Revista Internacional de Métodos Numéricos para Célculo y Disefio en Ingenieria. Vol. 6, 1, 108-117( 1990}

SOLUCION DE CAMPOS ALTERNOS DE BAJA
FRECUENCIA EN DIELECTRICOS
HETEROGENEOS MEDIANTE
ELEMENTOS FINITOS

EFRAIN ASENJO

y
JUAN JARA

Departamento de Ingenieria Eléctrica,
Facultad de Ciencias Fisicas y Matemdticas,
Universidad de Chile,

Santiego, Chile

RESUMEN

Se presenta un método para resolver campos eléctricos alternos de baja frecuencia en
dieléctricos heterogéneos en que la solucién depende tanto de las corrientes de desplazamiento
como de las de conduccién. El método se basa en el empleo de una aproximacion cuasi-
estitica que permite eliminar el acoplamiento que existe entre el campo eléctrico y el magnético
expresado a través de las ecuaciones de Maxwell.

El método se implementa numéricamente mediante la técnica de elementos finitos,
definiendo una funcional compleja.

SUMMARY

A method to solve ac low frecuency electric fields in heterogeneous dielectrics, when the
solution depends both on the displacement and the conduction currents is presented. The
method is based on decoupling Maxwell’s equations using a quasi-static approximation.

The method is implemented numerically through the finite elements technique by defining
a complex functional.

INTRODUCCION

Los equipos de alto voltaje alterno normalmente se aislan con materiales de
resistividad eléctrica muy elevada. Por este motivo para calcular el campo eléctrico,
en ellos se suelen despreciar las corrientes de conduccién (resistivas) frente a las de
desplazamiento (capacitivas). Lo anterior porque en dichos sistemas aislantes we > o,
siendo w la frecuencia angular, ¢ y ¢ la conductividad eléctrica y la permitividad del
medio respectivamente.

Sin embargo algunos sistemas aislantes se construyen aplicando capas resistivas
semiconductoras sobre parte de la superficie de la aislacién con el objeto de reducir
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la concentracién de los gradientes de voltaje en zonas criticas. En estos casos ya no
se pueden despreciar las corrientes de conduccién frente a las de desplazamiento y
por lo tanto al calcular el campo se debe considerar el caracter fasorial de €él. Algo
similar ocurre en los aisladores contaminados. En todas estas situaciones al resolver el
campo eléctrico E se deberia tomar en cuenta su acoplamiento con el campo magnético
H lo que significa una gran complicacién en comparacion con el caculo de un campo
electrostatico en que dicho acoplamiento no existe.

El problema planteado ha sido resuelto mediante el método de elementos finitos
incorporando el efecto de las corrientes de conduccién através de un modelo circuital
de resistencias superpuesto al modelo de campo electrostatico’.

Una forma mas general para resolver el mismo problema consiste en calcular el
campo eléctrico utilizando una aproximacién cuasi-estitica la que permite desacoplar
el campo eléctrico del campo magnético. Esta idea fue desarrollada y se implementé
numéricamente mediante la técnica de diferencias finitas®°.

En el presente trabajo se implementa numéricamente el dltimo método mediante
la técnica de elementos finitos lo cual significa definir una funcional adecuada que
considera tanto las corrientes capacitivas como las resistivas.

PLANTEAMIENTO DEL METODO

Las ecuaciones de Maxwell que rigen el campo electromagnético alterno de
frecuencia angular w son :

VXE=-wuH (1)
V.-eE=p (2)
V- -H = 0E + iweE (3)
V-H=0 (4)

en que:

E Es el vector intensidad de Campo eléctrico complejo.
H Es el vector intensidad de campo magnético complejo.
p Es la densidad de carga volumétrica compleja.

o Es la conductividad y p la permeabilidad del medio.

i = 1.

Resolver en forma exacta las ecuaciones anteriores es un problema arduo debido
al acoplamiento entre el campo eléctrico y el campo magnético. Sin embargo se puede
obtener una solucién aproximada, para w pequefio, despreciando el campo eléctrico
inducido por las variaciones del campo magnético lo que equivale a suponer VX E =0
en reemplazo de la relacién (1). Con esta aproximacioén se logra desacoplar el campo
eléctrico del magnético y la solucién, llamada cuasi-estatica, se reduce a encontrar un
campo eléctrico irrotacional tal que E = V¢ siendo ¢ el potencial eléctrico complejo®.
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Como el campo eléctrico es irrotacional, si consideramos que p = 0, el potencial ¢
cumple con la ecuacién de Laplace.

Vig=0 (5)

El problema se reduce por lo tanto a encontrar una solucién de la ecuacién de
Laplace que cumpla con las condiciones de contorno en los conductores de potencial
conocido y cumpla ademas con las condiciones de contorno suplementarias en los limites
de los materiales dieléctricos. Estas ltimas condiciones se pueden obtener de la relacién
(3) de la siguiente manera:

V- VxH=V-[cE+iweE}=0 (6)

De esta 1ltima relacién se deduce que los limites del dieléctrico se deben conservar
las componentes normales del vector (¢E + tweE).

Para aplicar el método de los elementos finitos se debe definir-una funcional
adecuada al problema que se pretende resolver. Considérese la funcional

1:/0//%(a+iwe)v¢-v¢d9 (7)

en que {2 es el volumen en que interesa calcular el potencial ¢.
Expresando V¢ en coordenadas cartersianas se tiene

V¢—z3—¢+ a—y+*gf (8)
de donde:
ve-vs= 3y Gy + (Ghy ©)
por lo tanto
1= [ [ [ 3o +ived(Ghr+(Gor + (500 (10)
Q
1= [ [ [ 5o +we){(6e + (4, + (4.7}d0 (1)
Q
1= [ [ [ 76,608,210 (12)
0

siendo
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Para que la funcional I sea estacionaria se debe cumplir la ecuacién de Euler?

9 3F 3 3F 6 0F oF

Considerando que % = 0 ya que F no depende explicitamente de ¢, la ecuacién
de Euler se reduce a:

%[(a + iwe)g—g] + aiy[(a + iwe)g—j] + %[(U + iwe)%] =0 (14)

Esta dltima relacién es equivalente a (6) y corresponde aplicarla en los puntos
en que hay variaciones de (o + iwe) o sea en los limites de materiales. Para puntos
interiores a un solo medio esta relacién se reduce a la ecuacién de Laplace (5).

Lo anterior significa que el problema planteado de calcular un campo eléctrico que
cumpla con la ecuacién V X E = 0, con las correspondientes condiciones de contorno
y ademads con las condiciones de contorno suplementarias V - [(¢ + iwe)E)] = 0 en los
limites materiales es equivalente a encontrar un valor estacionario de la funcional (7).

IMPLEMENTACION Y VERIFICACION DEL METCDO

El método se implementé para resolver el campo en sistemas aislantes con simetria
de traslacién y de rotacién. Se mostraran los resultados correspondientes a simetria de
rotacién por corresponder a la mayoria de los casos que se presentan en la practica.

Considerando en la zona de interés (plano meridiano) un sistema de coordenadas
ortogonales p,z siendo z el eje de simetria, se subdivide la zona en elementos
triangulares (elementos finitos simples) tal como se muestra en la Figura 1.

| 1 (Pig. Zik)

(fzvaZK)

Figura 1. Elemento triangular tipico.

Ademas se supone que dentro de cada elemento triangular el potencial se aproxima
por la relacién
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Se considera ademas la existencia de lineas semiconductoras (que corresponden
a superficies semiconductoras en el problema tridimensional real) entre los nodos del
tridngulo. Para ello se supone la existencia de conductividades superficiales finitas
Osas Osd, Osc, €n los lados a, b y ¢ del elemento triangular, estando la conductividad
superficial o, relacionada con la conductividad volumétrica o através de la relacién
o, = b0, siendo § el espesor de la capa semiconductora. Se supone ademdas que § — 0
y 0 — oo de modo que o, es finita.

Imponiendo la condicién de minimizacién de la funcional (7) se obtiene finalmente
la siguiente relacién de elementos finitos entre el potencial de nodo 1 y los potenciales
de los nodos 2 y 3 de todo los elementos triangulares (k) que tienen en comin el mismo
nodo 1 (acomodando la numeracién de modo que el nodo comin serd numerado 1 en
todos los tridngulos).

> (Cik + Dak — Der)b1x + 3 _(Cak + Dok — Dar)bar+
01 nl

+ Y (Csk + Dk — Dyie)par = 0
0,

(16)

siendo:

; Region del plano meridiano constituida por todos los elementos
triangulares que poseen en comin el nodo 1, incluidas las lineas conductoras, si existen.

7 pr(ok + tweg)

Cik = oA, {(Zak — Zak)* + (psk — p2x)’} (17a)
rpr(or + twe
Co = £x( ;Ak k){(Zsk — Z21.)(Zak — Zar)+
+ (P1k — p3k)(p3k — p2r)} (17b)
wor(or + we
Car = £x( ;Ak k){(Zlk — Za) {22k — Za)+
+ (p2k — p1k)(P3k — p2k)} (17¢)
Doy = T(p1k + P2k)Osak
7 V(Zak — Z1k)? + (pak — p1x)?
T(p2k + P3k )0 sk
Do = 18
- N Zak — Zax)? + (p3k — p2x)? (18)
Dy = 7(pak + P1k)Tsck
T V(Zik - Zsk)? + (pik — pai)?
1
Pk = §(P1k + p2k + p3k) (19)

A = Area del elemento triangular k.
or = Conductividad volumétrica del elemnto triangular k.
€r = Permitividad del elemento triangular k.
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w = Frecuencia angular.
0,sx = Conductividad superficial entre nodo 1 y 2 del elemento triangular k.
ok = Conductividad superficial entre nodo 2 y 3 del elemento triangular k.
0,k = Conductividad superficial entre nodo 3 y 1 del elemento triangular k.

Si en un elemento triangular no existe linea semiconductora (capa semiconductora
en el problema tridimensional real) se tiene o, = 0.- Por ejemplo si en un elemento
triangular k sélo hay lineas semiconductoras entre los nodos 1 y 2 se tendra o, =
Oae = 0, 044 # 0y por lo tanto, Dy, = Dot = 0, Dar # 0.

Aplicando la relacién (16) a todos los elementos triangulares en que se ha dividido
la zona de interés, se obtiene un sistema de ecuaciones linares de la forma

AV=U (20)

donde: .
A Es la matriz de coeficientes del sistema.
V Es el vector de incégnitas, los potenciales ¢; desconocidos.
U Es el vector dato que depende de las condiciones de contorno.

A diferencia del caso electrostatico en que todos los coeficientes de la matriz A son
reales, en el caso cuasi-estatico algunos coeficientes de A son complejos. Por este motivo
aunque las condiciones de contorno (elementos de U) sean todas reales, los elementos
del vector V (potenciales ¢;) en general resultan complejos.

El sistema de ecuaciones lineales (20) se resolvié aplicando el método de
descomposicién triangular®.

La precisién global del método se verificé aplicdndolo a casos simples que pueden ser
resueltos utilizando conceptos de circuitos eléctricos de pardmetros concentrados. Los
casos considerados son condensadores cilindricos con varios materiales dieléctricos de
permitividades y conductividades finitas, en serie y con efecto de punta pronunciando
de modo de tener un campo fuertemente no-uniforme en alguna parte de la regién
de interés. El campo de la regién distante del efecto de punta se puede verificar
comparando el potencial con el que se obtiene aplicando los métodos de resolucion
de circuitos eléctricos. Se obtuvieron errores inferiores al 1% tanto en la parte real
como en la parte imaginaria del potencial.

APLICACIONES

Para ilustrar las aplicaciones del método se dardn los resultados obtenidos en
el calculo del potencial complejo en el plano meridiano de un aislador tipo disco
contaminado superficialmente. Se eligié un aislador tipo disco, ya que este posee un
perfil bastante complicado, en comparacién con otros tipos de aisladores. A pesar de
esta dificultad el método de elementos finitos permite aproximar el perfil del aislador
en forma muy adecuada.

"~ En la Figura 2 se muestra el perfil del aislador tipo disco. En la Figura 3 se
muestra el reticulado de elementos triangulares con el cual se calculé el potencial
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ELECTRODO B.T.

CAPA
CONTAMINANTE

rd
ELECTRODO A.T. — g

Figura 2. Perfil de aislador tipo disco.

Figura 3. Parte del reticulado de elementos triangulares adaptado al aislador.

eléctrico complejo en el aislador. En el ciculo de potencial complejo se impuso como
condicién de contorno la existencia de una superficie a potencial cero a gran distancia
del aislador, ademas de las condiciones de contorno ¢ = 1 en °/1 en el extremo del
aislador conectado a alta tensién y ¢ = 0 en el extremo del aislador conectado a masa.
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—— Equipotenciales Reales

~--— tquipotencia les Inaginarias

Figura 4. Equipotenciales reales e imaginarias para el aislador cubierto de capa
semiconductora o, = 4.125u Siemens.

Figura 5. Equipotenciales reales e imaginarias para el aislador cubierto con una capa
semiconductora o, = 0.0024 Siemens.
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En la Figura 4 se muestran las equipotenciales reales (lineas llenas) e imaginarias
(lineas punteadas) obtenidas en el caso de un aislador cubierto con una capa
contaminante de conductividad superficial o, = 4.125p Siemens. En este caso la parte
imaginaria del potencial alcanzé su mayor valor en relacion a la parte real cuyo mayor
valor es 1 en °/1.

En la Figura 5 se muestran los resultados obtenidos con la conductividad superficial
o, = 0.0024 Siemens en que la solucidn coincide con la solucidn electrostatica en que se
pueden despreciar las corrientes de conduccién frente a las corrientes de desplazamiento.
Por este motivo el potencial resulta real en todo el espacio.

CONCLUSIONES

Se ha presentado un procedimiento para resolver campos eléctricos alternos de baja
frecuencia en medios con dieléctricos heterogéneos, de amplia aplicacién. El método
permite considerar medios con materiales dieléctricos de conductividad finita y también
materiales dieléctricos cubiertos con capas superficiales semiconductoras. Gracias a esto
tltimo es posible calcular el campo eléctrico complejo en aisladores contaminados.

El método se implementé numéricamente para resolver problemas con simetria
de traslacién o de revolucién pero en principio se puede extender a problemas sin
simetria con las complicaciones inherentes que tiene dicha implementacién en los casos
tridimensionales.
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