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Abstract. The inherent uncertainty in the structural parameters directly affects the structural 

performance, and its variation may lead to improper designs and catastrophic consequences. 

When subjected to uncertainty, the structure design must be optimized to get an insensitive 

design using a Robust Design Optimization (RDO) technique. Such design aims to find a system 

design in which the structural performance is less sensitive (insensitive) to the uncertainty of 

the inherent structural parameter without eliminating them. This is usually achieved by 

simultaneously minimizing the mean and variance of the structural performance function. 

Various RDO approaches, such as those based on Taylor series expansion, simulation-based 

methods, dimension reduction, and metamodel, can effectively take into account these 

uncertainties. However, the computational efficiency and accuracy in evaluating the mean and 

variance of the performance function remain a challenging task. To obliviate this limitation, a 

novel stochastic simulation-based approach is proposed in the present work. The proposed 

approach is built on an ‘Augmented optimization problem,’ in which design variables are 

artificially considered an uncertain parameters. An unconstraint Genetic algorithm (GA)-

based optimization approach is formulated to determine the optimal solution. As the mean and 

variance frequently conflict with each other, so to obtain the Pareto optimum, a linear 

scalarized objective function is adopted. To demonstrate the proposed approach, RDO of a 

four-bar structure is performed. The results obtained are compared with the conventional 

Monte Carlo simulation approach and confirm that the proposed approach yields accurate 

results. This paper allows the designers to design the insensitive structure systems by 

minimizing the variance of the performance function. Moreover, the proposed RDO approach 

is not only limited to the civil structures but can also be enforced in the design of any realistic 

linear/nonlinear structures and systems such as machine components (like clutches, gears, 

etc.), aerospace, etc., having uncertainties in their geometry or material, such as the residual 

strain, modulus, thickness, density, etc. 
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1 INTRODUCTION 

In any practical situation, there are various parameters that are unknown at the design stage 

and affect the performance of a system, such as loadings, structural parameters, geometric 

parameters, operation conditions, etc. [1–3]. These parameters are classified as uncertain 

parameters, and their uncertainty is quantified using a joint Probability Density Function (PDF) 

in a probabilistic framework. During the design process, it is essential to address the uncertainty 

in these design parameters. In a probabilistic framework, there are two methods for the optimal 

design of structures under uncertainties: Reliability-Based Design Optimization (RBDO) and 

Robust Design Optimization (RDO). In RBDO, statistical information of all the uncertain 

parameters is incorporated to optimize the system by satisfying an acceptable probability of 

failure [4]. In contrast, RDO studies a design that is less sensitive with respect to the variation 

of the initial parameters [5]. The mean and variance of the performance function are generally 

recommended in the literature as a measure of robustness [6]. The present paper focuses on the 

RDO.  

The problem of RDO can be mathematically formulated as the determination of the optimal 

design 
*

x by performing the following optimization problem: 

 * 2arg min ( ), ( ) ,g g 


=
x

x x x         (1) 

where ( ) : xn

g R R →x  and 
2 ( ) : xn

g R R →x  denotes the mean and variance of the 

performance function ( ) : xn n
g R R  →θ,x , respectively. E [ ]   represents expectation with 

respect to PDF ( | )p θ x  for θ. In the above optimization problem, the two design criteria, 

namely minimization of mean and minimization of variance, frequently conflict with each other 

[7], i.e., simultaneously achieving the minima of both is practically infeasible. In such a case, 

there exist several Pareto optimal solutions or Pareto fronts. The defining characteristic of 

Pareto fronts is that they cannot be improved in any objective without causing degradation in 

at least one other objective. In this view, various methods to transform the multiobjective 

problem into a single objective problem, such as the compromise programming method [8], 

physical programming method [9], and weighted sum method [10], are employed to deal with 

the trade-offs between conflicting objectives. In the present study, a linear scalarized 

performance function is adopted to find the Pareto optimum.  

The initial methods to solve the RDO problem in structural engineering entail explicit 

calculation of these measures of robustness. The analytical calculation of these measures is only 

possible in a limited number of cases. Therefore, several approximation techniques such as 

those based on Taylor expansion of the objective and constraint functions, have been proposed. 

In these cases, the resulting optimization problem is a deterministic problem that can be solved 

using standard nonlinear programming techniques. The application of this class of methods can 

be found in [11–17]. Other methods for solving RDO include metamodel-based methods. 

Metamodels allow a mathematical approximation of the objective response. The application of 

these metamodel-based methods can be found in [18–20]. Furthermore, other methods, 

including direct search methods in the presence of uncertainty, such as stochastic approximation 

methods and stochastic quasi-gradients methods, are also widely adopted by the researchers. 

The application of these methods is limited due to the high computational requirements of 
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evaluating the robustness measure. The application of these approaches can be found in [21, 

22]. 

The approach presented in this paper is based on a direct search method proposed by [23], 

termed Stochastic Subset Simulation (SSO). SSO is an effective and efficient method for 

designing optimal stochastic systems through stochastic simulation. The method is based on an 

augmented formulation proposed by Au [24] to investigate reliability-based design sensitivity, 

wherein design variables are considered as uncertain variables with a predefined PDF over the 

design space. This paper adopts the augmented formulation to minimize the weighted function 

of a mean and variance. The proposed approach is validated by means of an example, including 

the RDO of a four-bar structure. The results attained by the proposed approach are validated by 

a Monte Carlo simulation-based optimization approach known as Sample Average 

Approximation (SAA). 

2 PROBLEM FORMULATION 

Consider a system with some adjustable parameters that define the system design, which are 

referred to as design parameters 1[ , , ] x

x

nT

nx x R=  x  and where   represents the 

bounded admissible design space. Consider a PDF ( | )p θ x that specifies a collection of 

uncertain variables 1 2[ , , , ]
nT

n R 


  =  θ , where   denotes the set of possible values 

for the uncertain variables. It is assumed that ( | ) ( )p p=θ x θ  without compromising generality. 

The resulting RDO is defined as the determination of:  

 * 2arg min ( ), ( ) , subjected to   f ( ) 0,g g c 


= 
x

x x x x                            (2) 

where  

 ( ) E ( ) ( ) ( ) ,g g g p d


= = x θ,x θ,x θ θ                                            (3) 

and 

( ) ( )
2 2

2 ( ) E ( ) ( ) ( ) ( ) ( ) ,g g gg g p d  


 = − = −
   x θ,x x θ,x x θ θ                          (4) 

denote the mean and the variance of the structural performance function ( ) : xn n
g R R  →θ,x , 

respectively, and E [ ]   denotes expectation with respect to the PDF for θ. ( )cf x  correspond to 

a vector of constraints that can be deterministic or stochastic (like the objective function). Such 

optimization problems arising in decision-making under uncertainty are typically referred to as 

stochastic optimization. Dealing with a large uncertainty space is a major challenge in these 

problems, and it typically leads to a challenging evaluation of the multi-dimensional integral. 

Design constraints, which are also expressed as stochastic integrals, and/or integer design 

variables that model logical and other discrete design options can make optimization even more 

difficult.  

To obtain a Pareto optimum, a widely used approach is adopted that substitute the vector of 

objective functions with a scalarized objective function. In this view, a straightforward 
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scalarization approach is the linear combination method that constitutes a weighted linear 

combination of the individual objectives. The weighting factors can be adjusted to determine 

the relative weights assigned to the multiple objective functions, allowing the user to easily 

analyze the trade-offs between them. Therefore, the problem of RDO is formulated as: 

2

*

2

( ) ( )
arg min (1 ) ,

g g

g g

 
 

 

  
= + − 

  x

x x
x                                           (5) 

where g and 
2

g are the normalization factors, and the weighting factor [0,1]   denotes the 

relative importance of the two objective functions. With 1 =  and 0 = , the problem can be 

transformed into a pure mean value minimization problem and pure variance minimization 

problem, respectively.  

2.1 Augmented formulation for optimization 

Consider a single objective stochastic optimization problem that is, minimization of the mean 

of the performance function. In this case, the performance function in the augmented 

formulation is given by: 

1( , ) ( , ).h g=θ x θ x                                                              (6) 

Similarly, for minimization of the variance, the performance function in the augmented problem 

can be represented as: 

( )
2

2 ( , ) ( , ) ( ) .gh g = −θ x θ x x                                                    (7) 

In this framework, for minimization of the weighted problem as presented in Eq. (5), the 

performance function in the augmented problem is formulated as: 

( )
2

3 2

( , ) ( )( , )
( , ) (1 ) ,

g

g g

gg
h


 

 

−
= + −

θ x xθ x
θ x                                     (8) 

where estimates of g  and 
2

g  are obtained from solving the optimization problem for 

minimization of the mean and minimization of variance of the structural response, respectively. 

Therefore, upon successfully formulating the augmented objective function, consider any 

general performance measure of the system denoted by ( , ) : xn n
h R R R  →θ x  where 

1( , ) ( , )h h=θ x θ x  for pure mean minimization and 3( , ) ( , )h h=θ x θ x  otherwise. *
x  denotes the 

optimal design solution obtained by optimizing the stochastic design problem, formulated as: 

 * arg min E ( , ) .h


=
x

x θ x                                                         (9) 

In the formulation of an augmented problem, the design variables are artificially considered 

uncertain with PDF ( )p x . In the setting of this augmented design problem, an auxiliary PDF is 

defined as: 
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,

( , ) ( , )
( , ) ,

E [ ( , )]x

h p

h

 =
θ x θ x

θ x
θ x

                                                    (10) 

where ( , ) ( | ) ( )p p p=θ x θ x x  and the normalizing constant in the denominator is defined as: 

,E [ ( , )] ( , ) ( , ) .x h h p d d

 

=  θ x θ x θ x θ x                                           (11) 

Note if ( , ) 0h θ x , it must be suitably transformed to ensure that ( , ) 0 θ x . One way to do 

this is to define ( , ) ( , )sh h s= −θ x θ x , since    E ( , ) E ( , )sh h s = −θ x θ x , that is the two 

expected values differ only by a constant, optimization of the expected value of ( , )h θ x  is 

equivalent, in terms of the optimal design to optimization for the expected value for ( , )sh θ x . 

In terms of the auxiliary PDF, the objective function  E ( , )h θ x , is expressed as 

  ,

( )
E ( ) E [ ( , )],

( )
xh h

p
 


=

x
θ,x θ x

x
                                             (12) 

where the marginal PDF ( ) x  is equal to 

( ) ( , ) .d 


= x θ x θ                                                          (13) 

In Eq. (10) since ,E [ ( , )]x h θ x  is a normalizing constant, minimization of  E ( )h θ,x  is 

equivalent to minimization of ( )J x  which is equal to: 

( )
( ) ,

( )
J

p


=

x
x

x
                                                                  (14) 

where for simplicity, uniform distribution can be chosen for ( )p x . For minimization, the PDF 

( ) x  in the numerator of ( )J x  must be evaluated. Stochastic subset optimization (SSO) a 

stochastic simulation-based approach was proposed for the minimization of ( )J x  for reliability 

based design optimization [23]. A brief overview of the SSO algorithm is presented in the 

following section. For a detailed explanation of SSO, the reader is referred to the original 

publication. 

2.2 Stochastic subset optimization  

The basic idea of the SSO is iteratively identifying subregions (subsets) for the optimal design 

variables within the original design space. In the SSO algorithm, the average value (or 

equivalently the volume density) of ( )J x  over any subset of the design space is determined by 

using the ( ) x  samples obtained by any sampling techniques. The average value is given as:  

1
ˆ1

( ) ( ) ( ) .k

k k

k k

I

k
I I

I I

V
H I J d d

V V
−= = x x x x                                            (15) 
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where 1
ˆ
kI −  is the optimal subset identified at the (k-1)th iteration. ( )kH I  above expresses the 

average relative sensitivity of  E ( )h θ,x  to x  within the set 1
ˆ

k kI I − . Based on the samples 

distributed according to from ( ) x  belonging to the set 1
ˆ
kI −  obtained using Markov Chain 

Monte Carlo (MCMC) procedure, an estimate of ( )H I  is provided by 

1 1
ˆ ˆ

/
( ) ,

/

k k

k k

I I

k

I I

N V
H I

N V
− −

=                                                            (16) 

where 
kIN  and  

1
ˆ
kI

N
−

 denote the number of samples from ( ) φ  belonging to the sets kI  and 

1
ˆ
kI − , respectively, and 

kIV  and  
1

ˆ
kI

V
−

 denote the volume of the set kI  and 1
ˆ
kI − , respectively. A 

deterministic subset optimization (based on the estimate ( )kH I  of ( )kH I ) is performed to 

identify a set ˆ
kI  that contains the smallest volume density /

k kI IN V  of samples, such that: 

ˆ arg min ( ),
I A

I H I


=                                                              (17) 

where A denotes a set of admissible subsets 1
ˆ
kI −  that have some predetermined shape and some 

size constraint. In this way, SSO adaptively converges to a relatively small sub-region for the 

optimal design variables *
x  within the original design space. Following this, any standard 

direct search method can be employed to determine the optimal design solution within the 

identified optimal design region. Specifically, an unconstraint Genetic Algorithm (GA)-based 

optimization approach NSGA-II is employed. 

3. ILLUSTRATIVE EXAMPLE 

An exemplary example is considered in order to demonstrate the efficacy of the proposed 

approach. The example is a four-bar truss structure adapted from [17]. The shape for set I is 

selected as a hyper-rectangle, and Metropolis-Hastings is used to simulate samples at each level, 

with proposal PDF equal to uniform PDF for design variables and equal to initial PDF for 

uncertain parameters.  

3.1 Four-bar truss structure 

Consider a simple four-bar truss structure shown in Figure 1. The free node of the truss is 

subjected to a random horizontal load P normally distributed with a mean value of 100kN and 

standard deviations of 20 kN. The Young’s modulus (E) for the truss is uncertain and normally 

distributed with mean and standard deviation of 200N/m2 & 80 N/m2 and 30 N/m2 &10 N/m2, 

respectively, for the two groups. The cross-sectional areas of the two groups, A1 & A2, are 

considered design variables. The nodal displacement of the free node is considered the 

performance function. A volume constraint 500V   is considered. In this setting, uncertain 

parameters 1 2[ , , ]E E P=θ  and 1 2[ , ]A A=x .  

 



Mohd. A. Khalid and Sahil Bansal 

 7 

                        
Figure 1: Four-bar truss structure 

 

Figure 2 (a, b) shows the mean and variance minimization results evaluated from the MCS 

approach using 100,000 samples. It can be observed that the definite minima are observed for 

both mean and variance minimization, located as 
*

1 176.78A =  and 
*

1 105.0A = , respectively. 

 
Figure 2: Variation of (a) Mean minimization and (b) Variance minimization versus design variable A1 

The results attained by the proposed approach are shown in Figure 3. The iteratively identified 

reduced design space for variance minimization case obtained at each SSO iteration level is 

shown in Figure 3 (a). One can observe that at the 11th iteration, the optimal solution of the 

design variable is accurately obtained. This affirms the accuracy and the effectiveness of the 

proposed approach. Furthermore, the samples in the design space simulated at each SSO 

iteration level are shown in Figure 3 (b). It can be observed that despite the lower samples 

realization, 2,000, it is challenging to locate the location of optimal design visually. 

Furthermore, at mean minimization, ( )1 =  a higher variance is observed. This highlights the 

necessity of the RDO, as, at mean optimal design, a minimum value of the objective function 

is observed, but it is highly susceptible to the variation due to the structural parameter 
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uncertainties. In contrast, for the variance minimization case ( )0 = , although the insensitive 

performance is attained but the performance degrades as compared to the mean minimization 

case ( )1 = . A good trade-off between mean and variance minimizations can be obtained by 

considering the intermediate values of   in the range of 0 and 1. In this view, the proposed 

approach is found to be very effective in locating the optimal solution. This effectiveness is 

expected to further enhance for higher-dimensional problems.   

 
Figure 3: (a) Identified reduced design space and (b) the corresponding samples of the design variable for 

variance minimization at various SSO iterations.  

4.   CONCLUSION 

This study aims to provide a novel stochastic simulation-based optimization approach for 

performing structural RDO. The proposed approach is based on the augmented formulation 

concept. To achieve the desired accuracy while effectively optimizing, a two-stage optimization 

strategy has been proposed. Initially, the size of the design space is reduced using the stochastic 

subset optimization concept, and then direct search optimization is used to determine the best 

design in the reduced design space. The effectiveness of the proposed approach is illustrated 

with the help of well-known optimization problems, including four bar truss structure. 

Comparisons are made between the proposed approach and the conventional Monte Carlo 

Simulation approach. The obtained results are well-matched, affirming the accuracy of the 

proposed approach. This study allows the designers to design insensitive structure systems. 

Moreover, the proposed RDO approach is general and not limited to the civil structures only 

but can also be enforced in the design of any realistic linear/nonlinear systems. It should be 

noted that this study focuses on unconstrained optimization and could be extended to 

constrained optimization. Further, research efforts will focus on the issues and applications of 

engineering design in practice. 
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