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RESUMEN 

Se presenta un método para resolver campos eléctricos alternos de baja frecuencia en 
dieléctricos heterogéneos en que la solución depende tanto de las corrientes de desplazamiento 
como de las de conducción. El método se basa en el empleo de una aproximación cuasi- 
estática que permite eliminar el acoplamiento que existe entre el campo eléctrico y el magnético 
expresado a través de las ecuaciones de Maxwell. 

El método se implementa numéricamente mediante la técnica rle elementos finitos, 
definiendo una funcional compleja. 

SUMMARY 

A method to solve ac low frecuency electric fields in heterogeneous dielectrics, when the 
solution depends both on the displacement and the conduction currents is presented. The 
method is based on decoupling Maxwell's equations using a quasi-static approximation. 

The method is implemented numerically through the finite elements technique by defining 
a complex functional. 

INTRODUCCION 

Los equipos de alto voltaje alterno normalmente se aislan con materiales de 
resistividad eléctrica muy elevada. Por este motivo para calcular el campo eléctrico, 
en  ellos se suelen despreciar las corrientes de conducción (resistivas) frente a las de 
desplazamiento (capacitivas). Lo anterior porque en dichos sistemas aislantes wa » u, 
siendo w' la frecuencia angular, u y E l a  conductividad eléctrica y l a  permitividad del 
medio respectivamente. 

Sin embargo algunos sistemas aislantes se construyen aplicando capas resistivas 
semiconductoras sobre parte de l a  superficie de l a  aislación con el objeto de reducir 
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la concentración de los gradientes de voltaje en zonas críticas. En estos casos ya no 
se pueden despreciar las corrientes de conducción frente a las de desplazamiento y 
por lo tanto al calcular el campo se debe considerar el carácter fasorial de él. Algo 
similar ocurre en los aisladores contaminados. En todas estas situaciones al resolver el 
campo eléctrico E se debería tomar en cuenta su acoplamiento con el campo magnético 
H lo que significa una gran complicación en comparación con el cáculo de un campo 
electrostático en que dicho acoplamiento no existe. 

El problema planteado ha sido resuelto mediante el método de elementos finitos 
incorporando el efecto de las corrientes de conducción através de un modelo circuital 
de resistencias superpuesto al modelo de campo electrostáticol. 

Una forma más general para resolver el mismo problema consiste en calcular el 
campo eléctrico utilizando una aproximación cuasi-estática la que permite desacoplar 
el campo eléctrico del campo magnético. Esta idea fue desarrollada y se implementó 
numéricamente mediante la técnica de diferencias finitasa13. 

En el presente trabajo se implementa numéricamente el Último método mediante 
la técnica de elementos finitos lo cual significa definir una funcional adecuada que 
considera tanto las corrientes capacitivas como las resistivas. 

PLANTEAMIENTO DEL METODO 

Las ecuaciones de Maxwell que rigen el campo electromagnético alterno de 
frecuencia angular w son : 

en que: 

E Es el vector intensidad de Campo eléctrico complejo. 
H Es el vector intensidad de campo magnético complejo. 

p Es la densidad de carga volumétrica compleja. 
u Es la conductividad y p la permeabilidad del medio. 
i =-. 

Resolver en forma exacta las ecuaciones anteriores es un problema arduo debido 
al acoplamiento entre el campo eléctrico y el campo magnético. Sin embargo se puede 
obtener una solución aproximada, para w pequeño, despreciando el campo eléctrico 
inducido por las variaciones del campo magnético lo que equivale a suponer V x E = O 
en reemplazo de la relación (1). Con esta aproximación se logra desacoplar el campo 
eléctrico del magnético y la solución, llamada cuasi-estática, se reduce a encontrar un 
campo eléctrico irrotacional tal que E = Vq5 siendo q5 el potencial eléctrico complejoa. 
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Como el campo eléctrico es irrotacional, si consideramos que p = O,  el potencial 4 
cumple con la ecuación de Laplace. 

El problema se reduce por lo tanto a encontrar una solución de la ecuación de 
Laplace que cumpla con las condiciones de contorno en los conductores de potencial 
conocido y cumpla además con las condiciones de contorno suplementarias en los límites 
de los materiales dieléctricos. Estas Últimas condiciones se pueden obtener de la relación 
(3)  de la siguiente manera: 

De esta última relación se deduce que los Límites del dieléctrico se deben conservar 
las componentes normales del vector (uE + iwcE). 

Para aplicar el método de los elementos finitos se debe definir una funcional 
adecuada al problema que se pretende resolver. Considérese la funcional 

en que f-2 es el volumen en que interesa calcular el potencial 4. 
Expresando V4 en coordenadas cartersianas se tiene 

de donde: 

por lo tanto 

siendo 
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Para que la funcional I sea estacionaria se debe cumplir la ecuación de Euler4 

Considerando que = O ya que F no depende explícitamente de ), la ecuación 
de Euler se reduce a: 

Esta Última relación es equivalente a (6) y corresponde aplicarla en los puntos 
en que hay variaciones de (u + iwe) o sea en los límites de materiales. Para puntos 
interiores a un solo medio esta relación se reduce a la ecuación de Laplace (5). 

Lo anterior significa que el problema planteado de calcular un campo eléctrico que 
cumpla con la ecuación V x E = 0, con las correspondientes condiciones de contorno 
y además con las condiciones de contorno suplementarias V . [(a + iw~)E]  = O en los 
límites materiales es equivalente a encontrar un valor estacionario de la funcional (7). 

IMPLEMENTACION Y VERIFICACION DEL METODO 

El método se implementó para resolver el campo en sistemas aislantes con simetría 
de traslación y de rotación. Se mostrarán los resultados correspondientes a simetría de 
rotación por corresponder a la mayoría de los casos que se presentan en la práctica. 

Considerando en la zona de interés (plano meridiano) un sistema de coordenadas 
ortogonales p,  z siendo z el eje de simetría, se subdivide la zona en elementos 
triangulares (elementos finitos simples) tal como se muestra en la Figura 1. 

Figura 1. Elemento triangular típico. 
P 

Además se supone que dentro de cada elemento triangular el potencial se aproxima 
por la relación 
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Se considera además la existencia de líneas semiconductoras (que corresponden 
a superficies semiconductoras en el problema tridimensional real) entre los nodos del 
triángulo. Para ello se supone la existencia de conductividades superficiales finitas 
asa, add, udC, en los lados a, b y c del elemento triangular, estando la conductividad 
superficial a, relacionada con la conductividad volumétrica o através de la relación 
a, = Su, siendo S el espesor de la capa semiconductora. Se supone además que 6 O 
y a -+ oo de modo que a, es finita. 

Imponiendo la condición de minimización de la funcional (7) se obtiene finalmente 
la siguiente relación de elementos finitos entre el potencial de nodo 1 y los potenciales 
de los nodos 2 y 3 de todo los elementos triangulares (k) que tienen en común el mismo 
nodo 1 (acomodando la numeración de modo que el nodo común será numerado 1 en 
todos los triángulos). 

siendo: 

al Región del plano meridiano constituida por todos los elementos 
triangulares que poseen en común el nodo 1, incluidas las líneas conductoras, si existen. 

Ak = Area del elemento triangular k. 
a k  = Conductividad volumétrica del elemnto triangular k. 
ek = Permitividad del elemento triangular k. 
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w = Frecuencia angular. 
a , , k  = Conductividad superficial entre nodo 1 y 2 del elemento triangular k. 
u,bk  = Conductividad superficial entre nodo 2 y 3 del elemento triangular k. 
a,,k = Conductividad superficial entre nodo 3 y 1 del elemento triangular k. 

Si en un elemento triangular no existe línea semiconductora (capa semiconductora 
en el problema tridimensional real) se tiene a, = O: Por ejemplo si en un elemento 
triangular k sólo hay líneas semiconductoras entre los nodos 1 y 2 se tendrá a , b  = 
U,, = O,  U,, # O y por 10 tanto, Dbk = Dck = O, Dak # 0. 

Aplicando la relación (16) a todos los elementos triangulares en que se ha dividido 
la zona de interés, se obtiene un sistema de ecuaciones linares de la forma 

donde: 
A Es la matriz de coeficientes del sistema. 
V Es el vector de incógnitas, los potenciales 4; desconocidos. 
U Es el vector dato que depende de las condiciones de contorno. 

A diferencia del caso electrostático en que todos los coeficientes de la matriz A son 
reales, en el caso cuasi-estático algunos coeficientes de A son complejos. Por este motivo 
aunque las condiciones de contorno (elementos de U )  sean todas reales, los elementos 
del vector V (potenciales 6;) en general resultan complejos. 

El sistema de ecuaciones lineales (20) se resolvió aplicando el método de 
descomposición triangular6. 

La precisión global del método se verificó aplicándolo a casos simples que pueden ser 
resueltos utilizando conceptos de circuitos eléctricos de parámetros concentrados. Los 
casos considerados son condensadores cilíndricos con varios materiales dieléctricos de 
permitividades y conductividades finitas, en serie y con efecto de punta pronunciando 
de modo de tener un campo fuertemente no-uniforme en alguna parte de la región 
de interés. El campo de ' la  región distante del efecto de punta se puede verificar 
comparando el potencial con el que se obtiene aplicando los métodos de resolución 
de circuitos eléctricos. Se obtuvieron errores inferiores al 1% tanto en la parte real 
como en la parte imaginaria del potencial. 

APLICACIONES 

Para ilustrar las' aplicaciones del método se darán los resultados obtenidos en 
el cálculo del potencial complejo en el plano meridiano de un aislador tipo disco 
contaminado superficialmente. Se eligió un aislador tipo disco, ya que este posee un 
perfil bastante complicado, en comparación con otros tipos de aisladores. A pesar de 
esta dificultad el método de elementos finitos permite aproximar el perfil del aislador 
en forma muy adecuada. 

En la Figura 2 se muestra el perfil del aislador tipo disco. En la Figura 3 se 
muestra el reticulado de elementos triangulares con el cual se calculó el potencial 
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ELECTRODO B. T. 

ELECTRODO A . T  

Figura 2. Perfil de aislador tipo disco. 

V v v V I 
Figura 3. Parte del reticulado de elementos triangulares adaptado al aislador. 

eléctrico complejo en el aislador. En el cáculo de potencial complejo se impuso como 
condición de contorno la existencia de una superficie a potencial cero a gran distancia 
del aislador, además de las condiciones de contorno q5 = 1 en "11 en el extremo del 
aislador conectado a alta tensión y q5 = O en el extremo del aislador conectado a masa. 
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R e a l e s  

I r n q i n o r i  o s  

Figura 4. Equipotenciales reales e imaginarias para el aislador cubierto de capa 
semiconductora u, = 4 . 1 2 5 ~  Siemens. 

Figura 5. Equipotenciales reales e imaginarias para el aislador cubierto con una capa 
semiconductora u, = 0 . 0 0 2 ~  Siemens. 
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En la Figura 4 se muestran las equipotenciales reales (líneas llenas) e imaginarias 
(líneas punteadas) obtenidas en el caso de un aislador cubierto con una capa 
contaminante de conductividad superficial a, = 4 . 1 2 5 ~  Siemens. En este caso la parte 
imaginaria del potencial alcanzó su mayor valor en relación a la parte real cuyo mayor 
valor es 1 en "11. 

En la Figura 5 se muestran los resultados obtenidos con la conductividad superficial 
u, = 0.002p Siemens en que la solución coincide con la solución electrostática en que se 
pueden despreciar las corrientes de conducción frente a las corrientes de desplazamiento. 
Por este motivo el potencial resulta real en todo el espacio. 

CONCLUSIONES 

Se ha presentado un procedimiento para resolver campos eléctricos alternos de baja 
frecuencia en medios con dieléctricos heterogéneos, de amplia aplicación. El método 
permite considerar medios con materiales dieléctricos de conductividad h i t a  y también 
materiales dieléctricos cubiertos con capas superficiales semiconductoras. Gracias a esto 
último es posible calcular el campo eléctrico complejo en aisladores contaminados. 

El método se implementó numéricamente para resolver problemas con simetría 
de traslación o de revolución pero en principio se puede extender a problemas sin 
simetría con las complicaciones inherentes que tiene dicha implementación en los casos 
tridimensionales. 

AGRADECIMIENTOS 

Este trabajo se realizó gracias al financiamiento otorgado por Fondecyt al Proyecto 
0524-88 y por el Departamento Técnico de Investigación de la Universidad de Chile al 
Proyecto 1-2276-34. 

REFERENCIAS 

1. O.W. Andersen, "Finite element solution of complex potential electric fields'', IEEE 
Transaction on Power Apparatus and Systems, Vol. PAS-9, N04, pp. 1156-1161, (1977). 

2. E. Asenjo y N. Morales, "Low frequency complex fields in polluted insulators", IEEE 
Transactions on Electrical Insulation, Vol. EI-17, N03, pp. 262-268, (1982). 

3. E. Asenjo y N. Morales, "Resolución de campos eléctricos cuasi-estáticos en dieléctricos 
heterogéneos", Anais do VIII Congresso Latino-Americano e ibérico sobre Métodos 
Computacionais para Engenharia, Vol. A, pp. 395-402. 

4. F.B. Hildebrand, "Methods of Applied ~a themat ics" ,  Prentice-Hall, Inc.,Second Edition, 
(1965). 

5. P.P. Silvester y R.L. Ferrari, "Finite Elemnts for Electrical Engineers", Cambridge 
University Press, (1983). 




