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Abstract. The cyclic impact force between a reed valve and the seat plate is the main reason of the
valve failure in many thermo-technical devices as compressors, engines, etc. According to experimental
observations the latter is due to fatigue and usually occurs in the leading part of the valve ‘neck’. In
this work, a complex numerical analysis is presented aimed to studying the external forces and internal
stresses suffered by the valve. In particular, the impact force between the valve and the seat is studied.

The numerical analysis relies on the coupled synergy of two different simulation concepts. In order to
do so, two codes are used: (1) first, the in-house Computational Fluid Dynamics (CFD) code presented
in [1] is employed to simulate the Fluid-Structure Interaction (FSI) between gas and valve, extracting
reference data for valve displacement and external gas pressures; (2) second, the analysis of the internal
structure stresses, together with the impact forces with the plate is implemented in a Computational Solid
Dynamics (CSD) code developed in FreeFEM++ [2].

The impact force representation is based on the formulation presented in [3] where a conserving al-
gorithm for frictionless dynamic contact/impact is developed. Due to the importance of obtaining an
adequate impact force, an exhaustive study is carried out on its characterization in terms of numerical
parameters, such as the penalty stiffness. Under this framework, the valve displacement and impact
velocities are verified. Hence, impact forces are analysed in different scenarios, obtaining interesting ob-
servations about stresses distribution, with a particular focus on the points where failure is experienced.

1 INTRODUCTION

When studying the life cycle of a compressor, it is necessary to correctly estimate the impact stresses
that are generated due to the impact of the valve against the seat, since it is the latter that generates the
failure of the valve [4, 5, 6, 7]. Therefore, it has been observed that the failure of the valve occurs in the
part that comes into contact with the seat.

In order to perform a numerical analysis of the phenomenon described above, it is necessary to take
into account different physics: (1) the fluid, (2) the solid, (3) the interaction between fluid and structure
and (4) the simulation of the impact. This not only implies difficulties in mathematical formulation but
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also complex algorithms and high computational costs.

There are different studies where impact stresses are analyzed, in some works the principal stresses
[4, 8] are analyzed while in others equivalent stresses such as that of Von Mises [9] are taken into
consideration. In some cases commercial software are used [4, 8, 10], while in others in-house codes are
developed [11, 9]. Generally, in these works it is also of interest to obtain the valve displacements as
well as the impact velocity [12].

The numerical simulation for the CFD-FSI used in this work was developed on the Termofluids in-
house platform [13] and verified for the framework of reed valves in [1, 14]. The numerical method
consists in the combination of a finite volumes solver for the resolution of the flow on an unstructured
mesh with a solver for the valve movement. The interface between gas and valve is represented by a
moving mesh while the forces are integrated on the valve through a normal mode superposition method
with penalty forces to represent the impact between valve and plate.

For the study of principal stresses and Von Mises stresses, an in-house CSD code was developed in
the FreeFem++ tool [2]. With this code it is possible to analyze the stresses, how they change due to
the impact between the valve and the seat, as well as the characterization of the impact force. In this
simulation only the solid is studied, using the pressure generated by the fluid as a boundary condition.
Likewise, in this code the impact force is implemented using the penalty method [3].

The current work is organized as follows. Details on the employed numerical methodologies (CFD
and CSD), are given in Section 2. The analysis is performed in dimensionless form (details on physical
results can be found in [15]). Results are reported in Section 3, in particular, regarding the impact force
distribution and the valve stresses variations due to the impact.

2 NUMERICAL METHODOLOGIES

2.1 CFD-FSI formulation

The CFD-FSI method used in this work consists of the complex combination of different simulation
techniques to represent the interaction between a fluid (compressed air) and the solid (reed valve). In
particular, the method is characterized by the following items: (1) gas resolution through a finite volume
solver on a moving and unstructured mesh; (2) solving the movement of the solid through a 2D thin-
plate solver; (3) resolution of the fluid-structure interaction through a semi-implicit approach for strongly
coupled problems [16], see Figure 1.

Regarding (1), the Navier-Stokes equations in the incompressibility limit and in a moving mesh frame-
work are solved. A Newtonian behavior of the fluid and constant thermophysical properties are assumed.
Hence, the governing equations can be written as follows

ρ
∂v
∂ t

+ρ(c ·∇)v = µ∇
2v−∇p, (1)

where v is the fluid velocity, p the fluid pressure, ρ the fluid density, µ the fluid viscosity and t the time. c
is the convected air velocity, equal to v−vm, with vm the velocity of the mesh. A Large-Eddy Simulation
(LES) approach is employed: a Sub-Grid Scale (SGS) model is applied to represent the smallest scales,
while only the larger eddies are explicitly solved. The chosen SGS scheme is the Wall-Adapting Local
Eddy-viscosity (WALE) model. The Navier-Stokes equations are solved by means of a Fractional Step
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∆vn
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∆pn+1 =
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∇ ·vp

Correct the velocity
vn+1 = vp− ∆t

ρf
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tf = σ ·n

v̇s =
∂v
∂t

Solve the solid
S(tf) = us

Relaxation

Figure 1: CFD-FSI code flowchart.

Method (FSM) and advanced in time with an explicit scheme, yielding the fluid velocity field at each
time step. The domain is represented in a simplified way in Figure 2a, accounting for an inlet port
where a variable inlet flow rate is imposed, and lateral outlets with pressure based conditions are set to
mimic the flow discharge. The other walls are solid walls boundaries. The base mesh is an unstructured
tetrahedral mesh composed by around 300000 cells and represented in Figure 2c. At each time step
the mesh undergoes deformations to follow the movement of the valve and to adjust the position of the
internal points, thus, accommodating changes in the domain boundaries (upper and lower ones) without
involving topological alterations. In order to avoid a remeshing procedure when valve is closed, some
elements of the mesh perform as solid by using an Immersed Boundary Method (IBM), as represented
in Figure 2b.

x

z

D

Rigid solid

Upper plate

Bottom plateOutlet Outlet

Inlet with IBM
Pulsatile inlet flow

represented by a
variable flow condition

(a) Domain representation of the CFD-FSI simulation. (b) Graphic representation of the IBM (grey zone).

(c) Unstructured tetrahedral mesh composed by around 300000 cells.

Figure 2: CFD-FSI simulation.
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Regarding (2), the motion of the valve (i.e. the boundaries limiting its surface) is modeled by means
of the Kirchoff-Love plate theory, valid for arbitrarily shaped plates with uniform thickness h. The
displacement of this vibrating system can be obtained from a combination of M free vibration modes, as

uz(x,y, t) =
M

∑
m=1

qm(t)φm(x,y) (2)

where φm(x,y) is the normal deformation pattern and qm(t) is the generalized coordinate corresponding to
the vibration mode m, respectively. Normal deformation patterns are obtained by means of a commercial
software by solving the eigenvalue problem of the free vibration equation of the system, Finally, qm are
obtained from the Kirchoff-Love equation by applying the external stresses to the plate, namely, fluid
pressure, shear stress and impact force.

Numerical methods corresponding to (1) and (2), together with the coupling algorithm (3) are im-
plemented within the unstructured parallel CFD code TermoFluids [13]. More details about the whole
CFD-FSI method are given in [1]. Simulations were run on 64 CPUs of the Joan Francesc Fernandez
(JFF) cluster (simulation time around 24 hours), owned by CTTC-UPC.

2.2 CSD formulation

In order to study the solid dynamics and its internal stresses the Cauchy moment equations are solved.
It is assumed that the material is homogeneous, has a linear elastic behavior and geometric non-linearity
effects are not considered. Likewise, volume forces are not considered. With these hypotheses the
governing equations reduces to:

ρ
∂2 u
∂ t2 = ∇ ·σ (3)

where ρ is the valve density, u is the valve displacement and σ is the Cauchy tensor. With the aforemen-
tioned hypotheses the Cauchy tensor is related to the displacement by means of the constitutive equation
σ = 2µε+λε where ε = 1

2

(
∇u+∇Tu

)
is the infinitesimal strain tensor and µ and λ are the Lamé’s ma-

terial parameters related to the most common Young’s modulus E and Poisson’s ratio ν

(
λ = Eν

(1+ν)(1−2ν)

and µ = E
2(1+ν)

)
.

In order to solve this differential equation, boundary conditions are necessary. In that sense, it is
known that the valve is held at one end (Dirichlet conditions), while Neuman conditions are imposed
on the others surfaces, in terms of fluid pressures and impact forces. For the fluid pressure p, obtained
from the CFD-FSI simulation, the boundary condition is σ · n = p where n is the outward normal of
the solid. The condition for the impact force is similar to the fluid pressure but it depends on the valve
displacement which makes it a non-linear condition. To solve this problem it is necessary to solve the
unilateral contact constraints and the persistency condition [3]. The impact between the seat and the
valve is considered with the formulation presented in [3]. The normal component of the impact pressure
in a time step [tn, tn+1] is:

Ip =

 −
U
(
gd

n+1

)
−U

(
gd

n
)

gd
n+1−gd

n
if gd

n+1 6= gd
n

−U ′
(1

2

(
gd

n +gd
n+1

))
if gd

n+1 = gd
n

with U(g) =
{ 1

2 kp g2 if g≤ 0
0 if g > 0
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where kp is a penalty parameter and gd is the dynamic gap. gd depends on the traditional “real gap” g and
in the contact/release logic explained in [3]. Likewise, a parameter mp is used to reinforce the velocity
condition ġ (persistency condition).

For the simulation, a code was developed in the FreeFEM++ tool using a HHT scheme (α-method)
for the temporal integration with the parameters α = 0.51, β = 0.555025 and γ = 0.99 [3], see Figure 3.

CFD-FSI Simulation ps: fluid pressure acting on the valve
Output for CSD:Run

time step

Read ps(ti+1)

Solve CSD equations using
Newton Raphson Method

There is contact between
the seat and the valve?

YesNo

Ip = 0

u(ti+1)

New

Code developed using FreeFEM++ tool

Ip: Impact pressure

Ip 6= 0

Figure 3: CSD simulation flowchart.

2.3 Dimensionless analysis

In this work a dimensionless analysis is performed, details on dimensions can be found in [15]. The
dimensionless magnitudes and mechanical parameters are:

• Deflection in z direction: ûz =
uz
D . Velocity in z direction: v̂z =

vz
vz,max

. Inlet Flux: q̂i =
qi

qi,max
.

Time: t̂ = t
D/vz,max

. Impact parameters: k̂p =
kp

ρs v2
z,max/D and m̂p =

mp
ρs D . Impact stress/pressure:

σ̂ = σ

ρs v2
z,max

. Impact Force: ÎF = IF
ρs v2

z,max D2 .

• Density of the air: ρ̂f =
ρf
ρs
= 1.10×10−3. Density of the valve: ρ̂s =

ρs
ρs
= 1. Viscosity of the air:

µ̂f =
µ

ρs v3
z,max/D = 6.17×10−5. Young Modulus: Ê = E

ρs v2
z,max

= 1.39×106. Poisson coefficient:

ν̂ = ν

ν
= 1.

Where: D is the inlet tube diameter, qi,max is the maximum Inlet Flow during the cycle, vz,max is the
maximum velocity of the valve during the cycle and ρs is the valve density.

3 MODEL PARAMETERS SETTING AND RESULTS

This section presents the results obtained after varying some of the parameters of the problem as well
as a discussion of the results in a complete cycle for a certain configuration of the parameters.
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3.1 Model Parameters Setting

In this paragraph, displacement and impact velocity are analyzed as a function of the allowed impact
area and of the k̂p parameter. The solution obtained in the CFD-FSI code will be considered to be the
reference one since it has been validated with experimental results [15].

3.1.1 Changing the area of impact
Although in the experiment the impact area is the entire valve (without the gas inlet orifice) it is

decided to analyse what happens when varying the area allowed to impact because in the CFD-FSI
model it is observed that the impact force concentrates on the tip of the valve. Therefore, four different
possible areas are considered, see Figure 4.

Ac,1 Ac,2 Ac,3 Ac,4

Figure 4: Different allowed areas of impact.

For this analysis the coefficients k̂p = 540 and m̂p = 1.53×107 are fixed. From Figure 5 and assuming
that the CFD-FSI solution is the most accurate we conclude that the fourth area is the most suitable wich
coincide to the total available area of impact.
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(a) Valve tip displacement.
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0.0

CFD-FSI
3D FEA Ac,1
3D FEA Ac,2
3D FEA Ac,3
3D FEA Ac,4

(b) Valve tip velocity.

Figure 5: Solution with different allowed areas of impact.

3.1.2 Varying the impact parameter kp
In this case we analyse how the solution varies by changing the penalty parameter k̂p using the area

selected before (Ac,4) and using m̂p = 1.53× 107. From Figure 6 it is possible to conclude that when
k̂p = 270 the best results are obtained.
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(a) Valve tip displacement.

t̂
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 4.9

v̂z

-1.0

-0.5

0.0

0.5

1.0

ûz
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(b) Valve tip velocity.

Figure 6: Solution with different values of penalty parameter k̂p.

3.2 Physical results

As a consequence of the preliminary parameter analysis, it is decided to use Ac,4 as contact area and
k̂p = 270. Hence, the results in terms of displacement and velocity are reported in the plots of Figure 7.
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(a) Valve tip displacement.
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Figure 7: Solution for the selected area of impact and the selected impact parameter.

3.2.1 Results for the first impact
The first impact occurs in the time interval t̂ = (2.38,2.44) which corresponds to the interval 460−

480 of the simulation. In Figure 8a it is possible to see the impact pressure distribution for all interval
instants. The following conclusions can be drawn: (1) The first impact begins at the tip of the valve. (2)
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Then the impact pressure is distributed over the valve surface. (3) Finally the valve is released from the
seat. Likewise, in Figure 8b the impact force and the maximum impact pressure are represented.

460 461 462 463 464 465 466

467 468 469 470 471 472 473

474 475 476 477 478 479 480

2.04

1.63

1.22

0.81

0.41

0.00

Îp

(a) Impact pressure distribution.
t̂

2.38 2.39 2.40 2.42 2.43 2.44

max Îp

0.0

0.5

1.0

1.5

2.0

2.5
ÎF

0.0

0.3

0.6

0.9

1.2

max Îp
ÎF

(b) Impact force.
Figure 8: Impact pressure distribution and impact force for all interval instants in the first impact.

In Figure 9 the principal stresses σ̂I ≥ σ̂III and the equivalent Von Mises stress σ̂vm for the first impact
can be observed. It is clear that before impact, due to bending, the highest stresses are found at the
valve neck. Nevertheless, during the impact, the highest stresses are mainly at the valve tip. Also, it is
interesting to observe how lower stresses, which are initially close to 0 due to bending, suddenly increase
as a consequence of the impact.

471 472 473 474 475 476 477 478

479 480 481 482 483 484 485 486

547.48

430.79

314.11

197.42

80.73

-35.95

σ̂I

(a) Principal stress σ̂I.

471 472 473 474 475 476 477 478

479 480 481 482 483 484 485 486

60.85

-23.80

-108.45

-193.10

-277.74

-362.39

σ̂III

(b) Principal stress σ̂III.

471 472 473 474 475 476 477 478

479 480 481 482 483 484 485 486

534.90

427.92

320.94

213.96

106.98

0.00

σ̂vm

(c) Von Mises equivalent stress σ̂vm.
Figure 9: Principal stresses (σ̂I, σ̂III) and Von Mises equivalent stress σ̂vm for the first impact.

3.2.2 Results for the second impact
The second impact occurs in the time interval t̂ = (3.69,3.80) which corresponds to the interval

768− 790 of the simulation. In Figure 10a it is possible to see the impact pressure distribution for all
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interval instants. From it, it is possible to conclude that: (1) The second impact begins at the clamping
of the valve spreading towards the tip. (2) Then the pressure drops and the impact is again at the tip but
on a smaller surface. (3) Finally the valve is released from the seat. On the other hand, in Figure 10b the
impact force and the maximum impact pressure are represented.
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775 776 777 778 779 780 781 782
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(a) Impact pressure distribution. t̂
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max Îp
ÎF

ÎF

0.0

0.1

0.1

0.2

0.3

0.4

0.5

(b) Impact force.
Figure 10: Impact pressure distribution and impact force for all interval instants in the second impact.

In Figure 11 the principal stresses σ̂I ≥ σ̂III and the equivalent Von Mises stress σ̂vm for the second
impact can be observed. In this case the conclusions are similar to those of the first impact as you may
see in the different figures. It is worth mentioned that an increase compared to the first impact is noted in
the three studied stresses. This is explained because, despite of having lower impact forces, the impact
area is smaller, leading to overall greater impact pressures.

775 776 777 778 779 780

781 782 783 784 785 786 -53.87

100.93

251.92

403.81

555.70

707.59
σ̂I

(a) Principal stress σ̂I.

775 776 777 778 779 780

781 782 783 784 785 786 -588.67

-464.11

-339.55

-214.99

-90.42

34.14
σ̂III

(b) Principal stress σ̂III.

775 776 777 778 779 780

781 782 783 784 785 786 0.00

126.43

252.86

379.29

505.72

632.15
σ̂vm

(c) Von Mises equivalent stress σ̂vm

Figure 11: Principal stresses (σ̂I, σ̂III) and Von Mises equivalent stress σ̂vm for the second impact.
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3.3 Envolvent of Von Mises and principal stresses in some points.

In Figure 12 it is possible to observe how stresses change throughout the cycle in four points where
the valve usually fails, as it has been mentioned before [4, 5, 6, 7]. It is interesting to mention after
analyzing the graphics that in all cases the stresses increase due to impact, particulary the lower stresses
(σIII), shown in Figure 12d.
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(a) Points where stresses are analyzed.
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(b) Von Mises equivalent stress σ̂vm.
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(c) Principal stress σ̂I.
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(d) Principal stress σ̂III

Figure 12: Envolvent of Von Mises and principal stresses in some points.
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4 CONCLUSIONS

In this work a coupled CFD-CSD methodology is employed to analyze the fluid-structure interaction
between a compressed gas flow and a metal valve. We proposed an implementation to evaluate the
impact pressures that are generated between valve and seat on the CSD model, based on a dynamic
contact/impact conservative algorithm using a penalty method. In Section 3.1 we analysed the effect of
model parameters such as the penalty coefficient or the allowed area of impact. In the physical analysis,
presented in Section 3.2, we performed an analysis of stresses variations due to the effect of the valve
hitting the seat. As a consequence, it is possible to conclude that at the points where the valve usually
fails, stresses increase dramatically due to impact, being 100-200 times higher than bending stresses.
Finally, it is observed that σ̂III (lower principal stress) at the bottom surface increases in absolute value
significantly due to impact. The coupled methodology demonstrated to be a reliable tool to analyse the
stresses generated on the valve along its complete working cycle, therefore proving to be an adequate
tool for analysis of additional valves, e.g. in terms of different shapes and materials.
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[1] I. Gonzalez, A. Naseri, J. Rigola, C. D. Pérez-Segarra, and A. Oliva, “Detailed prediction of fluid-
solid coupled phenomena of turbulent flow through reed valves,” in In IOP Conference Series:
Materials Science and Engineering, vol. 604, p. 012064, 2019.

[2] F. Hecht, “New development in freefem+,” Journal of Numerical Mathematics, vol. 20, no. 3-4,
pp. 251–265, 2012.

[3] F. Armero and E. Petocz, “Formulation and analysis of conserving algorithms for frictionless
dynamic contact/impact problems,” Computer Methods in Applied Mechanics and Engineering,
vol. 158, no. 3-4, pp. 269–300, 1998.

[4] X. Yu, Q. Tan, Y. Ren, X. Jia, and L. Jin, “Numerical Study of the Reed Valve Impact in the Rotary
Compressor by FSI Model,” Energy Procedia, vol. 105, pp. 4890–4897, 2017.
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