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Abstract  

A new formulation to model the mechanical behavior of high performance fiber reinforced 

cement composites with arbitrarily oriented short fibers is presented.  

The formulation can be considered as a two scale approach, in which the macroscopic 

model, at the structural level, takes into account the mesostructural phenomenon associated 

with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by 

including, in the macroscopic description, a micromorphic field representing the relative 
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fiber-cement displacement. Then, the theoretical framework, from which the governing 

equations of the problem are derived, can be assimilated to a specific case of the Material 

Multifield Theory. 

The balance equation derived for this model, connecting the micro stresses with the 

micromorphic forces, has a physical meaning related with the fiber-matrix bond slip 

mechanism. Differently to previous procedures in the literature, addressed to model fiber 

reinforced composites, where this equation has been added as an additional independent 

ingredient of the methodology, in the present approach it arises as a natural result derived 

from the multifield theory. 

Every component of the composite is defined with a specific free energy and constitutive 

relation. The mixture theory is adopted to define the overall free energy of the composite, 

which is assumed to be homogeneously constituted, in the sense that every infinitesimal 

volume is occupied by all the components in a proportion given by the corresponding volume 

fraction.  

The numerical model is assessed by means of a selected set of experiments that prove the 

viability of the present approach. 

 

1. INTRODUCTION 

Composite materials are the result of the combination of two or more components, and 

such that the properties of every one of them are clearly different from those of the 

composite. Generally, the composite material has better properties (with reference to 
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overall strength, heat resistance, stiffness, etc.) than each one of the components. In 

particular, ceramic materials like cement, or concrete, are brittle in resisting tensile 

stresses, but the addition of discontinuous fibers leads to a dramatic improvement in their 

toughness during the fracture process. It is generally agreed that the fibers contribute 

primarily to the post-cracking response of the matrix, by providing resistance to the crack 

opening.  

A classification proposed by Naaman (2007a) to determine if a fiber reinforced cement 

(FRC) composite qualifies as “high performance”, is based on the shape of its average 

stress-elongation curve in the tensile test. For conventional FRC composite, this curve 

would show a response with softening behavior immediately after the cement cracking 

initiates. Alternatively, the qualification: “high performance”, is used if this response 

shows a strain-hardening behavior after the initiation of cement cracking. Thus, high 

performance fiber reinforced cement composites, hereafter denoted HPFRC composite, 

exhibit a much higher ductility during the fracturing process than the conventional FRC 

composites. In this paper, we consider that the matrix of the HPFRC composite is constituted 

indistinctly of cement or concrete. 

Experimental studies on HPFRC composites confirm that the mechanisms responsible for 

the macroscopic mechanical response mainly involve phenomena that occur at the 

mesostructural level. They are caused by the cement fracture and the ability of this 

component to transfer, during the fracture process, shearing stresses to the fibers through 

the interface bond. Consequently, the parameters governing the fiber-matrix bond response 
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are a key aspect influencing significantly the macroscopic behavior (Guerrero and Naaman, 

2000). From these considerations, an adequate mathematical model should contemplate this 

effect in order to capture the most salient mechanical features of the composite.  

There exist several micromechanics-based models providing the effective elastic properties 

in composites, whose mechanical behavior is mostly governed by the fiber-matrix interaction 

at the mesostructural level: typically, the method of cells, the Mori-Tanaka method, Aveston-

Cooper-Kelly theory (ACK theory), etc. The analysis in these methods is limited to a 

representative volume element (RVE) that includes one fiber and the surrounding matrix 

material. However, in spite of the useful predictive capabilities proven by these techniques, 

they still have limitations in analyzing composites with fibers randomly oriented.  

A number of approaches to analyze HPFRC composites, take explicitly into account the 

above mentioned mesoscale phenomena, such as the models of Kabele (2007), Bolander   and 

Sukumar (2005), Bolander et al. (2008) , Pros et al. (2012), etc.  Alternatively, other 

approaches simulate the mechanical response  of this composites by means of 

phenomenological macroscopic models combined with fracture mechanics techniques, such 

as the models proposed by Boulfiza (1998), Ferrata Liberato (2000), Peng and Meyer (2000), 

Li and Li (2000), Zhang et al. (2002), Ferreira (2007), Sirijaroonchai et al. (2010), etc. We 

include in these type of approaches, the simplified model of Naaman (2007b).  

In this paper, we describe a novel formulation based on the material multifield theory 

(Capriz, 1989, Mariano, 2002, Fremond and Nedjar, 1996) that also uses the classical mixture 
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theory of Trusdell and Toupin (1960). The multifield theory is widely used in continuum 

mechanics; a number of applications were presented in the volume 38, issue 6-7 of this 

Journal, and mentioned in the Preface written by Capriz and Mariano (2001). Specifically, a 

large class of Multifield Theories covers the area of materials with microstructure, 

micromorphic materials, based on the addition of morphological descriptors.  

The expression micromorphic material is used to denote those materials whose continuum 

behavior depends on the material micro-structure. Alternatively, they can be thought as 

macroscopic models endowed with properties coming from the structural interactions at lower 

length scales. This conceptual framework was introduced by Eringen (see Eringen and 

Suhubi, 1964) and Mindlin (1964) in the sixties, and provides a more general theoretical 

approach accounting for the microstrucural interactions, than that given by the classical 

internal variable approach. Subsequently, a considerable number of authors have followed this 

idea; see for example, the works of Forest (2009), Hirshberger et al. (2008), Marco (2006) and 

references cited therein.  

Is within this type of theoretical context where we define the present HPFRC composite 

model. The main idea behind this formulation is to endow the macroscopic model with an 

internal morphology taking into account the fiber-matrix sliding mechanism, in such a way 

that the fiber can stretch independently of the matrix strain. The stretching along the fiber 

direction of both components, the cement and the fiber, are coupled by means of an interface 

having a specific constitutive response.  As it is well known, the mixture theory alone cannot 

take into account this kind of mesostructural interactions among the components. Then, based 
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on the multifield theory, we are able to add this feature into the model through the 

introduction of a new kinematical independent variable, the morphological descriptor that 

accounts for the mentioned fiber-matrix sliding mechanism. Then, the mechanical model of 

the composite can be described as a combination of three individual constitutive domains: the 

cement matrix, the fiber and the interface zone. 

We emphasize at this point, that the main objective pursued in the present contribution is to 

describe the mathematical model of HPFRC composites in the context of a multifield theory.  

Then, those issues related with the numerical model implementation, as also, the detailed 

aspects about the fracture model approach here adopted, are only sketched in this work and 

they will be addressed in detail by the authors in a forthcoming paper. 

An overview of the paper is as follows:  Section 2 presents a brief description about the 

material multifield theory which is the background for the subsequent development of the 

HPFRC model. This model is presented in Section 3. Section 4 describes the problem 

governing equations connected with this composite material model. In Section 5, a short 

summary about the numerical implementation of the model, the finite element technology and 

the fracture model are only roughly outlined. The last Section of the paper provides the 

numerical assessment of the proposed formulation by means of the simulation of experimental 

tests published in the literature. 

2. BRIEF DESCRIPTION OF A MATERIAL MULTIFIELD THEORY 

A short summary of fundamental topics drawn from the so called multifield theory 
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(Capriz, 1989, Mariano, 2002, Capriz and Mariano 2001) is presented in this Section. The 

only objective that we pursue is to introduce the necessary ingredients providing the 

background for the posterior development of the HPFRC composite material model. 

Specific additional details of this theory can be found in the above mentioned works. 

2.1 Configuration space 

Les us consider a body B , with a reference placement 0B  in the three dimensional 

Euclidean space, undergoing a quasi-static loading process. The set of generalized external 

forces applied to the body are going to be precisely defined in the following Section. The 

parameter t  represents a pseudo-time defining the sequence of increasing external loads 

during the interval of analysis: 0,T   . 

The key idea of a material multifield theory is to assign to each material point X ,  of 
0

B , 

the pair of kinematical variables β( , )x  that completely defines the configuration space of the 

body. The first element of the pair, x , specifies the placement in the Euclidean space of the 

material particle X  for all t , and the second one, β , is a morphological descriptor collecting 

information about the mesostructure configuration, which is considered a kinematical 

descriptor being independent of x . Both kinematical variables are sketched in Figure 1 and 

defined by the maps: 
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0, ( , ) , 0, ,( ) ,t t Tt  = +  = ∀ ∈ ∀ ∈X X u Xx x Xɶ B
 

β β 0( ), ,, 0,t Tt=  ∀ ∈  ∀ ∈X Xɶ B . 

(1) 

where u  represents the displacement of the particle X . 

 

 

Figure 1. Configuration space during the body motion defined in the context of a multifield theory including a 

morphological descriptor. Spatial placement is described by the map xɶ  , while the micromorphic field β  

provides additional information about the material point mesostructural state. In this framework, the 

generalized forces are: b ,ζ , *t  and ν( )⋅S . 

 

2.2. Balance equations 

An additional and relevant aspect of the theory is to consider the possible mechanical 

interactions which are associated with the mesoscopic phenomenon characterized by the 
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morphological descriptor β . These interactions produce a mechanical power through the 

action of microforces ζacting on particles having the rate βɺ , in a similar way as the 

conventional body forces b  (per unit of volume) produce power through their action on 

particles with velocities ɺx. Additionally to the power expended by the generalized forces b  

and ζ , it shall be considered those terms that produce additional power, such as the 

conventional surface tractions σ ν* = ⋅t  acting on the boundary 
σ

∂B  of B  and the 

mesostructural surface tractions: ν⋅S , caused by the microstresses S , acting on the boundary  

S
∂B  of B . In both cases, the vector,ν , is the outward normal vector to the body boundary. 

Introducing this concept into the mechanical model, the power expended by these 

generalized forces, and denoted as external power Pext , is postulated as: 

P ζ β ν β*( ) ( )

S

ext d dA dA

σ∂ ∂

= ⋅ + ⋅ Ω + ⋅ + ⋅ ⋅∫ ∫ ∫b x t x Sɺ ɺɺ ɺ

B B B
  (2) 

The consequence of considering the interactions related with the morphological descriptors 

in (2), through ζ  and S , is that additional, non-conventional, balance equations arise in the 

model. They are derived from the external power Pext  by considering the invariance of (2) 

under arbitrary observer changes, see Mariano, 2002, and they are expressed as follows: 

σ 0;∇ ⋅ + = ∀ ∈b 0 X B
 

(3) 

0;∇ ⋅ − = ∀ ∈S z 0 X B
 

(4) 

In equation (3), σ  is the conventional Cauchy stress tensor. Then, the local balance 
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equation  is the classical Cauchy equation, when inertial forces are neglected. Equation  (4) is 

the local balance of the substructural interactions, where, and without loss of generality, we 

have assumed that the external microforces are: ζ = 0 . A new object z  arises in (4), which 

can be interpreted as a continuously distributed micromorphic force. An additional balance 

equation, which can be seen as a generalized angular momentum balance equation, 

connecting the skew part of  σ  with S and z  is derived in the theory. In Appendix I, and after 

considering the HPFRC model that shall be presented in the following Section, we show that 

this equation trivially prescribes the symmetry of the stress tensor σ . 

The use of the Green theorem and the balance equations (3)-(4) in Pext  establishes the 

identity: P =P intext , where P int  represents the total internal power and is given by: 

P σ β βint ( : : )s d= ∇ + ⋅ + ∇ Ω∫ u z Sɺ ɺɺ

B
  

(5) 

Notice that z  and S  play the role of generalized forces conjugate to βɺ  and β∇ ɺ , respectively.  

2.3. Constitutive constraints 

Next, we consider the material free energy density function: β β α( , , , )sψ ∇ ∇u  where, for 

simplicity, the analysis is restricted to the isothermal case. The variable α  denotes the 

possible dependence of the constitutive response on a set of internal variables.  

The isothermal version of the second law of thermodynamics prescribes, for any arbitrary 
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deformation path, the verification of the inequality: 

σ β βint ( : : ) 0 .sP ψ ψ− = ∇ + ⋅ + ∇ − ≥u z Sɺ ɺ ɺ ɺɺ

 
(6) 

which, after applying the Coleman's  method, establishes the following identities for every 

one of the generalizes forces: 

σ
β β

ψ ψ ψ∂ ∂ ∂
= = =

∂∇ ∂∂∇
; ;

s
S z

u   

(7) 

that are considered as constitutive constraints in the material model formulation. 

3. HPFRC MODEL USING A MULTIFIELD THEORY 

3.1  Idealization of the fiber-matrix bond-slip mechanism 

Figure 2 sketches a representative specimen of HPFRC composite undergoing a loading 

process. The axial forces P  are applied at both ends of the specimen. The mechanical 

description of the phenomena taking place at the mesostructural level, in this simple loading 

case, can be imagined as follows: the fiber is subjected to a cross sectional average axial stress 

fσɶ , while a circumferential average bond shear stress fτɶ  arises in the interface zone between 

cement and fiber. The latter action has the effect of interconnecting the mechanical response 

of both components in order to make compatible the strains of fiber and matrix. Therefore, fτɶ  

is different from zero only if a relative displacement, slip motion, between fiber and cement 



Javier Oliver, Diego F. Mora, Alfredo E. Huespe and Rafael Weyler 

 

 12

occurs.  The interface zone is here understood as a shell with zero thickness and is denoted Γ . 

In order to take into account this mesoscopic phenomenon, we introduce a continuous 

microfield, β( , )tx , representing the relative displacement between fiber and matrix, i.e. the 

bond slip mechanism. In the context of a multifield theory, β  represents the morphological 

descriptor of the model. 

 

Figure 2.  Idealization of the fiber matrix bond-slip mechanism at the mesoscale 

level in a HPFRC composite. 

3.2  Hypotheses of the model 

In order to derive the HPFRC composite model, the following hypotheses are adopted:  

i.  small deformation theory and quasi static loading process shall be considered; 

'  

Mesostructure

 

fτɶ

Γ:  Interface zone 
Matrix 

 f
σɶ

P Macrostructure 

P 

z 

dr 

r 

t 

s 

R 
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ii. each fiber does not interact with neighboring fibers nor a fiber bundle, in one 

direction,  interacts with another bundle in a different direction; 

iii. after initiation of cement cracking, the dowel effect induced by the fiber is neglected; 

iv. the composite is defined as a homogeneous continuum in which each infinitesimal 

volume is occupied simultaneously by all the constituents, including fiber bundles in 

all directions existing in the composite, in a proportion given by the volume fraction 

of each component. 

3.3   Configuration space and kinematical description of the composite 

Let us consider a single fiber undergoing a tensile loading process, as depicted in Figure 3-

a.  Also, let us consider a local cartesian system, ( , , )r s t , with the r-axis being parallel to the 

fiber. The present model assumes one local cartesian system for every fiber bundle direction 

in the bulk material.  

Figure 3-b:c depicts the  idealization of the  fiber-matrix deformation mechanism, in a 

given Section A-A' parallel to the plane ( , )s t . During the initial loading stage, Figure 3-b, it is 

assumed that both components, the matrix and the fiber, are perfectly joined, so that there is 

no slip between them. Thus, the same displacement u  describes the kinematics of the 

composite. Specifically, the r-component of the displacement vector: 
ru , is identical for both 

components. In this Figure, the dashed thin lines are used to indicate the initial (undeformed) 

position of the Section A-A', while the dot-dashed thick lines show the deformed position of 
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the particles that initially were placed in A-A'. 

 

 

Figure 3.  Kinematics at the mesoscale level. a) Unit cell depicting a steel fiber embedded into a 

cement volume element ; b) deformed Section A-A' without matrix-fiber slip ( 0β = ); c) 

deformed Section A-A' with fiber-matrix slip ( 0β ≠ ).  

 

As the tensile stress is increased, the bond shear strength is reached. Then, a second stage 

develops, as depicted in Figure 3-c, in which the pull out mechanism activates the progressive 

failure in the interface zone, Γ , inducing a relative movement (slip) between the two phases.  

While the matrix undergoes a displacement u  , relative to the original position, the fiber 

displacement is: β= +u u . The relative fiber-matrix displacement is supposed to have only 
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an axial component, in the fiber direction. Then, the vector β  is:  

β β= ( , , )r s t r
 

(8) 

which has a magnitude β  and is parallel to the vector r .  

Under this condition, the displacement field ( )u x  in the composite can be defined as 

follows: 

β
0 in the concrete domain

;
1 in the fiber domain     f f

= ∀= + = ∀

x
u u

x
H H

 

(9) 

where fH denotes the Heaviside step function and defines in what points of the body, the slip 

displacement β  is different from zero. 

From now on, and without loss of generality, only 2D problems with plane symmetry 

described in the plane ( , )r s  are addressed; the geometry of the steel fiber reinforcement is 

assumed such that it preserves this symmetry.  Then, β∇  is given by: 

β β β∇ = ⊗ + ⊗, ,( ) ( )r sr r r s
 

(10) 

where the notation ,( ) ( ) /r r• = ∂ • ∂  and ,( ) ( ) /s s• = ∂ • ∂  is used.  

From expression (9), the strain is:  
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ε β β

, ,

( ) ( )

( ) ( ( ) ( ))

s s s s
f

s s s s
f r s

δ

δ β β β

Γ

Γ

= ∇ = ∇ + ⊗ + ∇ =

= ∇ + ⊗ + ⊗ + ⊗

u u s

u r s r r r s

H

H  
(11) 

where, the supra-index ( )s•  refers to the symmetric part of the corresponding second order 

tensor. The second term in the right hand side is obtained after using the generalized gradient: 

f δΓ∇ = sH , with δΓ  being the Dirac delta function shifted to Γ  (the fiber-matrix interface 

surface). Thus, the strain in the matrix (where = 0fH ) is: 

ε ;s
m = ∇ u

 
(12) 

while, the fiber strain results: 

ε , ,( ( ) ( ))s s s
f f r sβ β= ∇ + ⊗ + ⊗u r r r sH

 
(13) 

and the remaining term in equation (11): 

γ ( )sδ βΓ= ⊗r s
 

(14) 

can be interpreted as a singular shear strain concentrated in the interface surface.  

3.4 HPFRC constitutive equations 

In this Section, the HPFRC constitutive model is presented according to the following 

guidelines. 1) First, in Section 3.4.1, we introduce the basic description of the free energy, and 

its partition into different terms, associated with every component of the composite producing 

power in the mechanical idealization, sketched in Figure 2, at the mesoscale level. 
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Furthermore, at this point, we define the very important notion of how each of these partitions 

depend on the kinematical variables defining the body configuration. 2)  In the next Section 

3.4.2, after adopting the basic definitions given in Section 3.4.1 and using the constitutive 

constrains (7), we interpret the stress associated with each component, as also, the 

microstresses and microforces concepts arising in the micromorphic model.  3) Finally, in 

Section 3.4.3, we specify the constitutive model of each component, and the overall 

constitutive model of the composite (Subsection 3.4.4), in agreement with the generic 

expression adopted for the free energy in the first Subsection 3.4.1 and the expression derived 

in 3.4.2. 

The concepts addressed in Sections 3.4.1 till 3.4.3 are developed supposing the existence 

of  only one fiber bundle, with a single fiber orientation. The overall model in Section 3.4.4 is 

then generalized to account for a number of arbitrary fiber orientations.  

3.4.1  Composite free energy according to the mixture theory 

According to the hypothesis iv) of Section 3.2, the hypothesis of the mixture theory is taken in 

order to derive the expression of the composite free energy. Instead of characterizing the 

whole composite performance, the mixture theory focuses on modeling each component 

separately.  The classical mixture theory has been modified since its appearance in 1960 

(Trusdell and Toupin, 1960), to include non-linearity in the constitutive response of the 

components (Oller et al., 1996 and Car et al. 2002). 
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Let us first consider a unique fiber bundle oriented in the direction r . We denote fk  the 

volume fraction of the fiber, and 
mk  the volume fraction of the cement matrix, such that: 

1f mk k+ = . 

The free energy of the composite is defined as follows: 

β β α ε ε β

β

( , , , ) ( ( ), ) ( ( , ), )

( , );

m m m m f f f f

f

s s sk k

k

ψ ψ α ψ α

δ ψ αΓ Γ Γ

∇ ∇ = ∇ + ∇ ∇ +

+

u u u
 (15) 

where ψm and ψf  
are the matrix and fiber free energies, respectively. As we have shown 

above, the matrix-fiber bond is subjected to interaction forces producing power. In the present 

model, we characterize this mechanism by including an additional term in the free energy 

expression, which is given by the surface free energy: ψΓ  at the interface. The Dirac delta 

function δΓ expresses the fact that ψΓ  is a surface energy density in Γ . Notice that each term 

of the free energy has its own set of internal variables: 
mα , fα  and αΓ , respectively. 

Every term of the total free energy in (15) is defined as follows:  

i. The brittle behavior of the matrix is characterized by a tensile/compressive continuum 

isotropic damage model in the context of a smeared crack approach. The matrix free 

energy is given by:  
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ε ε ε
1

( ( ), ) (1 )( : : );
2

s
m m m m m m mdψ α∇ = −u C �  (16) 

where [0,1]md ∈ , is the conventional damage variable describing the degradation of 

the elastic stiffness: 0md =  represents the virgin material and 1md =  the 

completely degraded material. The evolution equation for 
md  is presented in the next 

Section. The matrix strain, εm , is defined in (12), and Cm
 is the standard isotropic 

elastic tensor. 

ii.  The steel fiber is modeled using a one-dimensional plastic model with strain 

hardening/softening response. Its free energy is characterized by: 

ε β ε ε
1

( ( , ), ) ( : : ) ( );
2

( ) ( );

s e e h
f f f f f f f f

f fE

ψ α ψ α∇ ∇ = +

= ⊗ ⊗ ⊗

u

r r r r

�E

E

 (17) 

where we have assumed that the total fiber strain ε f , defined in  (13), splits additively 

into an elastic, εef , and a plastic, εp
f , parts:  

ε ε εe p
f f f= + . (18) 

the elasticity tensor, fE  , is defined by only one elastic modulus: fE , as shown in 
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(17)-b, and h
fψ  is the free energy partition associated with the hardening/softening 

mechanism which depends on the scalar internal variable: fα . The function h
fψ , as 

well as the evolution equations for εp
f , fα  are defined in the next Sections. 

iii.  The constitutive response of the interface Γ  is characterized by an elasto-plastic 

frictional cohesive model with strain hardening/softening. Its surface free energy is 

described by: 

β β β
1

( , ) ( ) ( );
2

( );

e e h

G

ψ α ψ αΓ Γ Γ Γ Γ

Γ Γ

= ⋅ ⋅ +

= ⊗r r

G

G

 (19) 

where β  is assumed to be the addition of an elastic part βe  and a plastic part βp : 

β β β ;pe= +  (20) 

the second order stiffness tensor, ΓG , is defined by means of only one stiffness 

modulus: G Γ  (a very large penalty-like parameter with dimension: [N/m] and which 

penalizes the fiber/matrix slip before a certain stress threshold is reached). The partition: 

hψΓ  of the surface free energy, is associated with the strain hardening/softening effect 

due to the frictional mechanism in the bond and depends on the scalar internal variable 

αΓ . The evolution equation for: βp  and αΓ , as well as the definition of hψΓ , are shown 

in the following Section. 
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3.4.2  Generalized forces arising in the micromorphic model 

From the above free energy expressions, the strains of all components (equations (11)-

(14)) and the constitutive constraints (7)-a; the conventional Cauchy stress is given by: 

σ ε ε

ε σ σ, ,

(1 ) ( : ) :

(1 ) ( : ) (( ) ) ( ) .

f

f em
m f m m m m f f fs s s

e
m m m m f f r r r m m f f

k k k d k

k d k E u k k

σ

ψψψ

β

∂∂∂
= = + = − + =

∂∇ ∂∇ ∂∇

= − + + ⊗ = +

u u u

r r
�����������������

C �

C �

E

 (21) 

where, we have replaced the expressions of εef  and fE  given in (13) and  (17)-2,  

respectively. Also, we identify σm
 as the cement matrix stress and σ f  as the (uniaxial) fiber 

stress: 

σ εC �(1 ) :m m m md= −  (22) 

σ , ,( ) (( ) ) ( )e
f f f r r rE uσ β= ⊗ = + ⊗r r r r  (23) 

Considering expressions (7)-b, (13) and (17), the microstress S is given by: 

ε
β β

σ, ,

( )

(( ) ) ( )

f e
f f f f f

e
f f f r r r f f f

k k

k E u k

ψψ

β

∂∂
= = = ⋅ =

∂∇ ∂∇

= + ⊗ =

S

r r

EH

H H

 (24) 

where, from the intermediate identity and (21), we recognize that S is represented by: σf  in 

the fiber domain (weighted by the fiber volume fraction) and zero in the remaining part of the 



Javier Oliver, Diego F. Mora, Alfredo E. Huespe and Rafael Weyler 

 

 22

volume. Observe that S , in components referred to the cartesian system (,r s ), is given by: 

0
.

0 0
f

f fk
σ 
 =    

S H  (25) 

From expressions (7)-c, and (15), the micromorphic force results: 

β
β β

( ) ( ) ( )e e
f f f f fk k k G k

ψψ
δ δ δ β δ τΓ
Γ Γ Γ Γ Γ Γ
∂∂

= = = ⋅ = =
∂ ∂

z r rG  (26) 

which can be rewritten as: δΓ=z z . Thus, we identify ( )e
fk G βΓ=z r  as a specific shear 

force per unit of area (a traction vector) acting in the interface being the product of a shear 

stress component: fτ , defined by:   

,e
f Gτ βΓ=  (27) 

in the direction of r  and weighted by the fiber volume fraction. Expression (27) can be 

reinterpreted as a conventional cohesive interface traction-separation model arising in the 

interface. 

3.4.3 Additional ingredients of the constitutive equation 

The evolution equations for the internal variables, as well as the remaining ingredients of 

the constitutive model in each component of the HPFRC, are defined in the following items. 

a) Damage model for cement with distinct tensile and compressive strengths 

The equations of the isotropic continuum damage model for cement are summarized in the 

Box 1. This model is based on the approach adopted by Oliver et al. (2008),  Linero (2006), 
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Linero et al. (2010),  for concrete, where the conventional continuum damage variable 
md  is 

reinterpreted in terms of the ratio between two thermodynamically conjugate internal 

variables of the model, 
mq  and 

mr , the stress-like and strain-like internal variables 

respectively, as shown in equation (29).  After replacing (29) in (22), we obtain the stress-

strain relation (30). 

Free energy: ε ε ε
1

( ( ), ) (1 )( : : );
2

s
m m m m m m mdψ α∇ = −u C �

 
(28) 

Damage 

variable: 
1 ;m

m
m

q
d

r
= −

 
(29) 

Stress-strain 

relation: 
σ ε( : )m

m m m
m

q

r
= C �

 
(30) 

Flow rule: λ= ≥ɺ
0,m m mr r r  (31) 

Internal variable 

evolution: 
ε0 000,

max , ( ( )) ;
ut
m

m m m ts t
m

r r s r r
E

ε

σ
τ

  =∈ 

 = = =    (32) 

Damage 

criterion: 
ε( , )m m m mf r rετ= −  (33) 

Isotropic 

hardening law: 
0 00

( ) ; 0 ; ;m m m m m m t
q H r r q r q r

=
= ≤ ≤ =ɺ ɺ  (34) 

Complementary 

conditions : 
λ λ≤ ≥ =0 ; 0 ; 0m m m mf f  (35) 

Box 1. Tensile/compressive isotropic damage model. 
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Expression (31) defines the evolution equation for 
mr , where 

mλ  is a positive damage 

multiplier, which is not null only if the strain state  lies on the surface 0mf = , with 
mf  being 

defined in (33). 
mE is the Young modulus of cement and ut

mσ  is the elastic uniaxial tensile 

strength. 

The damage function (33) is expressed in terms of the matrix effective stress: 

σ εC :m m m= . The term ετ  for the damage model with distinct tensile and compressive 

strengths, is defined as follows: 

( )σ σ

3

11

3

1

1
: : , with:

i
mi

m m m
i
mi

n
ε

σθ
τ θ θ

σ

=−

=

 − = + =  
∑
∑

C � , (36) 

where, •  denotes the Mac Auley bracket. σ i
m is the i-th principal stress of σm

 and 

σ σ= /uc ut
m mn , where σuc

m  is the uniaxial elastic compressive strength. Typical values for 

standard concrete are: ≃10n . Also, observe that considering 
mC  as a metric tensor, 

ετ  can 

be seen as a strain norm that is scaled by the dimensionless coefficient:
1

n

θ
θ

 −  +   
.  The 

elastic domain: 0mf ≤ , in the principal stress space is plotted in Figure 4-a, as well as, a 

typical uniaxial stress-strain curve representing the behavior of the present cement model. 

Notice in the plot, the different values displayed by the maximum compressive and tensile 
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strengths, respectively. 

Expression (34) is the so-called hardening/softening law relating the thermodynamic force 

mq  with the conjugate variable mr . mH  is the softening modulus.  

 

 

Figure 4.  Constitutive model of the components. a) Cement matrix model, description of the 2D elastic 

domain in the principal stress space (left) and uniaxial stress vs. strain plot (right); b) fiber model and c) 

cohesive interface model representing the fiber-matrix bond response. 

 

The constitutive tangent tensor: σ ε/tg
m m m= ∂ ∂C  of the proposed damage model is given 
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by the following expressions: 

σ σ σ
2

2

3

;

( )
[ ( : ) ( )] .

( )

tg m
m m

m

tg m m m m m
m m m m m m

m m

q

r

q H r q r

r r
σ
θ θ

θ

=

 −  = + ⊗ ∂ + ⊗   

C C

C C C
 

(37) 

Equation (37)-a corresponds to unloading conditions and (37)-b to loading conditions. See 

additional details in Oliver et al. (2008) and Linero (2006), where the expression for 
σθ∂  has 

been derived. 

b)  Plastic behavior of the fiber oriented in the r  direction 

As it was advanced in equation (21), the additional ingredients of the constitutive relation 

connecting the uniaxial fiber stress: σ : ( )f fσ = ⊗r r  with the uniaxial fiber strain: 

ε , ,: ( ) ( )f f r r ruε β= ⊗ = +r r  , where ε f  is  defined in equation (13),  are here presented. 

To connect both magnitudes, we propose an uniaxial standard elasto-plastic stress-strain 

model as it is presented in Box 2, see also Figure 4-b. The fiber strain: fε , is supposed to be 

partitioned in the addition of an elastic e
fε , and plastic part pfε  ( e p

f f fε ε ε= + ) . 

The stress σf  is linearly connected with the elastic part: e
fε  of the fiber strain, as shown in 

equation (39) where fE  is the fiber Young's modulus. Equation (39)  is the scalar expression 

of the fiber tensorial term given in (21).  
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The plastic strain rate p
fεɺ , equation (40), is defined through a standard uniaxial plastic 

response, while λf  is the plastic multiplier. The pair (α ,f fq ) is the set of conjugate internal 

variables, and 2 2/h

ff fH ψ α= ∂ ∂  is the hardening/softening modulus. The yield surface, ff  

is defined in (43), where σy
f
 represents the fiber yield stress. Expressions (44) are the classical 

plastic loading-unloading conditions. 

Free energy: ε β α 21
( ( , ), ) [ ] ( );

2
s e h

f f f f f f fEψ ε ψ α∇ ∇ = +u
 

(38) 

Elastic stress-strain 

relationship: 

e
f f fEσ ε=  (39)

 

Flow rule: ( )p
f f fsignε λ σ=ɺ  (40) 

Internal variable 

evolution: 
0

; 0f f f t
α λ α

=
= =ɺ  (41) 

Isotropic hardening 

law: 
( ) ; [ ; 0]y

f f f f f fq H qα α σ= ∈ −ɺ ɺ  (42) 

Yield condition: ( )y
f f f ff qσ σ= − +  (43) 

Complementary 

conditions: 
λ λ≤ ≥ =0 ; 0 ; 0f f f ff f  (44) 

Box 2. 1-D plastic model for a fiber oriented in the r  direction. 
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The elastoplastic tangent modulus: σ ε/tg
f f f= ∂ ∂C , is given by: 

[( ) ( )] ;          for unloading conditions

[( ) ( )] ;     for loading conditions

tg
f f

f ftg
f

f f

E

E H

E H

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗
+

r r r r

r r r r

C

C  
(45) 

c) Constitutive equations for the (cohesive) interface zone: bond stress-slip 

relationship. 

In equation (27), a cohesive interface model has been introduced: (̂ )
f
τ τ β=  , representing 

the mechanical behavior in the interface zone Γ . In this Section, we present the additional 

ingredients defining completely this frictional constitutive relation.  

Due to the notable effect that the matrix-fiber bond strength value, as well as the evolution 

of the debonding process, has on the macroscopic behavior of HPFRC composites, this 

phenomena has been widely analyzed in the literature, mainly through pull-out experimental 

tests; such as the studies presented in Naaman et al. (1991a), Shannag et al. (1999), Li and 

Stang (1997). Recent researches have contributed to the optimization of the fiber geometrical 

properties to increase the bond strength (Naaman, 2003). While several bond strengths values 

for smooth, hooked end and twisted fibers are given in Kim et al. (2009). 

We assume that the interfacial zone mechanical response follow a one-dimensional elasto-

plastic traction-slip model, as shown in Box 3. In Figure 4-c, we sketch the main parameters 

characterizing the constitutive response of this component. 
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Specific free energy: 
1

( , ) ( ) ( );
2

e e e hGψ β α β β ψ αΓ Γ Γ Γ Γ= ⋅ ⋅ +
 

(46) 

Elastic stress-strain 

relationship: 

e
f Gτ βΓ=  (47)

 

Flow rule: ( )p
fsignβ λ τΓ=ɺ  (48) 

Internal variable 

evolution: 
0

; 0
t

α λ αΓ Γ Γ =
= =ɺ  (49) 

Yield condition: ( , ) ( )u
f ff qτ α τ τΓ Γ Γ Γ= − +  (50) 

Isotropic hardening 

law: 
( ) ; [ ( ) ; 0]u Rq H qα α τ τΓ Γ Γ Γ Γ Γ Γ= ∈ − −ɺ ɺ  (51) 

Complementary 

conditions: 
0 ; 0 ; 0f fλ λΓ Γ Γ Γ≤ ≥ =  (52) 

Box 3. 1-D plastic model for the interface zone ( Γ ) 

 

The model in Box 3 basically consists of a linear-elastic response between the elastic 

partition of β  defined as: peβ β β= −  and fτ . Both terms are related through a very large 

stiffness modulus (a penalty-like parameter): GΓ ;  up to reach the bond strength value: uτΓ , 

which characterizes, for the virgin material,  the onset of the inelastic process. This parameter 

determines the stick strength of the bond-slip model. After crossing this point, the bond-slip 

response follows a plastic hardening/softening rule. Thus, the evolution of the plastic 
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component: pβ  is given by the flow law (48), where λΓ  (with dimension of length) represents 

the plastic multiplier. The hardening/softening rule is defined by the expressions (49) and 

(51), where the term: HΓ  (with dimension: [N/m]) represents the instantaneous 

hardening/softening modulus. The plasticity criterion is given by the equation: 0fΓ = , with 

fΓ  defined in (50). And the loading-unloading conditions by (52). The parameter RτΓ  defines 

a residual frictional strength, allowing more realistic capturing responses in the fiber-matrix 

interaction model. This residual strength could be the reason of displaying post-peak 

structural behaviors with long tails, which are usually observed in HPRFC specimens. 

The elasto-plastic tangent modulus: /tg
fC τ βΓ = ∂ ∂ , is given by: 

;          for unloading conditions

;     for loading conditions

tg

tg

C G

G H
C

G H

Γ Γ

Γ Γ
Γ

Γ Γ

=

=
+

 
(53) 

3.4.4 The overall constitutive model of HPFRC composite having a random 

distribution of fiber directions. 

The previously presented mechanical model of a HPRFC, having a fiber bundle in one 

direction, can be generalized to account for a statistical distribution of fibers.  Let us consider 

fn  discrete fiber bundles in the plane of analysis with a regular distribution of angles in the 

interval: π  0, .  
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The i-th bundle, characterized with the supra-index I, ( 1,..., fI n= ), has assigned one 

volume fraction I
fk , one direction vector Ir  and one micromorphic field β ( ) ( )( , )I I Ir sβ= r  

(from now on, a supra-index in parenthesis indicates that no summation on that index is 

implied). Inclusion of new micromorphic fields implies that new associated microstresses IS

and microforces Iz arise for every considered index I. Also, it is required the fulfillment of an 

additional balance equation (58) for every index I.  

Using the mixture theory, the free energy of the HPFRC is the linear combination of free 

energies of all the components weighted by their corresponding volume fraction. Then, the 

stress equation (21) results:  

σ σ ε σ ε β
1

( ; ) ( ( , ); )fn I I I I I
m m m m f f f fI

k kα α
=

= +∑ u
 

(54) 

where σI
f  corresponds to the i-th fiber stress, which expression is given by the last term in 

(21) along the direction Ir .  Notice that the bond shear stress fτ , determined with Box 3,  is 

not included in this equation. The tangent constitutive tensor: σ ε/tg = ∂ ∂C , is given by:  

1
( ) ( )fntg tg I I I I I I

m m f fI
k k E

=
 = + ⊗ ⊗ ⊗  ∑ r r r rC C

 
(55) 

where I
fE  is the Young's modulus of the i-th fiber bundle.  

Furthermore, each fiber bundle I has assigned a constitutive relation: ˆ ( , )I I I I
f f f fσ σ ε α= and: 

ˆ ( , )I I I I
f fτ τ β αΓ= , given by Box 2 and Box 3. In the remaining part of the paper, we will 
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denote: 

σ σ β β αˆ ˆ ˆ( , , , ) ; ( , ) ; ( , )f f f f f fσ σ ε α τ τ β αΓ= ∇ = =u  (56) 

the complete set of the composite model constitutive equations. In this context, it is 

understood that notation: β and β∇ , as well as the functions: ˆ
fσ  and ̂ fτ  , represent the set of 

micromorphic fields associated with all the fiber bundles, with indices: 1,..., fI n= . 

4.  BVP AND VARIATIONAL FORMULATION 

4.1 Interpretation of the microforce balance law  

To understand more precisely the role played by the microforce balance law (4) and 

considering that S and z  are defined in the fiber and interface regions, respectively, it is more 

natural to consider an integral expression of  that balance equation. Let us integrate this 

expression in the body part 
B

P  coinciding with the cylindrical slice of length dr , enclosing a 

fiber, and its associated interface surface, such as shown in the insert of Figure 2 denoted 

"mesostructure". The integral expression results: 

, 0(( ) )
( ) ;

000
f

B

f
ff r

dd
d

τσ
Ω Γ

   Γ  Ω        ∇ ⋅ − Ω = − =             

∫∫∫ S z
P

 (57) 

where the second identity is derived, after replacing equations (25) and (26) in the  left part of 

(57), by performing simple mathematical operations.  As it can be seen, the second 

component of the vector equation is trivially equal to zero. Thus, the relevant balance 
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equation comes from the first component. Notice that, due to the presence of the Heaviside 

function in (25), the integration domain of the first term is restricted to the fiber volume, here 

denoted fΩ , while the integration domain in the second term is the surface, Γ , due to the 

Dirac delta function in (26). 

Denoting fσɶ  the average value of fσ  in a given section of the fiber and fτɶ  
the 

circumferential average in Γ  of the shear stress: fτ ; the equation of the first component in 

expression (57) can be alternatively written as: 

,( ) 0
f

f f r
f

A
τ σ− =

Π
ɶ ɶ  (58) 

where, fA  and Π f  are the cross-section area and the perimeter of the fiber, respectively. A 

similar equation describing the relation between the axial stress and the shear stress 

distribution at the interface zone was presented by Naaman et al. (1991). 

As it was mentioned above, there is one balance equation (58) for every fiber bundle which 

is characterized by the direction vector Ir .  

4.2  Reinterpretation of the fiber and bond constitutive models by means of 

averaged quantities  

In view of the treatment given to the microforce balance law, equation (58), in terms of 

averaged quantities of the fiber and bond shear stresses, the constitutive relation in Box 2 and 

Box 3 should be reinterpreted such that the model in these boxes provides the averaged terms 
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required in the balance equation.  

We note that the kinematics description of the model assumes that fibers are one-

dimensional geometrical entities, which means that the fiber displacement and the fiber strain 

fε , are implicitly considered as constant fields across the fiber section. Then, f fε ε≡ ɶ  

(where fεɶ  is the average strain value in a fiber cross section).  Thus, provided that parameters 

are understood as averaged values, the constitutive model in Box2 automatically gives an 

averaged stress value fσɶ in the fiber cross-section, which depends on the averaged values of 

the fiber strain, fεɶ , and the internal variable, fαɶ  ( ˆ ( , )f f f fσ σ ε α= ɶɶ ɶ ɶ ). An identical 

consideration is valid for the constitutive relation given in Box 3, between the average bond 

shear stress fτɶ  in a circumferential line, and the slip β  and average internal variable αΓɶ , 

through:   ˆ ( , )f fτ τ β αΓ=ɶ ɶ ɶ . 

4.3  Governing equations of the BVP 

The balance equations (3) and (58) jointly with the constitutive equations (56) and the 

conventional traction boundary terms: σ *⋅ =n t , defined in 
σ∂B , or displacements: 

*=u u , defined in u∂B , together with the prescription: β = 0  in the complete body 

boundary 
β

∂B  (with uβ σ
∂ = ∂ = ∂ ∪ ∂B B B B ), define the  boundary value problem in 

the strong form. These equations, that are written in terms of the macro-displacements u  and 
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the microslip, β , are summarized in Box 4.  

Note that an alternative possibility to prescribe a perfect fiber-matrix bond on the body 

surface (β = 0  on ∂B ), is to defined a null fiber stress ( 0I
fσ =ɶ ) on ∂B . Both possibilities 

are amenable to motivate pros and cons.  Nevertheless, as it is observed in the numerical 

simulation to be presented in next Section, the prescription β = 0  on ∂B does not introduce 

a severe constraint on the distribution of debonding in those problems where β takes non-null 

values close to the boundary. 

 

σ∇⋅ + = ∀ ∈,b 0 x B  (59) 

,( ) 0, ( 1, ..., )
fI I

f f f
f

r

A
I nτ σ− = ∀ ∈ =

Π
xɶ ɶ B;   (60) 

σ σ β α ˆ ˆ(̂ , , ) ; ( , ) ; ( , ) ;f f f f f fσ σ ε α τ τ β αΓ= = =u ɶ ɶ ɶ ɶ   

σ

*

*

;

;

0 ( 1,..., ).

u

I
fI n

σ

β

= ∀ ∈ ∂

⋅ = ∀ ∈ ∂

= ∀ ∈ ∂ =

u u x

n t x

x

B

B

B; 

 (61) 

Box 4. BVP for the HPFRC composite.  
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In order to derive the variational BVP for a HPFRC composite, the virtual variations of the 

configurational space are defined as follows: 

{ }

{ }

0

( ) ( )
0

| , ;

| , ; ( 1,..., )

u

I I
fI nβ

δ δ

δβ δβ

= = ∀ ∈ ∂

= = ∀ ∈ ∂ =

u u 0 x

0 x

B

B

V

V

 (62) 

Notice that variations of β , one for every index I, are considered with fixed direction. Then, 

(59) and (60) are alternatively formulated using a variational approach:  

σ 0( ) ,dVδ δ∇⋅ + ⋅ = ∀ ∈∫ b u 0 u V
B

 (63) 

( ) ( ) ( ) ( )
0,

ˆ ˆ( ) , ; ( 1, ..., )
fI I I I

f f f
f

r

A
dV I nβτ σ δβ δβ

   − ⋅ = ∀ ∈ =  Π 
∫ 0ɶ ɶ V

B
 (64) 

The microstructure variational equation (64) comes from admitting arbitrary scalar 

variations, Iδβ  , which are associated with the r-component of βI . Integrating (63) and (64) 

by parts, using the Green's identity and including the boundary conditions (61), the variational 

BVP can be written as shown in equation (65) and (66) in Box 5.  In equation (65),  σ̂  is the 

stress evaluated through the constitutive model: σ σ β β αˆ( , , , )= ∇u . Similarly, ˆI
fσɶ  and ˆI

fτɶ  in 

(66) are the average fiber stress and average bond shear stress in the interface zone evaluated 

through the constitutive equations of Box 2 and 3. 
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βFind : ( , ) and ( , ) ;t t ∀ ∈u x x x B  fulfilling,  

σ *
0ˆ : 0 ;s dV dV dS

σ

δ δ δ δ
Γ

∇ − ⋅ − ⋅ = ∀ ∈∫ ∫ ∫u b u t u u
B B

V
 

(65) 

( )
( )( ) ( ) ( )

0,
ˆ ˆ ( ) 0 ; ; ( 1, ..., )I

f II I I I
f f fr

f

A
dV I nβτ δβ σ δβ δβ

   + = ∀ ∈ =  Π 
∫ ɶ ɶ

B
V

 
(66) 

Box 5. Variational BVP for the HPFRC composite.  

5. NUMERICAL IMPLEMENTATION OF THE HPRFC MODEL   

This Section presents an outline of the finite element formulation and the implementation of 

the HPFRC model. Additional detailed descriptions of both aspects of the methodology are 

going to be addressed by the authors in a forthcoming paper. 

5.1. The Finite element model 

A mixed finite element with equal order interpolation for the displacement, u , and each of the 

microslip, Iβ (for 1,..., fI n= ), is here proposed. The spatial discretization reads for these 

cases, 

1

ˆ( , ) ( ) ( )
noden

j j
j

t N t
=

= ∑u x x q  (67) 

1

ˆ ( , ) ( ) ( )
noden

I I
j j

j

t N p tβ
=

= ∑x x  (68) 
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where 
noden  stands for the number of nodes in the finite element mesh, ( )jN x  are the 

standard shape functions, jq  and I
jp  are the displacements and the I-th micro-slip of the node 

j-th, respectively. The corresponding spatial discretization of the variational displacement 

fields δu  and δβ  reads, 

1

ˆ( ) ( )
noden

j j
j

Nδ δ
=

= ∑u x x q  (69) 

1

ˆ ( ) ( )
noden

I I
j j

j

N pδβ δ
=

= ∑x x  (70) 

where, jδq  and j
Ipδ are the corresponding variations associated with the displacement and i-

th slip of the j-th node, respectively. Substitution of the approximate solution, (67)-(68) and 

the variational fields (69)-(70), into the variational BVP in Box 5, yields the discrete form in 

Box 6.  Equation (71) is the standard finite element equilibrium discrete equation, where R  is 

the vector of residual forces,eB is the stain-displacement matrix, σ̂  represents the stress term 

provided by the constitutive model: σ̂( )p, q,α  (with 1[ ,..., ]fn
p p=p ), Λ  is the element 

assembling operator, 
elemn  is the number of finite elements in the mesh and extF  is the vector 

of conventional external forces. In equation (72), e[N]  and ,
e
r[N]  are the nodal shape functions 

and their derivatives (with respect to the r-coordinate), respectively, arranged as a vector.   

The coupled system of equations (71)-(72) is solved iteratively by means of a Newton-

Raphson scheme. In each iteration, the incremental solution ( ,∆ ∆p q ), at time t t+ ∆ , is 

found by means of a one-way coupled staggered scheme, where the variables ( )t t+∆∆ p  are 
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solved by freezing the variables ( )I
t∆q . After that, a correction step is performed by 

evaluating ( )I
t t+∆∆q , for 1,..., fI n= , and holding fixed ( )t t+∆∆ p . This step is 

computationally inexpensive.  

Find : ( ) and ( , ) ; ( 1, 2, ..., ); fullfillingI
ft p t I n=q x   

σ
1

ˆ( ) 0 ;
elem

e

n

e T e ext

e
d

Ω=
= Ω + =∫ΛR B F

 
(71) 

( ) ( )
,

1

ˆ ˆ ; ( 1,..., )
elem

e

n

fI Ie e e
f r f f

e
f

A
d I nτ σ

Ω=

   + Ω =  Π 
∫Λ [N] [N]ɶ ɶ

 
(72)

 

Box 6. Discrete form of the variational BVP for the HPFRC composite.  

5.2. The fracture model 

The structural strength of HPFRC composites is highly dependent on the crack evolution 

across the meso and macro-structure. The non-linear response displayed by this material takes 

place during the cement cracking stage and the complete response depends dramatically on 

the very strong interaction between concrete cracks and the fiber-matrix bond slip mechanism, 

whose model was presented in previous Sections. Thus, besides considering the bond-slip 

mechanisms, it is necessary to account for the concrete crack phenomena to establish a 

satisfactory constitutive model of the composite material. 

There have been numerous approaches in the literature for modeling concrete fracture 

problems. Some contributions of the authors in this field, following the strong discontinuity 
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approach, are presented in Oliver et al. (2002), Oliver and Huespe (2004) and Sánchez et al. 

(2011). A book, with an up to date description of different techniques and models addressed 

to this problems, has recently been published by Hofstetter and Meschke, 2011.  

In the present formulation, we use a numerical model described in Oliver et al. (2010) and 

Dias et al. (2011). This methodology makes use of a localized strain injection procedure via 

mixed formulations that reduces the sophistication presented by alternative techniques.  

Details about the implementation of this fracture model in the HPFRC composite will be 

addressed by the authors in a forthcoming paper.  

6. MODEL ASSESSMENT 

Different aspects of the proposed methodology are validated through several examples. In all 

cases, the numerical solutions are contrasted with experimental results.  

The first example corresponds to a conventional bending beam test with reinforced fibers 

distributed in only one (horizontal) direction. In the second example, a dogbone strip under 

uniaxial tensile stress is simulated:  first, for the plain specimen (without reinforcement 

fibers), and then, for the specimen having a random distribution of fibers. 

6.1. Four-point bending beam test 

It is a well known fact that the shape of the reinforcement fibers has a direct relationship with 

the bond-slip mechanism because it modifies substantially the pull-out force. Based on this 
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idea, Jiang et al. (2000), have reported the experimental results of a four-point bending test 

using HPFRC beams build with two types of steel-wire-reinforcements: a) conventional-

straight-short fibers (CSS), and b) bone-shaped-short fibers (BSS). With these experiments, 

the authors have compared the effectiveness of BSS reinforcements, with respect to the CSS 

ones, to improve the mechanical properties of reinforced cement. Also, in both cases, they 

have reported the crack pattern that was observed after the occurrence of structural failure and 

how the cracks have propagated across the beam. 

Using the reported results in Jiang et al. (2000), we evaluate the model capacity to capture 

the wide range of structural responses caused by different reinforcement fiber shapes.  

 

Figure 5. Four-point bending beam test. a) Beam geometry and set-up of the test; b) schematic illustration of the 

BSS- and CSS-steel-wire reinforcements, both fibers have identical diameters and lengths; c) finite element mesh; 

d) distribution of the reinforcement fiber in the concrete.   
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The four-point bending beam that was experimentally tested is shown in Figure 5-a, with 

the geometrical dimensions and loads. Figure 5-b depicts the sizes  and shapes of the CSS and 

the BSS reinforcement fibers used to reinforce the beam, and Figure 5-d shows the layout of 

the spatial reinforcement fibers embedded into the concrete, all of them are horizontally 

oriented and distributed as shown in Figure 5-d. In consequence, only one bundle of fibers 

can represent this composite. 

The numerical simulation is performed by assuming a two-dimensional plane stress 

model. A triangular finite element mesh with 3900 elements, as shown in  Figure 5-c, with 

three degrees of freedom per  node (two for displacements and one for β ), is used for the 

numerical simulation. The material properties are indicated in Table 1.  

Matrix Fiber Interface 

4.0MPaut
mσ =  260MPay

fσ =  different valuesuτΓ =  

21.GPamE =  180.GPafE =  1. 5GPa/mG eΓ =  

0.2mν =  700.MPafH =  
0.MPa/m

0.MPaR

H

τ

Γ

Γ

=

=
 

100.N mm fG =  θ = 0º  = 0.86%fk  

Table 1. Four-point bending beam test. Material properties (the notation of the 

parameters agrees with that of Boxes 1 and 2). 

Figure 6-a compares the total load P  versus the middle point vertical displacement 
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response. In the Figure, we compare the experimental results, of the reinforced CSS and BSS-

wire-reinforced specimens, with the numerical solution obtained for the ultimate bond 

strength 2.5MPauτΓ =  (conforming to a weak bond) and 7.5MPauτΓ = (conforming to a 

strong bond).  It can be observed that for both values of uτΓ , the results closely reproduce the 

experimental observations for the CSS and BSS specimens.  

 

Figure 6. Four-point bending beam test. Load as a function of cross head displacement steel-wire-

reinforced cement specimens: a) comparison between experiments and numerical results using the material 

parameter: 2.5MPau
τ

Γ
=

 
and 7.5MPau
τ

Γ
= , respectively; b) Load vs. cross head displacement curves 

for different values of: u
τ

Γ . 

 

According to the reference work, the first crack in the BSS specimen was observed at a 

load: 1500.NP = , while in the CSS specimen, it was:  1280.NP = . From these results, we 

observe in Figure 6-a the dramatic increase of ductility and the apparent toughness (energy 
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consumed till the complete loss of structural load-carrying capacity) of the beam built with 

the BSS reinforcement fiber. 

Several values of the ultimate bond stress uτΓ  were tested in order to evaluate the 

sensitivity of the model performance with this parameter. In Figure 6-b we compare the 

numerical solutions obtained with a set of parameters uτΓ , in the interval: [2.5, 7.5]MPa. Notice 

how the model capture the increase of ductility, as far as the ultimate bond strength,uτΓ , 

becomes larger. 

 

6.1-a Post-failure examination: 

According to Jiang et al. (2000), Figure 7-a shows the experimental failure mechanism result 

of the CSS specimen which failed by a single crack. In contrast, Figure 7-b shows the BSS 

specimen after failure displaying a more distributed and multiple crack patterns. 

 

Figure 7. Four-point bending beam test. Crack pattern and failure modes: a) CSS and b) BSS specimens 

reported in Jiang et al. (2000). 

 



Javier Oliver, Diego F. Mora, Alfredo E. Huespe and Rafael Weyler 

 

 45

 

Figure 8.  CSS- and BSS-wire reinforced beam ( 1%fk = ). Numerical results: iso-displacement curves and 

damage level depicting the crack patterns for different values of the ultimate bond shear strength. 

With the present model and using several ultimate bond strengths,
 

uτΓ

( 2.5, 4.5, 5.5, 7.5 )MPa=  we have obtained the iso-displacement contour lines displayed  in 

Figure 8-(a) (c) (e) and (g).  In these pictures, the coalescence of a number of iso-lines 

represents the formation of cracks. The damage distributions in the concrete are shown in the 

Figure 8-(b) (d) (f) and (h) by means of iso-color maps. Darker color in the damage map 

indicates a larger damage values, and therefore, a more degraded material. From these 

Figures, we can observe that, the larger the parameter uτΓ , the closer is the fracture pattern to 

the experimental result observed in the BSS specimen displaying multiple crack formation. 

Alternatively, by adopting lesser values of uτΓ , it is possible to simulate a single crack fracture 
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mode, typical of light reinforced concrete. 

The single crack pattern observed for 2.5MPauτΓ =  is also replicated for 4.0MPauτΓ =  

and 5.5MPauτΓ = . Experimentally, in the CSS-wire reinforced specimen (Figure 7-a), the 

crack branched out of the transverse plane at the end of the test. Thus, the crack patterns 

simulated with the ultimate bond strengths: 4.0MPauτΓ = and 5.5MPauτΓ =  coincides 

more closely with the experimental result than that, obtained with: 2.5MPauτΓ = . 

6.2.  Tensile tests of a dogbone shape specimen  

Figure 9-a:c illustrates a dogbone shape specimen that have been subjected to a series of 

experimental tests by Suwannakar (2009). From these tests, two specific cases are here 

considered: a) plain mortar without reinforcement fibers presented in Section 6.2.1, and b) 

HPFRC composite with a random distribution of hooked end fibers presented in Section 6.2.2.  

In both cases, the numerical simulation uses a two-dimensional plane stress model that is 

depicted in Figure 10-a. The finite element mesh is shown in Figure 10-b. In the experimental 

setup, the average elongation was obtained by measuring the relative displacement between 

points E and F (Figure 10-a) that are spaced about 178.mm.  
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Figure 9. Tensile test of a dogbone shape specimen (Suwannakarn, 2009). 

 

 

Figure 10.  Tensile test of a dogbone shape specimen. (a) Numerical test layout. (b) Finite element mesh with 

1967quadrilateral elements. 
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6.2.1 Tensile test of a mortar specimen without reinforcement 

Under monotonic tensile loading, the specimen without reinforcing fibers, failed in a brittle 

manner. Only a single crack was observed. Results of experimental tests show that the 

average stress-strain behavior of mortar specimens does not exhibit perfect linear behavior. 

Moreover, the measured Young's modulus,mE , ranged between [7804. 26717.]MPa÷  with an 

average value: 13886.MPamE = , significantly less than the Young's modulus for standard 

concretes. Suwannakarn pointed out that this low stiffness results from the lack of coarse 

aggregates in the mortar composition of the specimens.  The ultimate tensile strength of 

mortar, u
mσ , shows also a large dispersion. The average value was estimated to be: 

1.25MPau
mσ =  . Suwannakarn acknowledges that the large dispersion of both parameters, 

mE  and u
mσ , is due to the characteristic sensitivity of brittle materials, like mortar, to the 

gripping conditions, and the variation due to mortar mixing and curing. 

Figure 11-a shows the average stress-average strain curve obtained with the numerical 

simulations. It is compared with the scattered results that were presented in the reference 

experimental work. As can be observed in Figure 11-a, the softening branch has not been 

reported in the experimental results. Then, as a rough estimation of the mortar fracture energy, 

we adopt: 100.N mmfG = , which is a similar value to that generally considered for 

standard concrete. 
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Figure 11.  Tensile test of the dogbone shape specimen, mortar without fibers. a) Average stress. vs. average 

strain (measured through the relative displacement between points E-F); b) iso-displacement lines at the end of 

analysis displaying the formation of a single crack, compared with the experimental result (specimen 3, pp.59 in 

Suwannakarn, 2009). 

A failure mode displaying a single crack is observed in the experimental results (Figure 11-

b:left). A similar failure mechanism is observed at the end of the numerical analysis (Figure 

11-b:right), where the vertical iso-displacement lines make evident this result. In order to 

trigger the strain localization process in the specimen center, we perturb the model by 

defining a weaker single finite element in the middle of the specimen (in where umσ  is 

reduced 10% of the bulk value).   

6.2.2 Tensile test of the HPFRC composite 

An identical specimen such as that depicted in Figure 9, is analyzed in this Section. The 

material is a HPFRC composite with high strength steel fibers, and with hooked end 
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(commercially known under the trademark “Dramix®”). The fiber diameter and length is: 

0.4mm and 30mm, respectively. In the reference work, Suwannakarn mentions that the 

composite material has been manufactured through mixing of the components, including 

fibers, and its posterior pouring into moulds to obtain the specimens. However, he does not 

specify clearly how the fibers are distributed in the specimen during its preparation. 

Considering this observation, and even noting that fibers are larger than the thickness of the 

specimen, we assume that fibers have a uniform distribution in all directions (in the three-

dimensional space).  

We model this problem as a two-dimensional plane stress case. Then, the contribution of 

the out-of-plane fibers to the plane of analysis are projected, using an orientation factor,  

following a technique described in the literature (see Dupont and Vandewalle, 2005).   We 

simulate the reinforcement distribution by adopting nine fiber bundles directed along the 

angles described in Table 2. The angle: 0ºθ = coincides with the principal (average) stretch 

direction (see Figure 10-a) . 

In Table 2, the mechanical properties of the matrix are drawn from the tensile test of the 

specimen without fibers that is numerically reported in the previous section. The fiber 

parameters, as well as the interface parameters: y
fσ , fE , uτΓ  and fk are taken from the 

reference work, while the fiber and interface hardening moduli: fH ,HΓ  have been estimated 

from numerical adjustments. The elastic modulus GΓ  is defined with an arbitrarily large 
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value, such that an almost rigid-plastic model is recovered for describing the fiber-matrix 

bond response, as also, a null bond residual stress ( 0.MPaRτΓ = ) is assumed in this model.  

The average stress vs. average strain experimental results are described through the lower 

and upper envelopes depicted in Figure 12. The numerical solution is superimposed in the 

same Figure. A rough, but acceptable, description of the specimen response is observed.  

Matrix Fiber Interface 

1.25MPaut
mσ =  2100.MPay

fσ =  5.1 MPauτΓ =  

13.9GPamE =  210.GPafE =  1. 5 GPa/mG eΓ =  

0.2mν =  100.MPafH =  
100.MPa/m

0.R

H

MPaτ

Γ

Γ

=

=
 

100.N mm fG =  
0º,10º,20º,30º,45º,

60º,70º,80º,90º
θ  

=  
 

 0.75%fk =  

Table 2. Material properties of the generic HPFRC composite specimen (notation 

of parameters agrees with that of Boxes 1 and 2). 

The numerical result shows a well defined point indicating the first crack in the matrix, 

which is identified, in Figure 12, with the point where the stress-strain linear response is lost 

(point A). Furthermore, comparing with the unreinforced case of Figure 11-a (note the 

different orders of magnitude in the scale of strains), the HPFRC composite response shows a 

notable hardening after the initiation of the first crack. In the last case, a notable strain 
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hardening effect occurs after the first crack initiation till the strain value of 0.004 (point B) is 

reached. This strain value corresponds with the peak load, and it agrees reasonably well with 

the experimental data.  Also, we note that the post-peak behavior is not very well captured by 

the model. While the experiments shows a post-peak response with a long tail (a usual 

characteristic  in HPRFC specimens),  the almost straight post-peak behavior, predicted by the 

numerical solution, may be due to the null value that we have adopted for the residual bond 

strength parameter: RτΓ . 

 

 

Figure 12. HPFRC dogbone shape specimen subjected to the tensile test. Comparison between experimental 

and numerical results. Experimental test correspond to the High Strength Hooked Steel fibers case (specimen 

D-H-H-0.75, pp.80 in Suwannakarn, 2009). 
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6.2.2-a  Bridging effect induced by the reinforcement fibers 

Pictures in Figure 13 depict iso-damage color maps, and illustrate different stages during the 

evolution of the matrix damage distribution. The numbers below every picture identify the 

loading stages where the corresponding damage distribution is taken. These stage numbers 

agree with the points marked in Figure 15, which plots the average stress-strain curve. As 

expected, high values of matrix damage are observed in early stages (Stage 2). In Stages 3 and 

4, before the strain localization onset, large areas of the specimen are severely damaged. 

Nevertheless, no noticeable reduction of the structural load carrying capacity is detected.  

 

Figure 13. HPFRC dogbone shape specimen subjected to the tensile test. Different stages of damage evolution. 

In Stages 5 and 7, the strain localization process is almost completed. In the localization 

band, the value of the damage indicates that the matrix is almost exhausted. However, the 

stress-strain curve, at Stage 7, shows a residual, not null, structural load carrying capacity. 
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The results above mentioned, before and after crossing the structural limit point, evidence 

an appropriate capturing of the fiber bridging effect during the matrix cracking process taking 

place in the specimen. 

6.2.2-b Analysis of the fiber-matrix debonding effect 

During the stretching process, debonding and pullout of the fibers is expected. Pullout 

phenomena involve complex failure processes. And it is even more complex when the fibers 

are not parallel to the pull-out direction. For example, the so called snubbing friction (Li et al., 

1990) which is due to the intense shearing at the point where the fiber exits the matrix. This 

effect produces an increased resistance of the pullout force displayed by inclined flexible 

fibers. On the contrary, pullout resistance of inclined fibers can be decreased by spalling of 

the matrix, especially for stiff fibers.  These complex effects are not included in the present 

model. Even though, as it will be shown in this Section, the gross macroscopic description of 

HPFRC composite specimens with random distribution of fibers can be acceptably captured 

by the present model. 

Let us analyze three bundles fibers (at 0º, 45º and 90º with respect to the loading direction.  

Figure 14 depicts several entries of picture pairs. Every picture pair represents the results 

corresponding to a given fiber bundle, oriented in the direction specified in the left column of 

the Figure, and at different loading stages during the stretching process. The stage numbers 

displayed below the pictures agree with the points marked in Figure 15. In the left column of 
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every picture pair, the finite elements reaching the ultimate bond strengths, uτΓ , are colored.  

In the right column of every pair, the finite elements reaching the fiber yield stress, y
fσ , are 

colored.  

As shown in  

Figure 14, Stages number (3) and (4) stay on the hardening regime. During this regime, 

some fibers reach the ultimate bond strengths while they remain in elastic regime. 

Experimental works (Laranjeira et al. 2010a, Laranjeira et al. 2010b) indicate that inclined 

fibers, with small angles with respect to the load direction, show improved pullout 

performances. According with this observation, we see that in Stage (3) and for the aligned 

fibers ( 0ºθ = ), more elements achieve the ultimate bond strength than for the inclined ones (

90ºθ = ). Debonding mechanisms evolve significantly for aligned fibers in the Stage (4), 

while not so much for the horizontal ones.  

Stages (5) and (7) stay on the structural postcritical regime. The matrix is severely 

damaged and the strain localization process has initiated in the center of the specimen, as also, 

near the transition zones, where changes the width of the sample. Then, a very complex 

stress-strain distribution in the specimen center is calculated. During these stages, the 

horizontal fibers remain elastic ( 90ºθ = ), while the inclined and aligned ones (45ºθ = , 0ºθ = ), 

reach the yield condition in those finite elements that are intersected by the crack path. 

Additionally, in the strain localization zones, we note that matrix-fiber debonding is observed 
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for all fibers, whatever their directions are. Then, we conclude that the complex process of 

straining, in the localization zones, produce the fiber-matrix debonding effect, even for fibers 

orthogonal to the principal crack path. We cannot confirm at the present, if this result is only a 

numerical model response or it has a physical significance.  
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Figure 14.  HPFRC dogbone shape specimen subjected to the tensile test. Analysis of the debonding 
mechanism for different fiber bundles: 0º,45º, 90ºθ = . Left column for every entry (Debonding): elements 

reaching the ultimate bond shear stress: uτΓ . Right column for every entry (Fiber plasticity): elements 

reaching the fiber yield stress y
fσ . 

6.2.2-c  Strain localization phenomenon 

Figure 15 illustrates the average stress-average strain numerical curve. The pictures inserted 

in Figure 15 corresponding to Stages 1 to 7, depict the evolution of the domain where 

elements with enhanced strain modes are injected. These strain modes are injected once the 

matrix reaches a critical condition and have the objective of capturing the strong discontinuity 

solution (see additional details about this technique in Oliver et al., 2010 and Dias et al., 

2011). 

 

 

Figure 15.  HPFRC dogbone shape specimen tensile test. Average stress vs. average strain numerical 
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curve.  Insert: in black it is represented the finite elements with injected enhanced strains to capture the 

strong discontinuity solution (see additional details in Oliver et al., 2010 and Dias et al.,2011). 

 

The results displayed in the insert of Figure 15 suggest that the critical matrix condition 

initiates at the beginning of the hardening process, Stage (1). Then, during Stage (4), the 

injection domain extends through most of the specimen. However, during the Stage (5), the 

number of injected elements (those which remain in the critical condition) reduces 

dramatically, and at the end of the simulation process, only the elements on the failure path 

stay in this condition. 

Figure 16 plots the vertical iso-displacement lines at the end of analysis. This picture 

represents the strain localization pattern provided by the numerical solution. Only one single 

macrocrack is observed in the specimen. Unfortunately, direct comparison with experimental 

results is not possible because no crack pattern (for this specific test) is reported in the work 

of Suwannakarn.   
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Figure 16. Tensile test of the dogbone shape specimen.  HPFRC composite with hooked end fibers. Iso-

displacement contour lines at the end of the analysis. 

 

From this analysis, we can conclude that the model captures very well the process of 

multiple cracking (stages 2-4) and the subsequent fracture localization (stages 5-7) which are 

typical of the HPFRC composites in general (see, e.g  Naaman 2007a and Naaman 2007b). 

7. CONCLUSIONS 

In this paper, a novel formulation for HPFRC composites based on the notion of 

micromorphic materials is presented. The formulation uses a morphological kinematic 

descriptor that characterizes a key mesostructural phenomenon: the fiber-matrix bond slip 

mechanism. The mechanical interactions, taking place in the composite, due to this 

phenomenon are manifested once the conjugated terms of the morphological descriptor:  i.e. 

the generalized micro-stresses and micro-forces, are introduced in the model and the 
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mechanical power is defined. The general framework of the Multifield Theory then specifies 

the balance equations that govern these generalized micro-stresses and micro-forces. 

As a consequence of these very basic suppositions in the mechanical model, new degrees 

of freedoms (in the continuum) are incorporated into the theoretical formulation of the model, 

one for every considered morphological descriptor. An important conceptual notion is that 

these d.o.f.'s are independent of those defining the spatial placement of the body. In this 

HPFRC model, there is one morphological descriptor for every fiber bundle (orientation) 

considered.  

The material model description is completed once the free energy of the composite, jointly 

with its functional dependence on the kinematical variables and their gradients, is defined. In 

the present model, we adopt the mixture theory to define the composite free energy. Then, the 

overall free energy is the addition of every component free energy, (including as such, the 

power expended by the cohesive mechanism in the fiber-matrix bond) times the volume 

fraction of the component. 

The finite element technique, as also the fracture model, used in the numerical 

implementation has only been sketched in the paper. These important aspects of the numerical 

methodology will be fully described by the authors in a forthcoming paper. Even when these 

aspects have not been detailed, we have presented two numerical examples that illustrate the 

most relevant properties of the model: 

i. The first example demonstrates the model capability to represent adequately the 
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effects having a key mesoscopic phenomenon on the overall macroscopic response 

of HPFRC composite structures. Specifically the toughness sensitivity with the 

fiber-matrix bond strength, during the fracture process of specimens.  

ii. In the second examples, more specific mesostructural effects induced by the same 

mechanism were deeply analyzed. For example, the sensitivity of the model for 

capturing different amount of fiber plastic deformation and debonding with the 

orientation of the fiber bundles. 

Finally, we should mention that the fractional step (staggered) algorithm implemented 

to solve the discrete problem, including the additional d.o.f.'s associated with the 

micromorphic fields, preserves the computational cost in the same order shown by 

standard finite element formulations in displacements.     
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APPENDIX I:  SYMMETRY OF THE STRESS TENSOR  

We show that the angular momentum balance equation arising in the HPFRC model, when 

it is derived from the multifield theory (Mariano, 2002, Mariano and Stazi, 2005, Capriz 

and Mariano, 2001), results in the classical angular momentum balance equation of the 

conventional continuum mechanics specifying the symmetry of the stress tensor σ . 

First, we derive the transformation law of βɺ  under an observer change. Let us consider 

the expression (8), (24) and (26): 

β ( , , ) ; ( , , )( ); ;rr rr s t r s t zβ σ= = ⊗ =r S r r z r
 

(AI.1) 

where 
rz  is the r-component of z . Also, consider that β  is the micromorphic field 

described by the observer 1 and β̂  is the same entity described by the observer 2. Both 

observers differing by a time dependent rotation: ( )tQ , where (3)SO∈Q  is a time 

dependent second order rotation tensor, plus a time dependent translation. Then, given the 

rate of the micromorphic field βɺ  described by the observer 1, the same entity described by 

the observer 2, and denoted β̂
ɺ

, is: 

β β β
1

ˆ ( )β β β β = = + + = +  Q=Q=Q=
Q=

Qr Qr Qr Qr QQ
i	

�

ɺ ɺ ɺ ɺ ɺɺ
11

1

 
(AI.2) 
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In this expression, the axial vector, spin, of the instantaneous rotation velocity, of one 

observer respect to the other: (
1Q=

QQɺ ), is denoted with q  and the following identity 

follows: β β
1

= ∧
Q=

QQ qɺ . Introducing the third order permutation tensor e  ( 1ijk =e  if 

(i, j, k) is an even permutation of (1,2,3), 1ijk = −e  if it is an odd permutation, and 0 if 

any index is repeated), such that : β β: ( )∧ = ⊗q e q , in (AI.2) we can write: 

β β
1

( )= − =
Q=

QQ e q qɺ A , where the operator:  

β
β= −

ɺ
.

d

d
e

q
A = 

 

(AI.3) 

 Due to the co-linearity of β  and z , it results, for any arbitrary rotation Q , that: 

0;TzA =  
(AI.4) 

and expressing ( )T∇ SA  in indicial notation, it also results in: 

( )T k
ijk jl

l

e S
x

β∂
∇ =

∂
S 0A = -

 
(AI.5) 

because the indices (j,l and k) are identical. With (AI.4) and (AI.5), we conclude that the 

angular momentum balance equation (equation (17) in Mariano and Stazi, 2005): 

σ( ) ( ) ;T Tskew = + ∇z S 0A A = 
 

(AI.6) 
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turns out to be the classical angular momentum balance equation of the conventional 

continuum mechanics, form where the symmetry of the conventional stress tensor must be 

enforced. 
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