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Abstract. A spatial transient contact problem with moving boundaries for a thin elastic 

cylindrical shell and a rigid indenter bounded by a smooth convex surface is considered. A 

closed mathematical formulation is given and a system of resolving equations is constructed. 

The main integral equation follows from the principle of superposition and contact conditions. 

The core of this equation is the transient function for the cylindrical shell. To a closed system 

of resolving equations, it is supplemented by a kinematic relation for determining the moving 

boundary of the contact region and the equation of motion of the indenter as a rigid body. An 

algorithm for solving the spatial non-stationary contact problem for an infinitely long 

cylindrical shell and rigid indenter in the case of a normal impact on the side surface of the shell 

is constructed and implemented. Examples of calculations are given. 
 

1 INTRODUCTION 

Transient dynamics of continuous media is one of the most difficult areas of mechanics. The 

relevance of its study is because, as known, all natural phenomena are nonstationary. The 

concepts of static and stationary processes are often used as nothing more than an 

approximation (usually justified) of real phenomena. In many cases, dynamic properties of the 

medium are necessary, both qualitatively and quantitatively. The study of non-stationary 

processes is relevant for modern space and aviation technology, shipbuilding, construction of 

engineering structures, etc. 

One has to deal with the issues of unsteady dynamics of elastic shells when solving a wide 

variety of problems. They find important practical applications in the aerospace, automotive 

and shipbuilding industries. Their successful solution is associated with the further harmonious 

development of various sciences: aerohydrodynamics, nonstationary contact problems, 

acoustics, applied and computational mathematics, and others. 

One of the most difficult and least studied problems are transient contact problems with 

moving boundaries. The complexity of solving problems of this class is due to the mixed and 
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nonlinear nature of the boundary conditions, as well as the unknown position of the boundary 

of the contact area, which moves in time. To solve such problems, approaches based on the 

method of transient functions (Green's functions) are used [1–7]. Note that these approaches to 

the solution are based on a preliminary analytical solution of problems on the construction of 

influence functions and are a convenient tool for solving problems of nonstationary dynamics 

of elastic bodies, including nonstationary inverse problems. Approaches based on the finite 

element method and other numerical methods are also possible. 

In this paper, we propose a method and an algorithm for solving transient contact problems 

for cylindrical shell and rigid indenter. It is based on the application of the method of transient 

functions, according to which, first, by analytical methods, a fundamental solution (transient 

function) for a shell is constructed [1, 7]. Then, based on the principle of superposition, the 

problem is reduced to a system of resolving equations. The resulting system is solved using a 

numerical-analytical algorithm based on the grid method. Note that, despite the large number 

of works devoted to the mechanics of shells and contact problems, there are practically no 

publications devoted to solving spatial transient contact problems. The constructed technique 

can serve as a basis for the development of mathematical formulations and methods for solving 

new transient contact problems as well as for contact problems taking into account anisotropic 

combined dry friction [8-12]. 

2 STATEMENT OF THE PROBLEM 

To describe the motion of the shell, we use the equations of motion of the S. P. Timoshenko 

model in displacements, record associated with the directions of the main curvatures of the 

middle surface [13]: 
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u , v  – tangential displacements, w  – normal displacement,  , z  – normal fiber rotation 

angles, P  – external forces,   – dimensionless time, L  is the matrix-operator. All variables and 

parameters are reduced hereinafter to a dimensionless form as follows (primed variables 
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correspond to dimensional ones): 

 1 1 1 1 1 1 2 2 2 2 1

1 2 1 1, , , , , , , 2ccu R u v R v w R w u R u z R z R c t c c c                          

 – mass density, ,    – Lame parameters, R  and h  – radius and thickness of the shell, cu  

– displacement of the center of mass of the indenter, 1c  and 2c  –  speed of the tension-

compression waves and shear waves in the shell material, t  – dimensional time.  

At the initial moment of time, an absolutely solid impactor, moving with a given initial 

velocity, comes into contact with the lateral surface of the infinitely long thin elastic circular 

cylindrical shell. The impactor is a solid body with a smooth convex surface, the vector of its 

initial velocity is directed normal to the side surface of the shell (Fig. 1). 

 

 
 

 
Figure 1: Statement of the problem, contact area 

 

The equation of motion of the striker as an absolutely rigid body has the form (2): 

     
 

    0, , ,  0 0,  0u c c cm u P p d d u u V
 

            (2) 

P  – the resulting force of contact pressure p ,     – the contact area, the boundary of which 

depends on time. 

We assume that the contact between the shell and the striker occurs under conditions of free 

sliding. Let 1  and 2 be the surfaces bounding the shell and the striker at the moment of time 

0  . With respect to an inertial Cartesian rectangular frame whose axis coincides with the axis 

of the shell, they are given by the equations 

   : , , , , , 1,2k k kx f y z y z k       

k  – projections of surfaces 1  and 2  on a plane Oyz . The true contact area is defined by 

the conditions (3):  

         * 1 2: , , , , , , 0,  , , 0, , ky z f y z f y z p y z y z            (3) 

where   – is the gap between the boundary surfaces 1  and 2 . The equations that implicitly 

define the boundary *  of the contact area follow from (3): 

   * : , , 0, , , 0y z p y z        
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In the linearized formulation, the true contact area *  is replaced by a fictitious area     

belonging to the plane that is a common tangent to the surfaces 1 , 2  at the initial time of 

interaction (Fig. 1). Suppose that the position of the surface bounding the striker at the time   

is given by the equation referred to the frame Oxyz : 

   , cx f y z u    (4) 

The boundary    of the area     is determined from the condition of intersection of the 

surface bounding the striker with the plane : 

     :  , 1cf y z u      (5) 

Taking into account (4), the contact conditions of the indenter and the shell have the form 

          , , , ,  , , 0,  , ,  sincf y z u w z p z y z y             (6) 

At the initial time, the shell is in an unreformed state, which corresponds to zero initial 

conditions 

0 0 0 0 0 0 0 00 0
 0z zu v w u v w         

               (7) 

Equations and relations (1), (2), (4)-(7) are a closed mathematical formulation of the non-

stationary contact problem with movable boundaries for a cylindrical shell and a rigid indenter. 

3. SYSTEM OF RESOLVING EQUATIONS  

To reduce the formulation of the contact problem we use the transient function for an 

infinitely long circular cylindrical shell. It represents the normal movement of the shell as a 

solution to the following problem: 

         
T T2 2

1 25 5
,  = ,  = , , , , , 0,0, ,0,0ij u v wL G G G G G z 
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   ,  z ,     are the Dirac functions. The transient function was found in [7].  

Based on the superposition principle [1-7], deflections are related to contact pressures by 

means of the convolution  

     
 *0

 , , , , , ,w

t

w z dt G z t p t dS




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(8) 

Replace the contact area     with a dummy area    . Since  diam 1   , we assume 

    sin ,  ,y y z       (9) 

From contact condition (6), (8) and (9), the main integral equation for the sought contact 

pressure is implies 

   
 

   
0

 , , , , ,w c

t

dt G y z t p t dS f y z u




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In equation (10), in addition to the contact pressure, the contact area     and the 
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displacement of the center of mass of the indenter  cu   are also unknown. To obtain a closed 

system, we add (5) which determines the position of the boundary of the contact region, and 

the equation of motion of the striker (2), written in the integral form 

     
 

0

0

1
 , ,c

u t

u V t dt p y z t dS
m




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(11) 

3. SOLUTION METHOD 

To solve the system of resolving equations, we use a numerical-analytical algorithm based 

on the method of mechanical quadrature. We divide the time interval  0,  into M uniform steps

t M   : ,  1, ,  m t M tt m m M t M       . We replace the time integrals in (10) and (11) by the 

sum of the integrals over the intervals  1,m m   and assume that the contact pressure remains 

constant within each time interval: 

   
 

 

   
 

     

1

1

1

0

1

, , , ,

1
, ,  ,  , , , ,  

m

m

m

m

tM

w m cM

m t t

M

cM m cM c m m m t

mu t

dt G y z t p dS f y z u

u V t dt p dS u u p p t t m
m





 



  

       

             

  

  

 

(12) 

 

The contact area  t   is approximately replaced by the union of rectangular subareas 

mijK : 
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(13) 

where  2 1 /m mb b    ,  2 1 /i id d    are the integer parts of numbers  2 1 /m mb b   и 

 2 1 /i id d  . 

To secure the stability of the numerical scheme, the step   in the spatial variables is selected 

from the condition t    [6]. In particular, we can put 2 t   . The boundaries 1mb , 2mb , 1id , 2id   

changes in discrete values of spatial variables i  and j  are solutions of the equations 

     1 2 1 2,0 1 , ,   , 1 , ,   m cm m m i i cm i i cm mf b u b b f d u d b u u t         (14) 

Using (13), we obtain numerical analogs of equations (12). To do this, we assume that the 

contact pressure remains constant within an elementary square mijK :  
 ,

, const
ij

m mijK
p p

  
   

. Then from (12) - (14) follows 
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(15) 

4. NUMERICAL EXAMPLES 

As an example, consider the unsteady contact interaction of a circular cylindrical shell, of radius 1R   and 

thickness 0.025h  , with an absolutely rigid indenter bounded by a surface in the form of a paraboloid of 

revolution:   2 2, 1.f y z y z    As a shell material, we take steel with the following characteristics: 

37850 kg/m  , 111.15 10 Pa   , 1010 Pa7.69    , which is advised by dimensionless parameters: 0.53 

, 611.3 0  . 

Let us consider the influence of the initial velocity of the striker on the process of unsteady contact interaction. 

Let's take three of its possible values for analysis 0 0.01V  , 0 0.05V   and 
0 0.1V  . The contact surface in this 

case is a circle whose boundary coincides with the section of the surface  2 2 1 cx y z u      by a plane 1x   

at the current time. 

Fig. 2a-2c shows the time dependence of the displacement of the center of mass of the striker (Fig. 2a), the 

radius of the contact area on time (Fig. 2b) and the resulting contact force  P   versus time (Fig. 2c). Here the 

solid curves correspond to 0 0.01V  , dashed - 0 0.05V  , dash-dotted - 
0 0.1V  . 

Fig. 3a-3c shows the distribution of the contact pressure along the angular coordinate   at the time 0.3  . 

Fig. 3a corresponds to the coordinate 0z  , 3b - 0.15z  , 3c - 0.3z  . Solid curves correspond 0 0.01V  , 

dashed - 0 0.05V  , dash-dotted - 0 0.1V  . 

Fig. 4a-4c shows the distribution of the contact pressure along the longitudinal coordinate z at the time 0.3 

. Fig. 4a corresponds to the value of the coordinate 0  , 4b - 0.15  , 4c - 0.3  . Solid curves correspond 

0 0.01V  , dashed - 0 0.05V  , dash-dotted - 0 0.1V  . 

Fig. 5a and 5b shows the distributions of normal displacements along the angular coordinate (Fig. 5a) and 

along the longitudinal coordinate (Fig. 5b). Here, the results correspond to the point in time 0.6   and the initial 

speed 
0 0.1V  . In fig. 5a, solid curves correspond 0z  , dashed - 0.15z  , dash-dotted - 0.3z  . Solid curves 

in Fig. 5b correspond 0  , dashed - 0.15  , dash-dotted - 0.3  . 

 

   
(a) (b) (c) 

Figure 2: Dependences of the displacement of the center of mass of the striker, the radius of the contact area 

and the resulting contact force on time. 
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(a) (b) (c) 

Figure 3: Distribution of contact pressure along the angular coordinate at 0.3  . 

   

(a) (b) (c) 

Figure 4: Distribution of contact pressure along the longitudinal coordinate at 0.3  . 

 

  

(a) (b) 

Figure 5: Distribution of normal displacements along the angular and longitudinal coordinates. 
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