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Abstract.  

The paper deals with a new approach in analyzing of the actuator systems made of Functionally 
Graded Materials (FGM) using our new beam finite elements. Weak coupled electro-thermo-
mechanical analysis and spatial continuous variation of material properties are considered for 
chosen actuator structure. This electrically driven actuator is simple-shaped due to properly 
chosen variation of material properties to ensure functionality of the actuator at material and 
physical level instead of the geometric shape level. The solution results will be compared with 
those obtained by using solid elements of a FEM commercial program. 
 
 
1 INTRODUCTION 

Actuator is a mechatronic system that transforms chosen type of energy into the mechanical 
displacement and mechanical force. These actuators can be made of traditionally materials (e.g. 
metals) but also of advanced materials such as Functionally Graded Materials (FGM). FGM is 
built as a mixture of two or more constituents and the variation of macroscopic material 
properties of the system can be induced by variation of both the volume fractions of the 
constituents and their material properties. Using such materials, the actuator can be simple 
shaped and its effectiveness, particularly for Micro-Electro-Mechanical Systems (MEMS), will 
be enhanced. 

Classic shape of actuator (Figure 1a) can be replaced by new type – simply-shaped actuator 
(Figure 1b) where functionality is caused by varying material properties.  

 
Figure 1: a) Classic shape of MEMS actuator, b) New shape of FGM actuator 
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Functionality of the classic actuator is based on its shape that contains narrow parts of the 
actuator with higher resistance to reach higher electric heating of such parts, or to create 
mechanical joints that ensure simple bending of the actuator. New type of actuator made of 
FGM can be simple-shaped and above-mentioned functionality is ensured at material level 
where mixture of two material constituents is chosen such way to ensure change in material 
properties in given parts of the actuator and such to reach its proper (or even optimal) 
functionality. 

Computer modelling and analysing of structures made of FGM can be performed in classical 
way (e. g. using computer tools based on Finite Element Method – FEM), where spatial change 
of material properties has to be included in the models that leads to relatively complicated 
models when considering fine change of material properties conditions. 

Our approach for modelling and analysing of FGM structures is based on new link and beam 
finite elements derived for FGM, where whole parts of such structures are modelled using these 
new elements and the FEM model is relatively simple and easy to compute. 

2 FEM EQUATIONS FOR COUPLED ELECTRO - THERMO - MECHANICAL 
ANALYSIS 
Figure 2a presents simple link / beam FGM structure for which new FEM equations for 

coupled electro-thermo-mechanical analysis will be derived.  

 
Figure 2: a) FGM 2-nodal link with its dimensions and illustrative change of material properties,  

b) homogenization process using multilayer method   

Prior to the derivation process of the new FEM equations it is necessary to implement 
homogenization techniques (extended mixture rule [1] and multilayer method [2, 3]) that 
convert spatial change of material properties (caused by chosen mixture of the constituents) 
into equivalent one-dimensional change of material properties for each link or beam of the FGM 
actuator structure. This 1D change of effective material properties is only in longitudinal 
direction (x axis) of the link / beam, Figure 2b.  

Derivation process for electro-thermo-mechanical element is based on differential equations 
for electric, thermal and structural fields for 1D type of analysis, respectively. Because of semi-
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analytical method used in the derivation process [4] all quantities in following equations are the 
polynomial functions of x. 

2.1 Differential equations 
Homogeneous 1D static differential equation for FGM (with non-constant coefficients on 

the left-hand side) for electric field with boundary conditions has a form: 

(ݔ)ߪ− 
݀ଶ߮(ݔ)

ଶݔ݀ −
(ݔ)ߪ݀

ݔ݀
(ݔ)߮݀

ݔ݀
= 0 (1) 

 ߮(0) = ߮଴     (ܮ)ܬ =   ௅ܬ

where x [m] is the longitudinal coordinate, φ(x) [V] is the electric potential, σ(x) [S/m] is the 
specific electric conductivity and J(x) [Am−2] is the current density.  

Static differential equation for heat transfer with non-constant auxiliary thermal source  
Q(x) [Wm−3] in the volume of the link, with non-constant convective heat transfer coefficient  
α(x) [Wm−2K−1] from the link surface and coupled to the electric field, has a form (2). One-way 
coupling between the electric and thermal field is provided by Joule heat PJ1(x) [Wm−3], that 
can be calculated as one of the outputs from electric analysis and it enters the thermal analysis 
as volume heat (beside or instead of Q(x)).  
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with boundary conditions, e.g.: 
 ܶ(0) = ଴ܶ     (ܮ)ݍ =  ௅ (3)ݍ

where λ(x) [Wm−1K−1] is the thermal conductivity, T(x) [K] is the temperature, o [m] is the link 
perimeter, A [m2] is its cross section area, Tamb [K] is the ambient temperature and  
q(x) [Wm−2] is the heat flux. 

Homogeneous differential equation for structural analysis with effect of thermal expansion 
(coupling with the electro-thermal analysis) for pure tensile and compressive stress, has a form: 
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with boundary conditions, e.g.: 
(0)ݑ  = ேߪ     ଴ݑ

௦ (ܮ) = ே,௅ߪ
௦  (5) 

where ENH (x) [Pa] is homogenized Young modulus for tension/compression, u(x) [m] is the 
displacement, n(x) [Nm−1] are the distributed axial forces, αt [K−1] is the coefficient of thermal 
expansion and σNs(x) [Pa] is the structural normal stress. 

Homogeneous differential equation for structural analysis for bending has a form: 

 
݀ଶ(ݔ)ݓ

ଶݔ݀ = −
(ݔ)ܯ
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 (6) 

with boundary conditions, e.g.: 
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(0)ݓ  = (ܮ)଴     ߮௬ݓ = ߮௬,௅ (7) 

where w(x) [m] is the transversal displacement, M(x) [Nm] is the bending moment, EMH (x) is 
homogenized Young modulus for bending, φy(x) [rad] is the angle of the cross section rotation, 
Iy [m4] is the quadratic moment of the cross section, see Figure 3 (N and Tz are the normal and 
transversal forces, respectively). 

 
Figure 3: For derivation process for structural analysis  

The solution of above-mentioned differential equations is based on numerical method for 
solving 1D differential equation with non-constant coefficients and with right-hand side 
described in [4] in detail. 

2.2 New beam/link FGM finite element equations 
The finite element equations for electric analysis in FGM link have a form: 
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FEM equations for thermal analysis considering the convective effect, generated heat and 
Joule heat have a form: 
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Derived FEM equations for the structural analysis for pure tensile and compressive stress 
with coupling to the electro-thermal analysis have a form: 
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and FEM equations for bending of the beam have general form: 
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The terms ci(x), ci′(x), bi(x), bi′(x), are the transfer functions and their derivatives (for uniform 
solution and for particular solution) of the differential equations (1) - (7) which can be 
calculated by simple numerical algorithm [4]. The term ߳ j is the jth coefficient of the polynomial 
of grade g. The members Kij are substituents for combination of the transfer functions for 
particular x position within the beam element (i.e. transfer constants). For example: 

ଵଶܭ  =
ܿଵ(ܮ)ܾଶ
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ᇱ (ܮ)
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3 NUMERICAL EXPERIMENT 
Let us consider actuator with constant cross section made of FGM according to Figure 4. It 

consists of 3 parts (beams) that lengths are: L1 = 10 mm, L2 = 0.3 mm and L3 = 10 mm. Their 
constant rectangular cross-section is b = 0.2 mm and h = 0.1 mm. 

 
Figure 4: FGM actuator 

Actuator is made of FGM that consist of two components: matrix denoted with index m and 
fibre denoted with index f. Material properties of the components are constant (not temperature 
dependent), Matrix: Young modulus Em = 211 GPa, thermal conductivity  
λm = 80.4 Wm−1K−1, electric conductivity σm = 1×107 Sm−1, thermal expansion coefficient  
αtm = 2.18×10−5 K−1; Fibre: Young modulus Ef  = 119 GPa, thermal conductivity  
λf = 401 Wm−1K−1, electric conductivity σf = 5.96×107 Sm−1, thermal expansion coefficient  
αtf = 1.65×10−5 K−1. The variation of material properties is caused by varying volume fraction. 
Variation of the fibre’s volume fraction has been chosen as the polynomial function of 
longitudinal (L) and lateral (h) directions of individual beams. Coordinates for these directions 
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are denoted x and y for the variation of material properties. Through the depth b of the beams 
the material properties are constant and they are derived from the variation in longitudinal and 
lateral directions. 

Variation of the fibres volume fraction vf (x, y) for the first (from point A to B, see Figure 4) 
and third beam (from point C to D) are shown in Figure 5. The constant fibres volume fraction 
with value vf (x, y) = 0.875 for the second beam (from point B to C) is considered. 

 
Figure 5: Variation of the fibres volume fraction, left – 1st beam, right – 3rd beam 

The effective material properties (Young modulus for tension/compression ENH(x), Young 
modulus for bending EMH(x), thermal conductivity λH(x), electric conductivity σH(x), thermal 
expansion coefficient αtH) of the homogenized beam have been calculated by multilayered 
method [2, 3]. An example of the results for the first beam is: 

(ݔ)ுߪ = 3.84 × 10଻ + 3.10 × 10ଵଶݔଶ − 1.10 × 10ଵହݔଷ + 1.34 × 10ଵ଻ݔସ − 5.37 × 10ଵ଼ݔହ 
(ݔ)ுߣ = 263.8 + 2.00 × 10଻ݔଶ − 7.08 × 10ଽݔଷ + 8.65 × 10ଵଵݔସ − 3.47 × 10ଵଷݔହ 

ேܧ
ு(ݔ) = 1.58 × 10ଵଵ − 5.74 × 10ଵହݔଶ + 2.03 × 10ଵ଼ݔଷ − 2.48 × 10ଶ଴ݔସ + 9.96 × 10ଶଵݔହ 

ெܧ
ு(ݔ) = 1.76 × 10ଵଵ − 8.90 × 10ଵହݔଶ + 2.84 × 10ଵ଼ݔଷ − 3.24 × 10ଶ଴ݔସ + 1.24 × 10ଶଶݔହ 

௧ߙ
ு(ݔ) = 1.95 × 10ିହ − 7.19 × 10ିସݔ + ଶݔ0.17 −  ଷݔ11.55

The homogenized thermal conductivity λH(x) for the first and third beam is shown in  
Figure 6. 

 
Figure 6: Homogenized thermal conductivity, red – 1st beam, purple – 3rd beam 
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The applied constrains and loads are: 

– electric potential and current: φA = 0 V, ID = 2 A; 

– temperatures: TA = 25 °C, TD = 25 °C; 

– fixed support: uA = 0 m, uD = 0 m, 

 wA = 0 m, wD = 0 m, 

 φy,A = 0 rad, φy,D = 0 rad 

The coupled electro-thermo-mechanical analysis of FGM actuator has been done using our 
new FGM beam/link finite elements. The calculation has been done using software 
MATHEMATICA. Only three our new finite elements have been used (one for each part). The 
same problem has been solved using a fine mesh – 51 600 of PLANE223 elements of the FEM 
program ANSYS (see Figure 7). The average relative difference Δ [%] between quantities 
calculated by our method and the ANSYS solution has been evaluated. 

 
Figure 7: Elements of the FGM actuator in ANSYS, the first and third beam are made of FGM,  

the second beam has constant material properties  

Electric analysis was performed as the first solution and the nodal electric variables have 
been obtained (see Table 1). 

Table 1: The results of electric analysis 

electric potential [V] new element ANSYS Δ [%] 
φB 0.0220 0.0219 0.46 
φC 0.0226 0.0245 -7.76 
φD 0.0538 0.0557 -3.41 

Thermal analysis was performed as the second one. Distributed thermal load – Joule heat 
caused by electric current was included into the analysis. The results of thermal analysis are 
presented in Table 2. 
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Table 2: The results of thermal analysis 

temperature [°C] new element ANSYS Δ [%] 
TB 76.54 78.88 -2.97 
TC 76.93 80.30 -4.20 

Structural analysis was performed as the last analysis, where thermal forces caused by 
thermal expansion were included into the model. The results of structural analysis are the 
displacements u for longitudinal direction and w for transversal direction (see Table 3). 

Table 3: The results of structural analysis 

displacement [mm] new element ANSYS Δ [%] 
uB 0.0061 0.0057 7.02 
wB 0.0166 0.0141 17.7 
uC 0.0071 0.0065 9.23 
wC 0.0163 0.0139 17.3 

As it can be seen from Tables 1 - 3, there are considerable differences between results 
obtained by our new element and FEM program ANSYS especially for the analyses  
(e.g. structural) that are based on the results from preliminary analyses (e.g. thermal and electric 
analyses). This is caused by the fact that junctions B and C (see Figure 4) are not spot junctions 
(considered in the beam theory) but they are spatial junctions in reality (see Figure 7), so the 
current and heat flow in these junctions are not strictly 1D flows as it is considered in the beam 
theory. 

The comparison of total deformation, temperature distribution and electric potential 
distribution of the FGM actuator calculated by our new approach and commercial FEM 
program ANSYS is shown in Figure 8. 
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Figure 8: Results of electro-thermo-mechanical analysis, top left – electric potential, top right – temperature, 

bottom – displacement (displacement scaling 10:1) 

4 CONCLUSIONS 
New FEM equations for weak coupled static electro-thermo-mechanical analysis of the FGM 

beam structures have been presented in this contribution. The numerical experiment – 
multiphysical analysis of actuator made of FGM has been done using our new approach and 
obtained results have been compared with ones obtained by solution with commercial software 
ANSYS.  
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