kinematical variables are sketched in Figlrand

defined by the maps:
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x=%Xt)=X+uXt), VXeB, Vie[oT]

(1)
p=pXt), VXeB, Vie[oT]

whereu represents the displacement of the partXle

Referenc_e Curert
configuration Configuration ¢
e B
'- /‘ S.v
1
p < 9%,
B, X | .
€,
. € BN OB
€, 0

Figure 1. Configuration space during the body motion defined in the context of a multifield theory including a

morphological descriptor. Spatial placement is described by the map X , while the micromorphic field B
provides additional information about the material point mesostructural state. In this framework, the

generalized forcesare: b,¢,t" and (S : v).

2.2. Balance equations

An additional and relevant aspect of the theorytoisconsider the possible mechanical

interactions which are associated with the mesascppenomenon characterized by the



Javier Oliver, Diego F. Mora, Alfredo E. Huespe &afael Weyler

morphological descriptof§. These interactions produce a mechanical poweughr the

action of microforceszacting on particles having the rag, in a similar way as the
conventional body forced (per unit of volume) produce power through thestian on
particles with velocitiesx. Additionally to the power expended by the geneeal forcesb
and ¢, it shall be considered those terms that produdditianal power, such as the
conventional surface tractions= 6-v acting on the boundary®_ of 2 and the

mesostructural surface tractior:v, caused by the microstressgsacting on the boundary

03, of Z. In both cases, the vecter,is the outward normal vector to the body boundary

Introducing this concept into the mechanical modék power expended by these

generalized forces, and denoted as external p&ieér is postulated as:

pert i(b.ﬂg.mdg +@£ t % dd + [ (S-v)-p dA ?

0B,
The consequence of considering the interactiorgaglwith the morphological descriptors

in (2), through{ and S, is that additional, non-conventional, balancaatipns arise in the

model. They are derived from the external power by considering the invariance of (2)

under arbitrary observer changes, see Mariano,,20@Rthey are expressed as follows:

V:e+b=0; VXcB, A3)
V-S§—z=0; VXeB ()

In equation(3), o is the conventional Cauchy stress tensor. Then,ldbal balance
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equation is the classical Cauchy equation, whertial forces are neglected. Equati{#) is

the local balance of the substructural interactiovisere, and without loss of generality, we
have assumed that the external microforces @ee:0. A new objectz arises in(4), which

can be interpreted as a continuously distributecramiorphic force. An additional balance
equation, which can be seen as a generalized angutementum balance equation,
connecting the skew part o with S andz is derived in the theory. In Appendix I, and after
considering the HPFRC model that shall be presentéuke following Section, we show that

this equation trivially prescribes the symmetrytted stress tensar.

The use of the Green theorem and the balance egaais)-(4)in p<* establishes the

identity: pest =pint, wherep™* represents the total internal power and is giwen b

P = [(o: Viii+2-B+S: Vp)d2
B

®)

Notice thatz and$S play the role of generalized forces conjugat§ tand VB , respectively.

2.3. Constitutive constraints

Next, we consider the material free energy derfsitition: ¢/(V*u,B, VB,a) where, for

simplicity, the analysis is restricted to the isathal case. The variable denotes the

possible dependence of the constitutive responseset of internal variables.

The isothermal version of the second law of therynadhics prescribes, for any arbitrary

10
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deformation path, the verification of the inequalit

Plnt_w:(cv5ﬁ+zB+SVﬁ)—w20 (6)

which, after applying the Coleman's method, esthbt the following identities for every

one of the generalizes forces:

_ % g_ 9 . L
oveia ovp op

(g

()

that are considered as constitutive constraintsarmaterial model formulation.
3. HPFRC MODEL USING A MULTIFIELD THEORY
3.1 ldealization of the fiber-matrix bond-slip mechanism

Figure 2 sketches a representative specimen of KEPgdposite undergoing a loading
process. The axial forceP are applied at both ends of the specimen. The amechl
description of the phenomena taking place at thsosteuctural level, in this simple loading

case, can be imagined as follows: the fiber isexttbfl to a cross sectional average axial stress

a;, while a circumferential average bond shear stfesarises in the interface zone between

cement and fiber. The latter action has the etféédhterconnecting the mechanical response

of both components in order to make compatiblestiains of fiber and matrix. Therefore,

is different from zero only if a relative displacen, slip motion, between fiber and cement

11
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occurs. The interface zone is here understoodshslawith zero thickness and is denofed

In order to take into account this mesoscopic phemwn, we introduce a continuous
microfield, B(x,t), representing the relative displacement betweeer fand matrix, i.e. the
bond slip mechanism. In the context of a multifigdéory, B represents the morphological

descriptor of the model.

Macrostructure

dr

/ Mesostructure

Figure 2. ldealization of the fiber matrix bond-dlip mechanism at the mesoscale

I .
[: Interface zone
Matrix

level in a HPFRC composite.

3.2 Hypotheses of the model

In order to derive the HPFRC composite model, ttlewing hypotheses are adopted:

i.  small deformation theory and quasi static logdbrocess shall be considered,;

12
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ii. each fiber does not interact with neighboringefs nor a fiber bundle, in one

direction, interacts with another bundle in aalifnt direction;

iii.  after initiation of cement cracking, the dowedfect induced by the fiber is neglected;

iv. the composite is defined as a homogeneous raaunth in which each infinitesimal
volume is occupied simultaneously by all the cduoestits, including fiber bundles in
all directions existing in the composite, in a pydn given by the volume fraction

of each component.

3.3 Configuration space and kinematical description of the composite

Let us consider a single fiber undergoing a teriedeing process, as depicted in Figure 3-

a. Also, let us consider a local cartesian system,t), with the r-axis being parallel to the

fiber. The present model assumes one local cantsystem for every fiber bundle direction

in the bulk material.

Figure 3-b:c depicts the idealization of the fib®atrix deformation mechanism, in a
given Section A-A' parallel to the plarig t) . During the initial loading stage, Figure 3-hisit
assumed that both components, the matrix and blee, fare perfectly joined, so that there is

no slip between them. Thus, the same displacenmendescribes the kinematics of the
composite. Specifically, the r-component of theptlisement vectorz, , is identical for both

components. In this Figure, the dashed thin limesuaed to indicate the initial (undeformed)

position of the Section A-A', while the dot-dashbitk lines show the deformed position of

13
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the particles that initially were placed in A-A'.

A s
Interface zone (1Z) ﬂ%\_
P - P
- | fiber e >
r
cement A >
N (a)
Undeformed  Section after
deformation

Undeformed Section after
Section

Section deformation
A Ar St
’ !
o =
“ o

—
[—
—

I': interface!

Zone : Of s} fiber
e _ LA
ALl o) L

i——F 5= : ~
: A,'E Ur + [3 I

Figure 3. Kinematics at the mesoscale level. d) tHil depicting a steel fiber embedded into a
cement volume element ; b) deformed Section A-Ahaurit matrix-fiber slip (3 =0); c)

deformed Section A-A" with fiber-matrix slipd # 0).

As the tensile stress is increased, the bond steargth is reached. Then, a second stage
develops, as depicted in Figure 3-c, in which thi gqut mechanism activates the progressive

failure in the interface zoné, , inducing a relative movement (slip) between the phases.

While the matrix undergoes a displacemant relative to the original position, the fiber

displacement isu = u + B . The relative fiber-matrix displacement is supgbsehave only

14
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an axial component, in the fiber direction. Thémg vectorp is:

B= ﬁ(?“, 8, t)r 8)
which has a magnitudé and is parallel to the vectar.

Under this condition, the displacement fielfx) in the composite can be defined as

follows:

= 0 Vxin the concrete domain

u=u+9,p ; H, (9)

=1 Vxin the fiber domain

where 3 , denotes the Heaviside step function and defineshit points of the body, the slip

displacemeng is different from zero.

From now on, and without loss of generality, onl problems with plane symmetry

described in the plang,s) are addressed; the geometry of the steel fibeforeiement is

assumed such that it preserves this symmetry. ,TGipnis given by:
VB=3,(r®r)+8,(r®s) (10)

where the notatiore), = d(e) / Or and(e) = d(e) / s is used.

From expression (9), the strain is:

15
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= V'u=VU+6(B@ s)+H, (V) =

= VU + 80(r @ s) + H;(5,(r @ 1) + B (r @ 5)) Y

where, the supra-indete)’ refers to the symmetric part of the correspondiegond order
tensor. The second term in the right hand siddtaioed after using the generalized gradient:

Vi, = 6ps, with 6. being the Dirac delta function shifted 10 (the fiber-matrix interface

surface). Thus, the strain in the matrix (Whéf? =0)is:

I
<
o

€, ' ; (12)
while, the fiber strain results:
g, = H, (VU+ B, (ra 1)+ 8, (res)) (13)
and the remaining term in equation (11):
Y = 6 B(r ®° s) (14)

can be interpreted as a singular shear strain atmrated in the interface surface.

3.4 HPFRC constitutive equations

In this Section, the HPFRC constitutive model igsented according to the following
guidelinesl) First, in Section 3.4.1, we introduce the bascdetion of the free energy, and
its partition into different terms, associated watlrery component of the composite producing

power in the mechanical idealization, sketched igufe 2, at the mesoscale level.

16
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Furthermore, at this point, we define the very imgat notion of how each of these partitions
depend on the kinematical variables defining thdybconfiguration.2) In the next Section
3.4.2, after adopting the basic definitions givanSection 3.4.1 and using the constitutive
constrains (7), we interpret the stress associat@d each component, as also, the
microstresses and microforces concepts arisingneénnticromorphic model 3) Finally, in
Section 3.4.3, we specify the constitutive model eafch component, and the overall
constitutive model of the composite (Subsection.43,4in agreement with the generic
expression adopted for the free energy in the 8rdisection 3.4.1 and the expression derived

in 3.4.2.

The concepts addressed in Sections 3.4.1 till 3ade3developed supposing the existence
of only one fiber bundle, with a single fiber ariation. The overall model in Section 3.4.4 is

then generalized to account for a number of amyitiiaer orientations.

3.4.1 Composite free energy according to the mixture theory

According to the hypothesis) of Section 3.2, the hypothesis of the mixture tiie® taken in

order to derive the expression of the composite &#gergy. Instead of characterizing the
whole composite performance, the mixture theoryu$es on modeling each component
separately. The classical mixture theory has bweedified since its appearance in 1960
(Trusdell and Toupin, 1960), to include non-lingarin the constitutive response of the

components (Oller et al., 1996 and Car et al. 2002)

17
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Let us first consider a unique fiber bundle orienite the directionr. We denotekf the

volume fraction of the fiber, and  the volume fraction of the cement matrix, sucht:tha

k‘f-i-k =1.

m

The free energy of the composite is defined ag\it

w(vSﬁJ}aVl}?a) = ka/Jm(Sm (vsﬁ)aam) + kfwf(sf(vsﬁ7vl3)ao‘f) +
B (15)
+ kféFwF(BvaF);

where ¢, and wf are the matrix and fiber free energies, respegtiveks we have shown

above, the matrix-fiber bond is subjected to intBom forces producing power. In the present

model, we characterize this mechanism by includingadditional term in the free energy

expression, which is given by the surface free gape@r at the interface. The Dirac delta
function ¢ expresses the fact th&} is a surface energy density In. Notice that each term

of the free energy has its own set of internalalzes:a,, , o, anday., respectively.

Every term of the total free energy in (15) is detl as follows:

i.  The brittle behavior of the matrix is characterizgda tensile/compressive continuum
isotropic damage model in the context of a smearadk approach. The matrix free

energy is given by:

18
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0, (6,(VT.0,) = (1= d,)(5, : C, i 5,); a6)

whered € [0,1], is the conventional damage variable describimgdégradation of
the elastic stiffness:d, = 0 represents the virgin material and =1 the
completely degraded material. The evolution equafow d,, is presented in the next

Section. The matrix strairg, , is defined in (12), ancC,, is the standard isotropic

elastic tensor.

ii. The steel fiber is modeled using a one-dimensigolaktic model with strain

hardening/softening response. Its free energyasacterized by:

U (e, (VU VB), ;) = = (&5: B, : €5) + ¢ (o);

N | —

(17)

FE

¥ :Ef(r®r)®(r®r);

where we have assumed that the total fiber str?irdefined in (13), splits additively

into an eIastic,s? ,and a plasticaﬁ, parts:

g, = sjc + s?- (18)

the elasticity tensorf, is defined by only one elastic moduluEf', as shown in

19
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(7)-b, and 1/;]? is the free energy partition associated with thedéning/softening
mechanism which depends on the scalar internaalviari o The function@/)}% as
well as the evolution equations fe?, o, are defined in the next Sections.

The constitutive response of the interfaCeis characterized by an elasto-plastic

frictional cohesive model with strain hardeningtening. Its surface free energy is

described by:

TeB.ap) = (6 Gy - B) + Flap):

(19)
Gp = Gp(r @ r);
where B is assumed to be the addition of an elastic parnd a plastic paf?:
B=B"+B" (20)

the second order stiffness tensa,., is defined by means of only one stiffness

modulus: G . (a very large penalty-like parameter with dimensifiN/m] and which

penalizes the fiber/matrix slip before a certaress threshold is reached). The patrtition:
_f" of the surface free energy, is associated withstren hardening/softening effect
due to the frictional mechanism in the bond andedéep on the scalar internal variable

oy . The evolution equation foB? and oy, as well as the definition of;*, are shown

in the following Section.

20
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3.4.2 Generalized forces arising in the micromor phic model

From the above free energy expressions, the stddiradl components (equations (11)-

(14)) and the constitutive constraints (7)-a; theventional Cauchy stress is given by:

O,
oo O . Oy Uy

- :k‘ml—dm Cm:sm + k. E, &5 =
OV avea ! avea ( V(€ e) 8y By 2 1)

(21)

=k,1-4d,)(C, ¢,)+k E((x,), +8,)T®r)="Fk,06, +ko,.

%
where, we have replaced the expressionss}of and E, given in (13) and (17)-2,
respectively. Also, we identify ~as the cement matrix stress an]d as the (uniaxial) fiber
stress:
6 =(1-d,)C :g (22)
o, =o;(ror)=E((w), +06,)(rer) (23)

Considering expressions (7)-b, (13) and (17), tierostressS is given by:

_ 0y 0 L) —
S=ove Pravp ) = 24)

= ﬂffkaf((ﬂr)J + Qr)e(r Qr) = }[fkfcf

where, from the intermediate identity and (21), neeognize tha8 is represented bysf in

the fiber domain (weighted by the fiber volume fraig) and zero in the remaining part of the

21
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volume. Observe th& , in components referred to the cartesian systerg), is given by:

o, 0
S=H fk:f 0 ol (25)
From expressions (7)-c, and (15), the micromorgdrice results:
0 O ‘ ‘
7z = a—}f = kféra—ﬁr = Op(k;Gy - B°) = Op (kG B)r = Op (k7 )r (26)

which can be rewritten ag = 6.z . Thus, we identifyz = kf(GFﬂe)r as a specific shear
force per unit of area (a traction vector) actinghe interface being the product of a shear
stress componenty, defined by:

T, = Gpp°, (27)
in the direction ofr and weighted by the fiber volume fraction. Expr@ss(27) can be

reinterpreted as a conventional cohesive interfa@etion-separation model arising in the

interface.
3.4.3 Additional ingredients of the constitutive equation

The evolution equations for the internal variabkes well as the remaining ingredients of

the constitutive model in each component of the R@Fare defined in the following items.
a) Damage model for cement with distinct tensile and compressive strengths

The equations of the isotropic continuum damageahfmt cement are summarized in the

Box 1. This model is based on the approach addpge@liver et al. (2008), Linero (2006),

22
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Linero et al. (2010), for concrete, where the @ntional continuum damage variahle is
reinterpreted in terms of the ratio between tworrieglynamically conjugate internal
variables of the modelg and r , the stress-like and strain-like internal variable

respectively, as shown in equation (29). Afteraemg (29) in (22), we obtain the stress-

strain relation (30).

) _ 1
Free energy: Y (¢, (V'U),q )= 5(1 —d ), :C g ); (28)
Damage q
d, =1—-"2; (29)
variable: "m
Stress-strain q
6, =—2(C, :¢,) (30)
relation: "m
Flow rule: T = A Tm 2 To (31)
Internal variable ] ‘ ot
r,=max|n,7.(g,(5)]; 7, =1 =-—F= (32)
evolution: s€{ 0] = VE,
Damage
. . f;n(gm’frm) = Ts - rm (33)
criterion:
Isotropic
q.WL = HWL (’r’lﬂ) 7:.’HL; O S qWL S 740 ; qm t:O = 740; (34)
hardening law:
Complementary
f, S0 5 A, 20 5 Af, =0 (35)
conditions :
Box 1. Tensile/compressive isotropic damage model.
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Expression (31) defines the evolution equation for where )\ is a positive damage
multiplier, which is not null only if the strainae lies on the surfage = 0, with f being

defined in (33).E, is the Young modulus of cement ang{’ is the elastic uniaxial tensile

strength.

The damage function (33) is expressed in terms h&f matrix effective stress:

6, =C :¢ .The termT_ for the damage model with distinct tensile and possive

m m

strengths, is defined as follows:

}\/G_m : ((Cm)_l: G, , with: 0= 3—, (36)

where, <0> denotes the Mac Auley brackef’ is thei-th principal stress ofs,and

n=oc" /o™, where o, is the uniaxial elastic compressive strength. @gpialues for

m m?

standard concrete are:~10. Also, observe that considerirg, as a metric tensor;_ can

1-0
n

be seen as a strain norm that is scaled by thendiordess coefficienEH + } The

elastic domain:f < 0 , in the principal stress space is plotted in Fegdsa, as well as, a

typical uniaxial stress-strain curve representing behavior of the present cement model.

Notice in the plot, the different values displayeg the maximum compressive and tensile
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strengths, respectively.

Expression (34) is the so-called hardening/softgiamw relating the thermodynamic force

q,, With the conjugate variable, . H, is the softening modulus.

-2
O—-m-

=1

elastic ('T-m.
domain

(a) B
Ty
It ----------------------------------------
r
GpH;
G+ H.
G, \l R
G R
.I Tl—‘

g e

()

Figure 4. Constitutive model of the componentaent matrix model, description of the 2D elastic
domain in the principal stress space (left) andxial stress vs. strain plot (right); b) fiber mbded c)

cohesive interface model representing the fibemrimabnd response.

The constitutive tangent tens@? = do, / d¢, of the proposed damage model is given

m
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by the following expressions:

cy =22c,;
T (37)
H . 2
(Ciz — %Cm + mrm qm (rm> [—m ® ((Cm . 850) + 02(67;1 ®6m>] )
Tm (Tm)g 0

Equation (37)-a corresponds to unloading conditiand (37)-b to loading conditions. See
additional details in Oliver et al. (2008) and Lin€2006), where the expression {@rf has

been derived.

b) Plastic behavior of thefiber oriented in the r direction

As it was advanced in equation (21), the additiangtedients of the constitutive relation
connecting the uniaxial fiber stress:; =6, : (r ®r) with the uniaxial fiber strain:

e, =g :(r@r)=(u,), + 08, ,whereg, is defined in equation (13), are here presented.

To connect both magnitudes, we propose an uniastatdard elasto-plastic stress-strain

model as it is presented in Box 2, see also Figtve The fiber strainsf, is supposed to be

partitioned in the addition of an elas'a?, and plastic part}’ (sf = 5; + 5]7}) .

The stressy, is linearly connected with the elastic paﬁ: of the fiber strain, as shown in

equation (39) WherEEf is the fiber Young's modulus. Equation (39) is Hitalar expression

of the fiber tensorial term given in (21).
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The plastic strain rat%’jlz, equation (40), is defined through a standard »ualigplastic
response, While\f is the plastic multiplier. The paira(f,qf) is the set of conjugate internal

variables, andHf = 8%/’} /8ozf2 is the hardening/softening modulus. The yield amrfff

is defined in (43), Wherej{ represents the fiber yield stress. Expressionsgeithe classical

plastic loading-unloading conditions.

. - Lo | oh
Free energy: Ui (e,(V'R, VB),a,) = EEf[g;] + 5 (ap); (38)
Elastic stress-strain
o, = Eef (39)
relationship:
Flow rule: ef = Assign(oy) (40)
Internal variable '
. Qy = )\f ; OéfL:() =0 (41)
evolution:
Isotropic hardening
q; = Hylag) ay q; € [-of ;0] (42)
law:
Yield condition: fr=los| = (g +o}) (43)
Complementary
ffSO ; /\fZO ) )\fff:() (44)
conditions:
Box 2. 1-D plastic model for a fiber oriented in the r direction.
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The elastoplastic tangent modull@fﬂ = Jo, / Og;, IS given by:

(C?g = Ef[(r Rr)®(rer); for unloading conditions
EF.H 45
thg S S [(r®r)®(r®r)]; for loading conditions 43)
E,+H

! f

c) Constitutive equations for the (cohesive) interface zone: bond stress-slip

relationship.

In equation (27), a cohesive interface model h&s wetroduced:T, =17{(0) , representing

the mechanical behavior in the interface zaneln this Section, we present the additional

ingredients defining completely this frictional cbitutive relation.

Due to the notable effect that the matrix-fiber h@trength value, as well as the evolution
of the debonding process, has on the macroscopiavie of HPFRC composites, this
phenomena has been widely analyzed in the literatagainly through pull-out experimental
tests; such as the studies presented in Naamdn (@991a), Shannag et al. (1999), Li and
Stang (1997). Recent researches have contributdg toptimization of the fiber geometrical
properties to increase the bond strength (Naan@08)2While several bond strengths values

for smooth, hooked end and twisted fibers are gimgfim et al. (2009).

We assume that the interfacial zone mechanicabrespfollow a one-dimensional elasto-
plastic traction-slip model, as shown in Box 3Hgure 4-c, we sketch the main parameters

characterizing the constitutive response of thimgonent.
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Specific free energy:

Elastic stress-strain

relationship:
Flow rule:

Internal variable

evolution:
Yield condition:

Isotropic hardening
law:
Complementary

conditions:

Tl ,ap) =S8 G - ) + Tlay )
T, =GB
BY = Apsign(t;)
G=X;  ap| =0

fr(vaar) = |Tf|_ (¢r + 71)

¢p = Hp(ap) ap 5 qp € [—(mp — 7—15) ; 0]
=05 A 20 5 Afp =0

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Box 3. 1-D plastic model for the interface zone ()

The model in Box 3 basically consists of a linelasec response between the elastic

partition of 3 defined as;3° = § — 3 and ;. Both terms are related through a very large

stiffnress modulus (a penalty-like paramete¥):;; up to reach the bond strength valug,

which characterizes, for the virgin material, tmeset of the inelastic process. This parameter
determines the stick strength of the bond-slip moéifter crossing this point, the bond-slip

response follows a plastic hardening/softening .rdlbaus, the evolution of the plastic
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component;5? is given by the flow law (48), wherg. (with dimension of length) represents
the plastic multiplier. The hardening/softeningerus defined by the expressions (49) and

(51), where the term:H. (with dimension: [N/m]) represents the instantargeo

hardening/softening modulus. The plasticity craaris given by the equatiorf, = 0, with

fr- defined in (50). And the loading-unloading coratig by (52). The parameteﬁ2 defines

a residual frictional strength, allowing more reti capturing responses in the fiber-matrix
interaction model. This residual strength could the reason of displaying post-peak

structural behaviors with long tails, which are aluobserved in HPRFC specimens.

The elasto-plastic tangent modulug? = ar, /95, is given by:

CY = Gp; for unloading conditions
GH 53
Cl =—1-1L_ " forloading conditions 53)

G + H.,

3.44 The overall constitutive model of HPFRC composite having a random

distribution of fiber directions.

The previously presented mechanical model of a HPR#kaving a fiber bundle in one

direction, can be generalized to account for asstzdl distribution of fibers. Let us consider

n; discrete fiber bundles in the plane of analysithwi regular distribution of angles in the

interval: [O,TF] .
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The i-th bundle, characterized with the supra-index/ = 1,...,nf), has assigned one

volume fraction/, one direction vector’ and one micromorphic fiel’ = 3)(r, s)r'"

(from now on, a supra-index in parenthesis indeateat no summation on that index is
implied). Inclusion of new micromorphic fields inigd that new associated microstressés
and microforceg: ’ arise for every considered indexAlso, it is required the fulfillment of an

additional balance equation (58) for every intlex

Using the mixture theory, the free energy of theFRE is the linear combination of free
energies of all the components weighted by theiresponding volume fraction. Then, the
stress equation (21) results:

c=Fko, Zf kjcf sfuBI) oz;) (54)
where c§ corresponds to the i-th fiber stress, which exgpogsis given by the last term in
(21) along the direction’. Notice that the bond shear stress determined with Box ,3is
not included in this equation. The tangent contstittensor:C% = de / O¢, is given by:

1=1"F"Ff

9 =) CO 45 l{:]E][ v’ @rl)® (¢ ®rl)} (55)

WhereEf is the Young's modulus of the i-th fiber bundle.

Furthermore, each fiber bundiéias assigned a constitutive relatior): = &{ (e}, of) and:

i = 71(8",a{), given by Box 2 and Box 3. In the remaining pdrtte paper, we will
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denote:
6 — 6(11757 VB,G) ; af = OA_f(€f7af) ) Tf = 7A-f(6705]_") (56)

the complete set of the composite model constgutdguations. In this context, it is

understood that notatiog:and v g , as well as the functions:, and7, , represent the set of

micromorphic fields associated with all the fibemnkles, with indicesi = L,....n;.

4. BVP AND VARIATIONAL FORMULATION

4.1 Interpretation of the microforce balance law

To understand more precisely the role played by rtheroforce balance law (4) and
considering thab and z are defined in the fiber and interface regionspeetively, it is more

natural to consider an integral expression of th@lance equation. Let us integrate this

expression in the body paft, coinciding with the cylindrical slice of lengtti-, enclosing a

fiber, and its associated interface surface, sickhmwn in the insert of Figure 2 denoted

"mesostructure”. The integral expression results:

0

0 ; (57)

1’* =

I(VS—Z) dQ = fo«Uf),r)de B fo dar’
Py ' 0 0

where the second identity is derived, after replg@@&quations (25) and (26) in the left part of
(57), by performing simple mathematical operation&s it can be seen, the second

component of the vector equation is trivially equal zero. Thus, the relevant balance
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equation comes from the first component. Noticd, tae to the presence of the Heaviside

function in (25), the integration domain of thesfiterm is restricted to the fiber volume, here

denotede, while the integration domain in the second tesnihie surfacel , due to the

Dirac delta function in (26).

Denoting 7, the average value obf in a given section of the fiber andf the

circumferential average i’ of the shear stress:,; the equation of the first component in

expression (57) can be alternatively written as:
7 ——2L@G,), =0 (58)
f Il

WhereAf and 11 ; are the cross-section area and the perimetereofilier, respectively. A

similar equation describing the relation betweee #xial stress and the shear stress

distribution at the interface zone was presentetl&agman et al. (1991)

As it was mentioned above, there is one balancatexu(58) for every fiber bundle which

is characterized by the direction vecidr.

4.2 Reinterpretation of the fiber and bond constitutive models by means of

averaged quantities

In view of the treatment given to the microforcdapae law,equation (58), in terms of
averaged quantities of the fiber and bond sheass#s, the constitutive relation in Box 2 and

Box 3 should be reinterpreted such that the madéiese boxes provides the averaged terms
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required in the balance equation.

We note that the kinematics description of the rhaalesumes that fibers are one-

dimensional geometrical entities, which means thaffiber displacement and the fiber strain

g, are implicitly considered as constant fields asrthe fiber section. Themf =53

(where g is the average strain value in a fiber cross @ekti Thus, provided that parameters

are understood as averaged values, the constitonoael in Box2 automatically gives an

averaged stress vaILfefin the fiber cross-section, which depends on therayed values of

the fiber strain, &,, and the internal variablega, (o, :5f(§f,df)). An identical

consideration is valid for the constitutive relatigiven in Box 3, between the average bond

shear stress’, in a circumferential line, and the slig and average internal variablg;,

through: 7, = 7,(8,dy).

4.3  Governing equations of the BVP

The balance equations (3) and (58) jointly with dmmstitutive equations (56) and the

conventional traction boundary terms-n =t, defined in 0% _, or displacements:

u=nu, defined in 03, , together with the prescriptionp = 0 in the complete body
boundaryd B, (with 08B, = 08 = 08, U9d3B,), define the boundary value problem in

the strong form. These equations, that are writtderms of the macro-displacementsand
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the microslip,p , are summarized in Box 4.

Note that an alternative possibility to prescribeeafect fiber-matrix bond on the body
surface § = 0 on 0), is to defined a null fiber streséf( = 0) on 95 . Both possibilities
are amenable to motivate pros and cons. Nevesthebs it is observed in the numerical
simulation to be presented in next Section, thegiption p = 0 on 9B does not introduce

a severe constraint on the distribution of debogdmthose problems wheietakes non-null

values close to the boundary.

V-6+b=0, Vx € B (59)
~1 Af ~1
i- H—f(o'f)’r =0, Vx € B; (I =1,...,n)) (60)
o=4uba) 1 6 =5 0) 1 F=FH(day) |

u=nu Vx € 08,;

6-n=t Vx € 08 ; (61)
Bl =0 Vx € 05; (I =1..,n)
Box 4. BVP for the HPFRC composite.
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In order to derive the variational BVP fotHPFRC composite, the virtual variations of the

configurational space are defined as follows:

Y :{511 | fu=0, vXea%‘u};
(62)
¥ ={6p0 | 80 =0 Vxed® (I=L..n))

Notice that variations off , one for every index, are considered with fixed direction. Then,

(59) and (60pre alternatively formulated using a variationghra@ach:

J,(V-e+b)-6u dv =0 Véu € ) (63)

R A, . .
fg[fﬁ”—n—fﬁ&”>,r 80 AV =0 v e it (I=1m)  (64)

The microstructure variational equation (64) confemm admitting arbitrary scalar
variations, 53! , which are associated with the r-componenp®f Integrating (63) and (64)
by parts, using the Green's identity and includirggboundary conditions (61), the variational

BVP can be written as shown in equation (65) ar {i® Box 5. In equation (65)g is the

stress evaluated through the constitutive modek: 6(u,, VB,a). Similarly, 5]{ and %]{ in

(66) are the average fiber stress and average $fwgatt stress in the interface zone evaluated

through the constitutive equations of Box 2 and 3.
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Find : u(x,t) and B(x,t) ; vx € & fulfilling,

fﬂg&:VséudV—fgb-éudV—fFUt*-éudSzO . VYouey (65)

dav =0 ; v e (I =1,...,n)) (66)

Box 5. Variational BVP for the HPFRC composite.

5.

NUMERICAL IMPLEMENTATION OF THE HPRFC MODEL

This Section presents an outline of the finite edatformulation and the implementation of

the HPFRC model. Additional detailed descriptiondoth aspects of the methodology are

going to be addressed by the authors in a forthogmaper.

5.1. The Finite dement model

A mixed finite element with equal order interpotatifor the displacementy, and each of the

microslip, 3’ (for 1 =1,...1), is here proposed. The spatial discretizatiordsefr these

cases,

node

a(xt)= > N;x)q,) (67)
j=1

B xt)= SN, () (68)
j=1
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where n stands for the number of nodes in the finite elenmaesh, N, (x) are the

node

standard shape function@j and pj are the displacements and thé micro-slip of the node

j-th, respectively. The corresponding spatial discagbn of the variational displacement

fields éu and 63 reads,

o (x) = ZNJ.(X) 6q; (69)
j=1
35 ()= 3 N, ()6 (70)

j=1

where, 6q j and ¢ pjf, are the corresponding variations associated wéehdtbplacement and

th slip of thej-th node, respectively. Substitution of the approxeamslution, (67)-(68) and
the variational fields (69)-(70), into the variatad BVP in Box 5, yields the discrete form in
Box 6. Equation (71) is the standard finite eletrexuilibrium discrete equation, wheRe is

the vector of residual forcd3¢ is the stain-displacement matria, represents the stress term
provided by the constitutive mode&(p,q,a) (with p = [p',...,p"]), A is the element

assembling operator, is the number of finite elements in the mesh E&# is the vector

elem

of conventional external forces. In equation (7, and[N]°. are the nodal shape functions

and their derivatives (with respect to theoordinate), respectively, arranged as a vector.
The coupled system of equations (71)-(72) is solitethtively by means of a Newton-

Raphson scheme. In each iteration, the incremesafaktion (Ap,Aq), at time ¢ + At, is

found by means of a one-way coupled staggered sshetMmere the variable@p),,,, are
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solved by freezing the variable@ﬁq')t. After that, a correction step is performed by
evaluating (Aq')..p. for I'=1,..,n;, and holding fixed (Ap)., . This step is

computationally inexpensive.

Find : q(t) and p/(x,t); (I = 1,2,...,nf); fullfilling

R=A [ (B)6d0 +F =0 ; )

Metem

A A
€ 2([) f [ 'C(I) c . _
a fQ [N)° 75 +—Hf IN] G | dr 5 (I =1,...m) (72)

Box 6. Discrete form of the variational BVP for the HPFRC composite.

5.2. Thefracture modd

The structural strength of HPFRC composites is ligiglependent on the crack evolution
across the meso and macro-structure. The non-lnesponse displayed by this material takes
place during the cement cracking stage and the letenpesponse depends dramatically on
the very strong interaction between concrete crackisthe fiber-matrix bond slip mechanism,
whose model was presented in previous Sectionss,Tiesides considering the bond-slip
mechanisms, it is necessary to account for thereteacrack phenomena to establish a

satisfactory constitutive model of the compositdenal.

There have been numerous approaches in the liter&bn modeling concrete fracture

problems. Some contributions of the authors in fielsl, following the strong discontinuity
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approach, are presented in Oliver et al. (2002)eDbnd Huespe (2004) and Sanchez et al.
(2011). A book, with an up to date description dfedent techniques and models addressed

to this problems, has recently been published bigtdtier and Meschke, 2011.

In the present formulation, we use a numerical rhddscribed in Oliver et al. (2010) and
Dias et al. (2011). This methodology makes use lokcalized strain injection procedure via
mixed formulations that reduces the sophisticatmpesented by alternative techniques.
Details about the implementation of this fracturedel in the HPFRC composite will be

addressed by the authors in a forthcoming paper.

6. MODEL ASSESSMENT

Different aspects of the proposed methodology atielated through several examples. In all

cases, the numerical solutions are contrastedexjerimental results.

The first example corresponds to a conventionatlimgnbeam test with reinforced fibers
distributed in only one (horizontal) direction. tile second example, a dogbone strip under
uniaxial tensile stress is simulated: first, fbe tplain specimen (without reinforcement

fibers), and then, for the specimen having a randmtnibution of fibers.

6.1. Four-point bending beam test

It is a well known fact that the shape of the reinément fibers has a direct relationship with

the bond-slip mechanism because it modifies subatinthe pull-out force. Based on this
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idea, Jiang et al. (2000), have reported the emymsrial results of a four-point bending test
using HPFRC beams build with two types of steekwginforcements: a) conventional-
straight-short fibers (CSS), and b) bone-shapedtdters (BSS). With these experiments,
the authors have compared the effectiveness of BB®rcements, with respect to the CSS
ones, to improve the mechanical properties of oea®d cement. Also, in both cases, they
have reported the crack pattern that was obseifiedthe occurrence of structural failure and

how the cracks have propagated across the beam.

Using the reported results in Jiang et al. (200@) evaluate the model capacity to capture

the wide range of structural responses causedfteyeht reinforcement fiber shapes.

CSS fiber — d=1.6mm, Lenght =28mm

o

BSS fiber
o

(c) (d)

Figure 5. Four-point bending beam test. a) Beam geometry and set-up of the test; b) schematic illustration of the
BSS- and CSSsteel-wire reinforcements, both fibers have identical diameters and lengths; c) finite element mesh;

d) distribution of the reinforcement fiber in the concrete.
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The four-point bending beam that was experimentatyed is shown in Figure 5-a, with

the geometrical dimensions and loads. Figure 5pictiethe sizes and shapes of the CSS and

the BSS reinforcement fibers used to reinforcebtb@m, and Figure 5-d shows the layout of

the spatial reinforcement fibers embedded into dbecrete, all of them are horizontally

oriented and distributed as shown in Figure 5-dcdnsequence, only one bundle of fibers

can represent this composite.

The numerical simulation is performed by assumingwa-dimensional plane stress

model. A triangular finite element mesh with 3908neents, as shown in Figure 5-c, with

three degrees of freedom per node (two for digplents and one fog ), is used for the

numerical simulation. The material properties adidated in Table 1.

Matrix Fiber Interface
o' = 4.0MPa oy = 260MPa | 71 = different values
E =21GPa E; =180.GPa Gp = 1.e5GPa/m
H,. = 0.MPa/m
y, =02 H, = 700.MPa s
7 = 0.MPa
G, =100.N/m 0 = (° kp = 0.86%

Table 1. Four-point bending beam test. Material properties (the notation of the

parameters agrees with that of Boxes 1 and 2).

Figure 6-a compares the total lodd versus the middle point vertical displacement
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response. In the Figure, we compare the experirergalts, of the reinforced CSS and BSS-

wire-reinforced specimens, with the numerical golutobtained for the ultimate bond

strength 7. = 2.5MPa (conforming to a weak bond) and: = 7.5MPa (conforming to a

strong bond). It can be observed that for botlhieslof 7, the results closely reproduce the

experimental observations for the CSS and BSS sgad.

P (N
2000 L)

CSS fibers
— BSS fibers

= T]Li = 2.5 MPa

1600}

1200/ : -0 T¢=7.5MPa

800

400 |

Yy

B T
. —
- —

0 1 2 3 4 5 6 7 8
Cross-head displacement (mm})

(a)

P(N)
2000( n
= T = 2.5 MPa
oy e z
1600 L@ . [ TH= 4.0MPa
9 L A
i 1 ) U = 5.5MPa
f J r
1200/ -@- T{ = 7.5MPa

800

400

Cross-head displacement (mm)

(b)

Figure 6. Four-point bending beam test. Load as a function of cross head displacement steel-wire-

reinforced cement specimens: @) comparison between experiments and numerical results using the material

parameter: 7. = 2.5MPa and 7, = 7.5MPa, respectively; b) Load vs. cross head displacement curves

for different values of: 7.

According to the reference work, the first crackilie BSS specimen was observed at a

load: P =1500.N, while in the CSS specimen, it wad =1280.N. From these results, we

observe inFigure 6-a the dramatic increase of ductility and the appatoughness (energy
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consumed till the complete loss of structural leadying capacity) of the beam built with

the BSS reinforcement fiber.
Several values of the ultimate bond stress were tested in order to evaluate the
sensitivity of the model performance with this paeter. In Figure 6-b we compare the

numerical solutions obtained with a set of paransetg in the interval{2.5,7.5]MPa. Notice

how the model capture the increase of ductility,farsas the ultimate bond strengthy,

becomes larger.

6.1-a Post-failure examination:
According to Jiang et al. (2000), Figure 7-a shdwesexperimental failure mechanism result
of the CSS specimen which failed by a single crdclcontrast, Figure 7-b shows the BSS

specimen after failure displaying a more distribua@d multiple crack patterns.

(a) CSS Specimen (b) BSS Specimen

Figure 7. Four-point bending beam test. Crack pattern and failure modes: a) CSSand b) BSS specimens

reported in Jiang et al. (2000).
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Iso-displacement curves Damage

4.5

5.5

7.5

(h)

Figure 8. CSS and BSS-wire reinforced beam(kf = 1%). Numerical results: iso-displacement curves and

damage level depicting the crack patterns for different values of the ultimate bond shear strength.

With the present model and using several ultimatendb strengths, 7

(=2.5, 4.5, 5.5, 7.8Pa e have obtained the iso-displacement contous ltheplayed in

Figure 8-(a) (c) (e) and (g). In these picturé® toalescence of a number of iso-lines
represents the formation of cracks. The damagalilisbns in the concrete are shown in the
Figure 8-(b) (d) (f) and (h) by means of iso-coloaps. Darker color in the damage map

indicates a larger damage values, and thereformjoee degraded material. From these
Figures, we can observe that, the larger the paeanfe the closer is the fracture pattern to
the experimental result observed in the BSS spetidigplaying multiple crack formation.

Alternatively, by adopting lesser valuesf, it is possible to simulate a single crack fragtur
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mode, typical of light reinforced concrete.

The single crack pattern observed fdf = 2.5MPa is also replicated far: = 4.0MPa

and 7. = 5.5MPa. Experimentally, in the CSS-wire reinforced spemmn(Figure 7-a), the
crack branched out of the transverse plane at nideo¢ the test. Thus, the crack patterns

simulated with the ultimate bond strengthg: = 4.0MPaand 7. = 5.5MPa coincides

more closely with the experimental result than,tbatained with:7. = 2.5MPa.

6.2. Tensletestsof a dogbone shape specimen

Figure 9-a:c illustrates a dogbone shape specimanhave been subjected to a series of
experimental tests by Suwannakar (2009). From thests, two specific cases are here
considered: a) plain mortar without reinforcemabeirs presented in Section 6.2.1, and b)

HPFRC composite with a random distribution of habked fibers presented in Section 6.2.2.

In both cases, the numerical simulation uses adwmnsional plane stress model that is
depicted in Figure 10-a. The finite element mesthiswn in Figure 10-b. In the experimental
setup, the average elongation was obtained by megsine relative displacement between

points E and F (Figure 10-a) that are spaced abtimm.
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Figure 10. Tensiletest of a dogbone shape specimen. (a) Numerical test layout. (b) Finite element mesh with

1967quadrilateral elements.
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6.2.1 Tensiletest of a mortar specimen without reinforcement

Under monotonic tensile loading, the specimen witheinforcing fibers, failed in a brittle
manner. Only a single crack was observed. Resiiltsxperimental tests show that the
average stress-strain behavior of mortar specinders not exhibit perfect linear behavior.
Moreover, the measured Young's modukys, ranged betwee[y804.+ 26717.]MP: with an

average valueE, =13886.MP¢, significantly less than the Young's modulus ftanslard

concretes. Suwannakarn pointed out that this lofiness results from the lack of coarse

aggregates in the mortar composition of the spatdmeThe ultimate tensile strength of

mortar, o,,, shows also a large dispersion. The average velas estimated to be:

o' = 1.25MPa . Suwannakarn acknowledges that the large digpers both parameters,

m

E, and g, is due to the characteristic sensitivity of Heitmaterials, like mortar, to the

gripping conditions, and the variation due to montéing and curing.

Figure 11-a shows the average stress-average swane obtained with the numerical
simulations. It is compared with the scattered ltsstnat were presented in the reference
experimental work. As can be observed in Figurealfhe softening branch has not been

reported in the experimental results. Then, asughr@stimation of the mortar fracture energy,

we adopt: Gmf = 100.N/m, which is a similar value to that generally coesatl for

standard concrete.
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Figure 11. Tensiletest of the dogbone shape specimen, mortar without fibers. a) Average stress. vs. average
strain (measured through the relative displacement between points E-F); b) iso-displacement lines at the end of
analysis displaying the formation of a single crack, compared with the experimental result (specimen 3, pp.59in

Suwannakarn, 2009).

A failure mode displaying a single crack is obsdrirethe experimental results (Figure 11-

b:left). A similar failure mechanism is observedia end of the numerical analysis (Figure

11-b:right), where the vertical iso-displacememie make evident this result. In order to

trigger the strain localization process in the spea center, we perturb the model by

defining a weaker single finite element in the niddf the specimen (in wherey, is

reduced 10% of the bulk value).

6.2.2 Tensile test of the HPFRC composite

An identical specimen such as that depicted in rféidi is analyzed in this Section. The

material is a HPFRC composite with high strengteelstfibers, and with hooked end
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(commercially known under the trademark “Dramix®The fiber diameter and length is:
0.4mm and 30mm, respectively. In the reference w&kwannakarn mentions that the
composite material has been manufactured througtingiiof the components, including
fibers, and its posterior pouring into moulds tdait the specimens. However, he does not
specify clearly how the fibers are distributed ime tspecimen during its preparation.
Considering this observation, and even noting fibats are larger than the thickness of the
specimen, we assume that fibers have a uniformildision in all directions (in the three-

dimensional space).

We model this problem as a two-dimensional planesstcase. Then, the contribution of
the out-of-plane fibers to the plane of analysis projected, using an orientation factor,
following a technique described in the literatuseq Dupont and Vandewalle, 2005). We
simulate the reinforcement distribution by adoptmge fiber bundles directed along the
angles described in Table 2. The angfe:0°coincides with the principal (average) stretch

direction (see Figure 10-a) .

In Table 2, the mechanical properties of the madrix drawn from the tensile test of the

specimen without fibers that is numerically repdri@ the previous section. The fiber
parameters, as well as the interface parameteﬁs:Ef, 7. and kf are taken from the

reference work, while the fiber and interface hardg moduli:i/,, H. have been estimated

from numerical adjustments. The elastic moduljs is defined with an arbitrarily large
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value, such that an almost rigid-plastic modelasowvered for describing the fiber-matrix

bond response, as also, a null bond residual s(tré’*sg 0.MPa) is assumed in this model.

The average stress vs. average strain experintesigts are described through the lower
and upper envelopes depicted in Figure 12. The naoatesolution is superimposed in the

same Figure. A rough, but acceptable, descriptidheospecimen response is observed.

Matrix Fiber Interface
0';:; = 1.25MPa of = 2100.MPa r{f = 5.1 MPa
E =139GPa E, =210.GPa G = 1.5 GPa/m
Hr = 100.1\/1Pa/m
v, = 0.2 H P = 100.MPa s
' T = 0.MPa
(o] (o] (o] (o]
G,; =100.N/m | @= 0°,10°,20°,30°.45 kp = 0.75%
’ 60°,70°,80°,90° :

Table 2. Material properties of the generic HPFRC composite specimen (notation

of parameters agrees with that of Boxes 1 and 2).

The numerical result shows a well defined pointidating the first crack in the matrix,
which is identified, in Figure 12vith the point where the stress-strain linear oesg is lost
(point A). Furthermore, comparing with the unremtied case of Figure 11l-a (note the
different orders of magnitude in the scale of sggithe HPFRC composite response shows a

notable hardening after the initiation of the figack. In the last case, a notable strain
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hardening effect occurs after the first crack atiton till the strain value of 0.004 (point B) is
reached. This strain value corresponds with thé pesd, and it agrees reasonably well with
the experimental data. Also, we note that the-peak behavior is not very well captured by
the model. While the experiments shows a post-peakonse with a long tail (a usual
characteristic in HPRFC specimens), the almaoaigtt post-peak behavior, predicted by the

numerical solution, may be due to the null valuat the have adopted for the residual bond

strength parameten:f:2 :

3.5
30 ¢ Numerical result
. :”! -—.— Experimental, lower bound
% 25+ - — —Experimental, upper bound
p——
3 2.0
g2
7]
L 15
s -
< 10[ i
05} T

0. 0.5 1. 1.5 2. 2.5 3.
Average strain (x107)

Figure 12. HPFRC dogbone shape specimen subjected to the tensile test. Comparison between experimental
and numerical results. Experimental test correspond to the High Strength Hooked Steel fibers case (specimen

D-H-H-0.75, pp.80 in Suwannakarn, 2009).
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6.2.2-a Bridging effect induced by the reinforcement fibers

Pictures in Figure 13 depict iso-damage color mapd, illustrate different stages during the
evolution of the matrix damage distribution. Thanters below every picture identify the
loading stages where the corresponding damagebdistn is taken. These stage numbers
agree with the points marked in Figure 15, whicbtplthe average stress-strain curve. As
expected, high values of matrix damage are obsenvedrly stages (Stage 2). In Stages 3 and
4, before the strain localization onset, large srefithe specimen are severely damaged.

Nevertheless, no noticeable reduction of the strattoad carrying capacity is detected.

1

l 0.99444

+ 0.98889

- 0.98333

- 0.97778

- 0.97222

: 0.96667

0.96111

0.95556
0.95

Stage(2) Stage(3) Stage(4) Stage(5) Stage(7)

Figure 13. HPFRC dogbone shape specimen subjected to the tensile test. Different stages of damage evolution.

In Stages 5 and 7, the strain localization procesdmost completed. In the localization
band, the value of the damage indicates that thiixmia almost exhausted. However, the

stress-strain curve, at Stage 7, shows a residoghull, structural load carrying capacity.
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The results above mentioned, before and after ioigsle structural limit point, evidence
an appropriate capturing of the fiber bridging efféuring the matrix cracking process taking

place in the specimen.

6.2.2-b Analysis of the fiber-matrix debonding effect

During the stretching process, debonding and pulfuthe fibers is expected. Pullout
phenomena involve complex failure processes. Amsl é@ven more complex when the fibers
are not parallel to the pull-out direction. For ewde, the so called snubbing friction (Li et al.,
1990) which is due to the intense shearing at thetpvhere the fiber exits the matrix. This
effect produces an increased resistance of theyiutbrce displayed by inclined flexible
fibers. On the contrary, pullout resistance ofimadl fibers can be decreased by spalling of
the matrix, especially for stiff fibers. These qaex effects are not included in the present
model. Even though, as it will be shown in thistieg the gross macroscopic description of
HPFRC composite specimens with random distributibfibers can be acceptably captured

by the present model.

Let us analyze three bundles fibers (at 0°, 45%@9dvith respect to the loading direction.

Figure 14 depicts several entries of picture pairs. Eveptype pair represents the results
corresponding to a given fiber bundle, orientethm direction specified in the left column of
the Figure, and at different loading stages dutimg stretching process. The stage numbers

displayed below the pictures agree with the pamésked in Figure 15. In the left column of
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every picture pair, the finite elements reaching tiitimate bond strengths,’, are colored.

In the right column of every pair, the finite elemee reaching the fiber yield stressy, are

colored.
As shown in

Figure 14, Stages number (3) and (4) stay on the hardemggne. During this regime,
some fibers reach the ultimate bond strengths whikey remain in elastic regime.
Experimental works (Laranjeira et al. 2010a, Laganj et al. 2010b) indicate that inclined
fibers, with small angles with respect to the loduection, show improved pullout
performances. According with this observation, we that in Stage (3) and for the aligned
fibers (6=0°), more elements achieve the ultimate bond stretigth for the inclined ones (
6=90°. Debonding mechanisms evolve significantly foigaéd fibers in the Stage (4),

while not so much for the horizontal ones.

Stages (5) and (7) stay on the structural postatitregime. The matrix is severely
damaged and the strain localization process haatad in the center of the specimen, as also,
near the transition zones, where changes the watltthe sample. Then, a very complex
stress-strain distribution in the specimen centercalculated. During these stages, the
horizontal fibers remain elasti® € 90°), while the inclined and aligned oneg=45°, 6 =0°),
reach the yield condition in those finite elemetitat are intersected by the crack path.

Additionally, in the strain localization zones, wete that matrix-fiber debonding is observed
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for all fibers, whatever their directions are. Thare conclude that the complex process of
straining, in the localization zones, produce tberfmatrix debonding effect, even for fibers
orthogonal to the principal crack path. We canmoificm at the present, if this result is only a

numerical model response or it has a physical fogmice.

Debondig Plasﬂcrty Debondig Pla&tlclty Debondig Plastrctty Debondig Piastlcrty

I

| 'faLer

I
an

Stage (3) Stage (4) Stage (5) Stage (7)
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Figure 14. HPFRC doghone shape specimen subjected to the tensile test. Analysis of the debonding
mechanism for different fiber bundles. d=0°,45°, 90° Left column for every entry (Debonding): elements

reaching the ultimate bond shear stress. 71 . Right column for every entry (Fiber plasticity): elements

reaching the fiber yield stress ¢’ .

6.2.2-C Strain localization phenomenon

Figure 15 illustrates the average stress-averaga stumerical curve. The pictures inserted
in Figure 15 corresponding to Stages 1 to 7, defpbiet evolution of the domain where
elements with enhanced strain modes are injectleesd strain modes are injected once the
matrix reaches a critical condition and have thiedlve of capturing the strong discontinuity
solution (see additional details about this techaign Oliver et al., 2010 and Dias et al.,

2011).

Average stress [MPa]

0 1 1 1 1 1 ]
0 0.005 0.01 0.015 0.02 0.025 0.03

Average strain

Figure 15. HPFRC dogbone shape specimen tensile test. Average stress vs. average strain numerical
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curve. Insert: in black it is represented the finite elements with injected enhanced strains to capture the

strong discontinuity solution (see additional detailsin Oliver et al., 2010 and Dias et al.,2011).

The results displayed in the insert of Figure 1§g®&st that the critical matrix condition
initiates at the beginning of the hardening proc&sage (1). Then, during Stage (4), the
injection domain extends through most of the speninHowever, during the Stage (5), the
number of injected elements (those which remainthe critical condition) reduces
dramatically, and at the end of the simulation pss¢ only the elements on the failure path

stay in this condition.

Figure 16 plots the vertical iso-displacement liresthe end of analysis. This picture
represents the strain localization pattern provibgdhe numerical solution. Only one single
macrocrack is observed in the specimen. Unfortiyadeect comparison with experimental
results is not possible because no crack patterlffs specific test) is reported in the work

of Suwannakarn.
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(@) (b)

Figure 16. Tensile test of the dogbone shape specimen. HPFRC composite with hooked end fibers. 1so-

displacement contour lines at the end of the analysis.

From this analysis, we can conclude that the madektures very well the process of
multiple cracking (stages 2-4) and the subsequanture localization (stages 5-7) which are

typical of the HPFRC composites in general (sag,Maaman 2007a and Naaman 2007b).

7. CONCLUSIONS

In this paper, a novel formulation for HPFRC comfess based on the notion of
micromorphic materials is presented. The formutatiosses a morphological kinematic
descriptor that characterizes a key mesostrucpumehomenon: the fiber-matrix bond slip
mechanism. The mechanical interactions, taking eplat the composite, due to this
phenomenon are manifested once the conjugated t#rthe morphological descriptor: i.e.

the generalized micro-stresses and micro-forces, iatroduced in the model and the
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mechanical power is defined. The general framevadrthe Multifield Theory then specifies

the balance equations that govern these generatizzd-stresses and micro-forces.

As a consequence of these very basic suppositiotteimechanical model, new degrees
of freedoms (in the continuum) are incorporated the theoretical formulation of the model,
one for every considered morphological descripfor.important conceptual notion is that
these d.o.f.'s are independent of those definiegsipatial placement of the body. In this
HPFRC model, there is one morphological descrifporevery fiber bundle (orientation)

considered.

The material model description is completed oneeftbe energy of the composite, jointly
with its functional dependence on the kinematicaiables and their gradients, is defined. In
the present model, we adopt the mixture theoryefond the composite free energy. Then, the
overall free energy is the addition of every congmanfree energy, (including as such, the
power expended by the cohesive mechanism in ther-fitatrix bond) times the volume

fraction of the component.

The finite element technique, as also the fractoredel, used in the numerical
implementation has only been sketched in the pdp®se important aspects of the numerical
methodology will be fully described by the authorsa forthcoming paper. Even when these
aspects have not been detailed, we have presembedumerical examples that illustrate the

most relevant properties of the model:

i. The first example demonstrates the model capahitityepresent adequately the
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effects having a key mesoscopic phenomenon on\heath macroscopic response
of HPFRC composite structures. Specifically thegtmuess sensitivity with the

fiber-matrix bond strength, during the fracture qggss of specimens.

ii. In the second examples, more specific mesostrucéffects induced by the same
mechanism were deeply analyzed. For example, theitegty of the model for
capturing different amount of fiber plastic defotina and debonding with the

orientation of the fiber bundles.

Finally, we should mention that the fractional s{gpaggered) algorithm implemented
to solve the discrete problem, including the addiél d.o.f.'s associated with the
micromorphic fields, preserves the computationastcm the same order shown by

standard finite element formulations in displacetsen
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APPENDIX |: SYMMETRY OF THE STRESS TENSOR

We show that the angular momentum balance equatismg in the HPFRC model, when
it is derived from the multifield theory (Marian@002, Mariano and Stazi, 2005, Capriz
and Mariano, 2001), results in the classical angolamentum balance equation of the

conventional continuum mechanics specifying the mgtny of the stress tenser.

First, we derive the transformation law pfunder an observer change. Let us consider
the expression (8), (24) and (26):

B = B(r,s,t)r ; S=o,.(rst)(r®r); Z = z,T; (Al.1)
where z is the r-component of. Also, consider that is the micromorphic field
described by the observer 1 afdis the same entity described by the observer 2h Bo
observers differing by a time dependent rotati@(t), where Q € SO(3) is a time
dependent second order rotation tensor, plus a diependent translation. Then, given the

rate of the micromorphic fiel§ described by the observer 1, the same entity destiby

the observer 2, and denotéd is:

B o~ 0Qn) | = [Qr 4 p0r + 5Qs] |, = B+ Q0B )

Q=1
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In this expression, the axial vector, spin, of thetantaneous rotation velocity, of one

observer respect to the otheQQ‘Qzl), is denoted withq and the following identity
follows: QQ‘Q:1 B = qAPB. Introducing the third order permutation tensao(e,,;jk =1if

(i, J, K) is an even permutation of (1,2,3)

e = —1 if it is an odd permutation, and O if

any index is repeated), such thatqgAp=-e:(q®p), in (AL2) we can write:

QQ‘Qzl B = (—eB)q = Aq, where the operator:

b _
q

Due to the co-linearity op andz, it results, for any arbitrary rotatio, that:

4 —eB. (AL3)

ATz =0; (AL.4)

and expressingVv.427)S in indicial notation, it also results in:

(VaA")S =-¢, 9y

it 5y =0 (ALD)

gl
l
because the indicegl(andk) are identical. With (Al.4) and (AlL5), we conckdhat the

angular momentum balance equation (equation (1K)anano and Stazi, 2005):

skew(o) = A’z +(VA")S =0; (AL6)
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turns out to be the classical angular momentum ne@laequation of the conventional

continuum mechanics, form where the symmetry ofdbweventional stress tensor must be

enforced.
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