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ABSTRACT

This work explores a numerical approach to solving the sine-Gordon
equation using the method of lines combined with cubic B-spline inter-
polation. The sine-Gordon equation, a nonlinear partial differential equa-
tion, arises in various fields of physics and engineering, describing phe-
nomena such as solitons in non-linear optics and magnetic flux lines in
superconductors. In our approach the method of lines is used to discretize
the spatial derivatives, thereby converting the partial differential equation
into a system of ordinary differential equations. These ordinary differential
equations are then solved numerically using standard techniques, specif-
ically the Runge-Kutta method of order 4. Cubic B-spline interpolation
is employed to approximate the spatial derivative, ensuring efficient and
precise computation of the solution. A comprehensive stability analysis
reveals that our scheme requires the time step condition �t � 1.53 h
for numerical stability. Theoretical convergence analysis demonstrates that
the method achieves O(h2) spatial convergence and O(�t4) temporal
convergence, resulting in an overall error bound of O(h2 + �t4). These
theoretical predictions are strongly supported by numerical experiments,
where empirical convergence rates closely match the theoretical values.
To validate the numerical scheme, the results are compared with existing
solutions. Our findings demonstrate the accuracy and computational
efficiency of the proposed method, highlighting its potential as a valuable
tool for studying the dynamics and behavior of systems governed by the
sine-Gordon equation.
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1 Introduction

The sine-Gordon equation is a non-linear partial differential equation (PDE) that is found in
various physical and engineering applications, such as non-linear optics, superconductivity, and the
study of solitons. This equation is known for its intricate mathematical structure and its ability to
describe a wide range of phenomena, including soliton solutions and chaotic behavior. Consequently,
accurately and efficiently solving the sine-Gordon equation is of great interest to both theorists and
practitioners.
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Numerical methods are essential in studying the sine-Gordon equation due to the difficulty of
obtaining analytical solutions for most practical problems. The method of lines (MOL) has become
popular for its flexibility and effectiveness, as it transforms the PDEs into a system of ordinary
differential equations (ODEs) by discretizing the spatial derivatives. These ODEs can then be solved
using standard numerical techniques. The choice of spatial discretization method significantly impacts
the accuracy and efficiency of the MOL.

In this study, we present a new numerical approach for solving the sine-Gordon equation that
combines the method of lines with cubic B-spline interpolation. Cubic B-splines are known for their
smoothness and accuracy in approximating functions and their derivatives. By using cubic B-splines for
spatial discretization, we aim to improve the precision and computational efficiency of the numerical
solution.

We consider the following one-dimensional, non-linear, time dependent sine-Gordon equation:

∂2ϕ

∂t2
= ∂2ϕ

∂s2
− sin ϕ, s ∈ [β1, β2], t > 0, (1)

having IC’s,{
ϕ(s, 0) = h1(s),
∂ϕ

∂t
(s, 0) = h2(s),

(2)

and Dirichlet BC’s,{
ϕ(β1, t) = f1(t),
ϕ(β2, t) = f2(t),

t ≥ 0, (3)

The sine-Gordon equation is given by Edmound Bour in the course of study of surfaces of constant
negative curvature as the Gauss-Codazzi equation for the surface of constant Gaussian curvature.
Dehghan and Shokri [1] presented a meshless numerical method based on radial basis functions to
solve the non-linear Klein-Gordon equation. This approach is an effective and accurate alternative
to traditional mesh-based techniques for this class of problems. Jokela et al. [2] investigated the
sine-Gordon model in the context of a time-like boundary field theory. Their research established
a theoretical connection between this quantum field theory and the statistical mechanics of a two-
component Coulomb plasma. Novkoski et al. [3] developed a numerical direct scattering scheme to
investigate the periodic sine-Gordon equation, providing accurate insights into its wave behavior and
periodic structures. Tamsir et al. [4] introduced a differential quadrature method based on cubic unified
and extended trigonometric B-splines which demonstrated enhanced accuracy and stability in solving
the sine-Gordon equations. Chu et al. [5] demonstrated an advanced cubic B-spline scheme to find
the accurate numerical results of the non-linear sine-Gordon equations across multiple dimensions.
Wang et al. [6] introduced a novel cubic B-spline collocation approach enhanced with an adaptive
mechanism to solve the sine-Gordon equation. Veeresha et al. [7] proposed two efficient numerical
techniques to address the nonlinear sinne-Gordon equations, demonstrating improved computational
performance and convergence. Li and Chen [8] established the stability and effectiveness of a novel
method for solving coupled sine-Gordon equations on unbounded domains, addressing complex wave
interactions. Mohebbi and Dehghan [9] give a higher order solution of the one-dimensional sine-
Gordon equation using compact fourth order finite difference approximation with a fourth order
A-stable DIRKIN method. Uddin et al. [10] proposed a meshfree method of lines using radial basis
functions to solve the nonlinear sine-Gordon equation. Savovic et al. [11] applied a physics-informed
neural network combined with two finite difference methods to obtain numerical solutions of the
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sine-Gordon equation. Wei [12] utilized a discrete singular convolution algorithm for integrating (1).
Batiha et al. [13] proposed a variational iteration method for finding the general analytical solution
of the sine-Gordon equation. Zheng [14] provided a mathematical solution for the sine-Gordon
equation bounded across the real axis. Forth order rational approximation to the matrix exponential
form in a three time level recurrence relation for the mathematical solution of sine-Gordon equation
is presented by Bratsos [15]. By collocation points and approximating the solution by radial basis
function Dehghan and Shokri [16] solved the sine-Gordon equation. The boundary integral equation
method is used by Dehghan and Mirzaei [17]. By using the spline function approximation two implicit
finite difference schemes are proposed by Rashidinia and Mohammadi [18]. Without solving the huge-
scale linear system of equations a meshless technique by using a multi-quadric quasi interpolation is
proposed by Ma et al. [19]. Jiang and Wang [20] developed a meshless method based on multiquadric
quasi-interpolation to solve the sine-Gordon equation.

Khan et al. [21] applied the homotopy analysis natural transform to solve nonlinear partial
differential equations. This method is an effective analytical technique that combines the natural
transform with homotopy analysis. Yaseen and Samraiz [22] proposed a modified new iterative method
for solving both linear and nonlinear Klein-Gordon equation. Their approach provided a simple
and efficient computational tool that does not require linearization or perturbation. Mittal and
Bhatia [23] developed a numerical scheme based on a modified cubic B-spline collocation method
for the nonlinear sine-Gordon equation. This method handled the propagation of solitary waves
accurately. Uddin et al. presented a meshfree approach using radial basis functions for the numerical
solution of the nonlinear sine-Gordon equation without using a structured mesh, offering flexibility
for complex geometries. Uddin et al. [24] presented a meshless method of lines for the numerical
solution of the nonlinear sine-Gordon equation. Raslan et al. [25] conducted a comparative study,
applying the standard finite difference method and non-standard finite difference method to the sine-
Gordon equation. Vivas-Cortez et al. [26] presented an extended cubic B-spline method to find the
solution of the generalized nonlinear time-fractional Klein-Gordon equation gives accurate numerical
results. Their approach proved the modeling of complex fractional dynamics in mathematical physics.
Deresse and Dufera [27] applied physics-informed neural networks to solve the 2D nonlinear sine-
Gordon equation. Their deep learning approach demonstrated the capability of PINNs to handle
the complexities of higher-dimensional problems. Deresse and Dufera [28] explored the use of a deep
learning framework for the generalized nonlinear sine-Gordon equation.

In this paper, we focus on the numerical solution of the one-dimensional non-linear sine-Gordon
equation using the method of lines combined with cubic B-spline interpolation. We choose various
examples of the sine-Gordon equation to show the accuracy of our method, showing that the results
obtained are superior to those obtained by different methods in past years.

The structure of the remaining paper is as follows: Section 2 presents the derivation of a
computational technique using the method of lines based on the cubic B-spline function with a new
approximation for the sine-Gordon equation. Section 3 introduces the stability analysis and Section 4
provides the convergence analysis of the proposed scheme. In Section 5, we compare our numerical
results with several other numerical results found in the literature. Finally, the paper concludes with a
summary of our proposed scheme.

2 The Derivation of the Scheme

This section details the derivation of our numerical scheem, which is based on a specifice
formulation of the cubic B-spline within the method of lines The main aspect of our study is the
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direct interpolation of the solution function φ(s, t) using cubic B-splines, which allows for a consistent
and high-order discretization of both the spatial derivative and the non-linear term. This leads toa
computationally efficient system of ordinary differential equations.

Let �t = t
T

and h = β2−β1
M

with T and M being positive integers. We divide the domain β1 ≤ w ≤ β2

into M equivalent subintervals [wj, wj+1] for j = 0, 1, 2, . . . , M + 1 with β1 = w0 < w1 < . . . < wM−1 <

wM < wM+1 = β2. Spatial derivatives are dicretize using cubic B-splines. By considering the cubic
B-spline basis functions, B3

j (w) defined as:

B3
j (w) = 1

6h3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(w − wj)
3, w ∈ [wj, wj+1],

h3 + 3h2(w − wj+1) + 3h(w − wj+1)
2 − 3(w − wj+1)

3, w ∈ [wj+1, wj+2],
h3 + 3h2(wj+3 − w) + 3h(wj+3 − w)2 − 3(wj+3 − w)3, w ∈ [wj+2, wj+3],
(wj+4 − w)3, w ∈ [wj+3, wj+4],
0, otherwise.

(4)

Note that B3
j (w), B3

j+1(w) and B3
j+2(w) are non-zero due to local support property. If we

define Q(w, t) =
M+1∑
j=0

ϕj(t)B3
j+2(w) where ϕj(t) are unknowns to be found we obtain the following

approximation:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕj(t) ≈ Q(w, t) = ϕj(t)
(

1
6

)
+ ϕj+1(t)

(
4
6

)
+ ϕj+2(t)

(
1
6

)
,

ϕ ′
j(t) ≈ Q′(w, t) = ϕj(t)

(
− 1

2h

)
+ ϕj+2(t)

(
1
2h

)
,

ϕ ′′
j (t) ≈ Q′′(w, t) = ϕj(t)

(
1
h2

)
+ ϕj+1(t)

(
− 2

h2

)
+ ϕj+2(t)

(
1
h2

)
,

(5)

for j = 0, 1, 2, ..., M + 1. A distinct feature of our scheme is the treatment of the non-linear term
in Eq. (1). Rather than linearizing the equation or using iterative methods, we directly approximate
sin(φ(s, t)) by applying the sine function to the cubic B-spline interpolant itself, i.e., sin(φ(s, t)) ≈
sin(Q(w, t)). This ensures that the non-linearity is tackled in a manner fully consistent with the spatial
discretization. Substituting the approximations from (5) for ϕ and its derivatives into (1) yields, for each
node j, the following equation where the non-linearity is embedded within the spline representation

d2ϕj

dt2
= ϕj(t)

(
− 1

h2

)
+ ϕj+1(t)

(
− 2

h2

)
+ ϕj+2(2)

(
1
h2

)
− sin(ϕj(t)

(
1
6

)
+ ϕj+1

(
4
6

)
+ ϕj+2

(
1
6

)
).

The matrix form of above equation is:

d2ϕ

dt2
= Bϕ, (6)

where

B =

⎡
⎢⎢⎢⎢⎢⎣

Q0 R0 S0 0 . . . 0

0 Q1 R1 S1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . QM RM SM 0
0 . . . 0 QM+1 RM+1 SM+1

⎤
⎥⎥⎥⎥⎥⎦

https://www.scipedia.com/public/Ashraf_et_al_2025 4

https://www.scipedia.com/public/Ashraf_et_al_2025


I. Ashraf, M. Yaseeen, S. Trabelsi and M. Balti,

Solving the sine-gordon equation: a novel numerical approach using cubic

b-splines and themethod of lines,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.0, (0), 0

and

ϕ =

⎛
⎜⎜⎜⎜⎜⎝

ϕ0

ϕ1

...

...
ϕM+1

⎞
⎟⎟⎟⎟⎟⎠ ,

with,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qj =
(

− 1
h2

)
− sin

(
1
6

)
,

Rj =
(

− 2
h2

)
− sin

(
4
6

)
,

Sj =
(

1
h2

)
− sin

(
1
6

)
,

for j = 0, 1, 2, .., M + 1. The system (6) of ODEs obtained is then solved using fourth order R-K
method.

3 Stability Analysis

For stability analysis, we consider a linearlized version of the sine-Gordon Eq. (1). For small
amplitudes, we approximate sin(φ) ≈ φ, transforming the equation into the linear Klein-Gordon
equation:

∂2ϕ

∂t2
= ∂2ϕ

∂s2
− ϕ, s ∈ [β1, β2], t > 0. (7)

Applying our spatial discretization using cubic B-splines to Eq. (7) yields the following system of
ordinary differential equations for each node j

d2ϕj

dt2
=

(
1
h2

ϕj − 2
h2

ϕj+1 + 1
h2

ϕj+2

)
− ϕj. (8)

The matrix form of above semi discrete system is:

d2ϕ

dt2
= (Dxx − I)ϕ, (9)

where Dxx is the matrix representing the cubic B-spline discretization of the second derivative, and I is
the identity matrix. To analyze stability, we convert the second-order system (9) to a first-order system.

Let v = dϕ

dt
. Then:

d
dt

[
ϕ
v

]
=

[
0 I

Dxx − I 0

] [
ϕ
v

]
= A

[
ϕ
v

]
. (10)

The stability of the time integration depends on the eigenvalues of the system matrix A. If λ is an
eigenvalue of the spatial discretization matrix Dxx, then the corresponding eigenvalues μ of A satisfy:

μ2 = λ − 1. (11)
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Since Dxx is a negative definite matrix for the second derivative operator, its eigenvalues are real
and negative. Let λmin be the most negative eigenvalue (largest in magnitude). Then the most restrictive
eigenvalues of A are:

μmax = ±i
√|λmin| + 1, (12)

which are purely imaginary. The maximum magnitude |μmax| determines the highest frequency in our
semi-discrete system.

The stability of our scheme depends critically on the spectral properties of the cubic B-spline spa-
tial discretization matrix Dxx. Numerical computation of the eigenvalues for our specific discretization
reveals that the spectral radius scales as:

ρ(Dxx) ≈ α

h2

where α ≈ 3.4 for our formulation. This value was obtained by computing the eigenvalues of our
specific cubic B-spline discretization matrix for various grid sizes and observig the consistent scaling
relationship.

The stability of the fourth-order Runge-Kutta method (RK4) applied to the system (10) requires
that the product �t · μ lies within its stability region for all eigenvalues μ of A. The stability region of
RK4 along the imaginary axis extends to approximately:

|μ�t| � 2.83. (13)

Applying this to our most restrictive eigenvalue μmax, we obtain the stability condition:

�t · |μmax| � 2.83. (14)

Substituting our eigenvalue estimate |μmax| ≈ √
α/h yields:

�t ·
√

α

h
� 2.83 ⇒ �t � 2.83√

α
h. (15)

Using α ≈ 3.4, we obtain the practical stability condition:

�t � 1.53h. (16)

4 Convergence Analysis

The convergence analysis of the proposed scheme must account for errors arising from both
the spatial discretization (cubic B-splines) and the temporal integration (Runge-Kutta method).
We present a comprehensive error analysis that combines theoretical foundations with empirical
validation.

4.1 Spatial Convergence of the Cubic B-Spline Discretization
The core of our spatial approximation lies in the cubic B-spline interpolation. The convergence

properties of cubic B-spline approximations are well-established in numerical analysis [29,30].

Theorem 1 (Cubic B-spline Approximation Error). Let ϕ(s) ∈ C4([β1, β2]) be a sufficiently smooth
function and let Q(s) be its cubc B-spline interpolant on a uniform partition with grid spacing h. Then,
there exist constants K0, K1, K2 > 0, independent of h, such that:
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1. Function Approximation:

‖ϕ − Q‖∞ ≤ K0h4‖ϕ(4)‖∞

2. First Derivative:

‖ϕ ′ − Q′‖∞ ≤ K1h3‖ϕ(4)‖∞

3. Second Derivative:

‖ϕ ′′ − Q′′‖∞ ≤ K2h2‖ϕ(4)‖∞

Proof: See [29] and [30] for detailed proofs based on the Taylor series expansion of the function and
the properties of the B-spline basi. �

In our scheme, the critical term is the approximation of the second spatial derivative ∂2ϕ

∂s2 in Eq. (1).
Theorem 1 guarantees that this discretization error is of order O(h2), provided the exact solution is
sufficiently smooth.

4.2 Temporal Convergence of the Runge-Kutta Method
The method of lines reduces the sine-Gordon Eq. (1) to a system of second-order ordinary

differential equations (ODEs):

d2ϕ

dt2
= F(t, ϕ),

where F incorporates the discretized spatial derivative and the nonlinear term. This system can be
written as a larger system of first-order ODEs by introducing v = dϕ/dt:

d
dt

[
ϕ
v

]
=

[
v

F(t, ϕ)

]
.

The standard fourth-order Runge-Kutta (RK4) method is applied to this system.

Theorem 2 (Local Truncation Error of RK4). Suppose the right-hand side function of the ODE system
is sufficiently smooth. The local truncation erro (LTE) for the RK4 method at each time step is O(Δt5),
which implies a global error of O(Δt4).

Proof: This is a classical result; see [31] for a detailed derivation using Taylor series expansion. �

4.3 Combined Error Analysis
The overall error of the fully discrete scheme is a combination of the spatial discretization error

and the temporal integration error. Let �(t) be the vector of the exact solution at the spatial grid
points, and let �n be the numerical approximation at time tn. Using the triangle inequality, the global
error at time tn can be decomposed as:

‖�(tn) − �n‖ ≤ ‖�(tn) − ϕ(tn)‖︸ ︷︷ ︸
Spatial Error

+ ‖ϕ(tn) − �n‖︸ ︷︷ ︸
Temporal Error

,

where ϕ(t) is the exact solution of the semi-discrete system of ODEs obtained after spatial
discretization.
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• Spatial Error Bound: From Theorem 1, the error in approximating the second derivative is O(h2).
This error propagates through the time integration. Under stability assumptions, the error in
the semi-discrete solution ϕ(t) compared to the projection of the true PDE solution �(t) is also
O(h2).

• Temporal Error Bound: From Theorem 2, the error due to the RK4 time stepping is O(�t4) for
the ODE system.

Therefore, the total global error is bounded by:

‖�(tn) − �n‖ ≤ C1h2 + C2�t4, (17)

where C1 and C2 are constants independent of h and �t.

Remark 1 (Dominant Error Term). The asymptotic convergence rate observed in practice will be
determined by the dominant term in (17). If the spatial error dominates (h2 � Δt4), the overall
convergence will be O(h2). Conversely, if the temporal error dominates (Δt4 � h2), the convergence will
be O(Δt4). For balanced refinement, one should choose Δt ∼ h1/2 to equilibrate both error terms.

4.4 Empirical Validation
The theoretical convergence rate of O(h2) for the spatial discretization is strongly supported by

the empirical results presented in Section 5.

• Example 1 (Table 3): The L∞ error norms for spatial refinement yield a Rate of Convergence
(ROC) of approximately 1.96, which is in excellent agreement with the theoretical value of 2.

• Example 2 (Table 6): The ROC for spatial refinement is approximately 2.42, further validating
the O(h2) theoretical prediction.

• Example 3 (Table 9): The ROC increases towards 2 as the grid is refined, demonstrating
the asymptotic convergence behavior and the effect of non-smooth initial conditions on a
coarse grid.

These empirical results confirm that the spatial error is the dominant factor in the total error for
the chosen time steps, and that the cubic B-spline discretization achieves its theoretical second-order
convergence.

5 Results and Discussion

The accuracy of the proposed scheme is examined and evaluated through the use of various test
problems. To quantify the errors, the following errors are defined to measure the accuracy of the
solutions:

• Absolute Error: ‖exact − approx‖.

• L∞Norm: max‖exact − approx‖.

• Root Mean Square (RMS):
1

N + 1

√
N∑

j=0

‖exact − approx‖2.
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Rate of convergence (ROC) is analyzed by:

• ROC:
log

(
En1

En2

)

log
(

n2

n1

)
where En1 and En2 are errors with n1 and n2, respectively.

Example 1. Consider the sine-Gordon equation,

∂2ϕ

∂t2
= ∂2ϕ

∂s2
− sin ϕ, t > 0, −2 ≤ s ≤ 2,

with the IC’s:{
ϕ(s, 0) = 0,
ϕt(s, 0) = 4 sec(h(s)),

and the BC’s:{
ϕ(−2, t) = 4 arctan(sec(h(−2)t)),
ϕ(2, t) = 4 arctan(sec(h(2)t)), 0 ≤ t ≤ 1.

The corresponding analytical solution is:

ϕ(s, t) = 4 arctan(sec(h(s)t)).

Table 1 summarizes the L∞ and RMS norms at various time steps compairing the outcomes
with those obtained in [19,20,23]. Tables 2 and 3 compare the exact and approximate solutions by
computing absolute errors for Example 1. Fig. 1 illustrates the exact and approximate solutions at
different time steps with a step size h = 0.01 and 
t = 0.01. Figs. 2 and 3 depicts the absolute error
in two dimensional form and space-time graph of exact and approximate solutions, respectively, for
h = 0.01 and 
t = 0.01.

Table 1: Comparison of errors in domain [−2, 2] with h = 0.01 and 
t = 0.01 for Example 1

t [19] [20] [23] Present Scheme

RMS error L∞ norm RMS error L∞ norm RMS error L∞ norm RMS error L∞ norm

0.2 1.76 × 10−5 9.25 × 10−5 6.55 × 10−7 2.50 × 10−5 2.69 × 10−7 2.26 × 10−5 1.49 × 10−7 3.73 × 10−7

0.4 1.62 × 10−4 1.62 × 10−4 1.15 × 10−6 4.20 × 10−5 1.19 × 10−6 7.52 × 10−5 8.65 × 10−7 2.06 × 10−6

0.6 1.65 × 10−4 3.73 × 10−4 1.55 × 10−6 6.54 × 10−5 2.96 × 10−6 1.55 × 10−4 2.21 × 10−6 4.85 × 10−6

0.8 2.98 × 10−4 6.24 × 10−4 3.92 × 10−6 4.01 × 10−4 5.72 × 10−6 2.59 × 10−4 3.88 × 10−6 7.76 × 10−6

1.0 4.37 × 10−4 8.94 × 10−4 1.56 × 10−5 1.53 × 10−3 9.56 × 10−6 3.84 × 10−4 5.55 × 10−6 9.99 × 10−6

https://www.scipedia.com/public/Ashraf_et_al_2025 9

https://www.scipedia.com/public/Ashraf_et_al_2025


I. Ashraf, M. Yaseeen, S. Trabelsi and M. Balti,

Solving the sine-gordon equation: a novel numerical approach using cubic

b-splines and themethod of lines,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.0, (0), 0

Table 2: Exact solution, approximate solution and absolute error when n = 9, t = 1 and 
t = 0.01 for
Example 1

s Theoretical Approximate Absolute error

−1.6 1.4804 1.4730 7.33 × 10−3

−1.2 2.0184 2.0085 9.53 × 10−3

−0.8 2.5681 2.5651 2.97 × 10−3

−0.4 2.9858 2.9953 9.49 × 10−3

0.0 3.1415 3.1572 1.57 × 10−2

0.4 2.9858 2.9953 9.49 × 10−3

0.8 2.5681 2.5651 2.97 × 10−3

1.2 2.0183 2.0088 9.53 × 10−3

1.6 1.4804 1.4730 7.32 × 10−3

Table 3: Error norm together with rate of convergence when s ∈ [−2, 2] and 
t = 0.01 for Example 1

n L∞ Error ROC RMS Error ROC

10 1.1775 × 10−2 − 6.7812 × 10−3 −
20 3.3726 × 10−3 1.79 1.9046 × 10−3 1.83
40 8.9427 × 10−4 1.92 5.0573 × 10−4 1.91
80 2.2976 × 10−4 1.96 1.3037 × 10−4 1.96

Figure 1: Time evolution of solution for Example 1 showing excellent agreement exact (right) and
approximate (left) when h = 0.01 and �t = 0.01
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Figure 2: Absolute error distribution for Example 1 at t = 1 when h = �t = 0.01. The symmetric
error patters confirm the stability of our method, with errors remaining bounded throughout the
computational domain

Figure 3: Space-time evolution of exact (left) and approximate (right) solutions for Example 1 over
t ∈ [0, 1] when �t = h = 0.01

Example 2. Consider the sine-Gordon equation,

∂2ϕ

∂t2
= ∂2ϕ

∂s2
− sin ϕ, t > 0, −3 ≤ s ≤ 3,

having ICs,{
ϕ(s, 0) = 0,
ϕt(s, 0) = 4 arctan eτ s,
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and BCs,{
ϕ(−3, t) = 4 arctan eτ(−3−ηt),
ϕ(3, t) = 4 arctan eτ(3−ηt), t > 0

where, τ = 1√
1−η2

and η = 0.5.

The analytical solution of the given problem is:

ϕ(s, t) = 4 arctan eτ(s−ηt).

Table 4 provides a comparison of L∞ norm at different time stages, with the computed outcomes
compared with [23]. Tables 5 and 6 present the exact solution, approximate solution and absolute
errors. Fig. 4 illustrates the exact and approximate solutions at different time steps by taking h = 0.04
and 
t = 0.0001. Figs. 5 and 6 show the absolute error in two-dimensional form and space-time graph
of exact and approximate solution at η = 0.5, h = 0.04 and 
t = 0.0001, respectively.

Table 4: Comparison of maximum absolute error (L∞) with η = 0.5, 
t = 0.0001 & h = 0.04 for
Example 2

t [23] Present scheme

0.25 4.90 × 10−5 6.43 × 10−6

0.50 7.55 × 10−5 2.44 × 10−5

0.75 1.43 × 10−4 5.05 × 10−5

1.00 2.10 × 10−4 8.10 × 10−5

Table 5: Exact solution, approximate solution and absolute errors when n = 30, t = 0.5 and

t = 0.0001 for Example 2

s Theoretical Approximate Absolute error

−2.8064 0.1171 0.1171 8.23243 × 10−5

−2.6129 0.1464 0.1464 1.65775 × 10−4

−2.4193 0.1831 0.1830 2.59479 × 10−4

−2.2258 0.2289 0.2288 3.71248 × 10−4

−2.0322 0.2860 0.2859 5.17694 × 10−4

−1.8387 0.3574 0.3572 7.24952 × 10−4

1.4516 5.3047 5.3052 2.57576 × 10−3

1.6451 5.4951 5.4954 1.83656 × 10−3

1.8387 5.6501 5.6502 1.27688 × 10−3

2.2258 5.8763 5.8764 6.16663 × 10−4

2.4193 5.9574 5.9575 4.23982 × 10−3

2.8064 6.0746 6.0746 1.36873 × 10−4
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Table 6: Error norm together with rate of convergence when s ∈ [−3, 3] and 
t = 0.01 for Example 2

n L∞ Error ROC RMS Error ROC

10 3.5129 × 10−2 − 1.7584 × 10−2 −
20 9.556 × 10−3 1.88 4.8790 × 10−3 1.85
40 2.4261 × 10−3 1.98 1.2049 × 10−3 2.02
80 4.7489 × 10−4 2.35 2.1961 × 10−4 2.46

Figure 4: Time evolution of solution for Example 2 showing excellent agreement exact (right) and
approximate (left) when h = 0.04 and �t = 0.0001

Figure 5: Absolute error distribution for Example 2 at t = 1 when h = 0.04, η = 0.5 and �t = 0.0001.
The symmetric error patters confirm the stability of our method, with errors remaining bounded
throughout the computational domain
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Figure 6: Space-time evolution of exact (left) and approximate (right) solutions for Example 2 over
t ∈ [0, 1] when h = 0.04, �t = 0.01 and η = 0.5

Example 3. Consider the sine-Gordon equation,

∂2ϕ

∂t2
= ∂2ϕ

∂s2
− sin ϕ, t > 0, −10 ≤ s ≤ 10,

having IC’s,{
ϕ(s, 0) = 0,
ϕt(s, 0) = 3.458 sech(0.8945s),

The exact solution of the corresponding problem is given as:

ϕ(s, t) = 4 tan−1 (2 sin(0.44725t) sech(0.8945s)) .

The boundary conditions are derived from theoretical solution.

The numerical results of Example 3 are calculated within the computational interval [−10, 10]
and the computed outcomes are compared with those from [15,24]. Table 7 presents a comparison
of L∞ norm at different time stages. Table 8 shows the exact solution, approximate solution and
absolute errors. Table 9 records error norms together with convergence rates for various spatial step
sizes. Fig. 7 illustrates the exact and approximate solutions at different time steps using h = 0.01

t = 0.001. Figs. 8 and 9 display the absolute error in two-dimensional form and space-time graph of
exact and approximate solutions at h = 0.01 and 
t = 0.001 is shown, respectively.

Table 7: Comparison of maximum absolute error (L∞) at h = 0.01 and 
t = 0.001 for Example 3

t [15] [24] Present scheme

1 0.98816 × 10−3 1.474 × 10−3 6.14 × 10−5

10 0.16291 × 10−2 9.215 × 10−3 2.96 × 10−4

20 0.10379 × 10−1 3.038 × 10−1 5.42 × 10−4
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Table 8: Exact solution, approximate solution and absolute error when n = 9, t = 1 and 
t = 0.001
for Example 3

s Theoretical Approximate Absolute error

−8 0.0054 0.0049 4.0499 × 10−4

−6 0.0323 0.0298 2.4233 × 10−3

−4 0.1929 0.1783 1.4627 × 10−2

−2 1.0967 1.0146 8.2104 × 10−2

0 2.8525 3.0698 2.1735 × 10−2

2 1.0967 1.0146 8.2104 × 10−2

4 0.1929 0.1783 1.4627 × 10−3

6 0.3230 0.0298 2.4233 × 10−4

8 0.0053 0.0049 4.0449 × 10−3

Table 9: Error norm together with rate of convergence when s ∈ [−10, 10] and 
t = 0.01 for
Example 3

n L∞ Error ROC RMS Error ROC

10 3.7916 × 10−2 − 1.7396 × 10−2 −
20 3.2401 × 10−2 0.23 1.4665 × 10−2 0.25
40 1.4815 × 10−2 1.13 4.3914 × 10−3 1.74
80 4.1947 × 10−3 1.82 1.1366 × 10−3 1.95

Figure 7: Time evolution of solution for Example 3 showing excellent agreement exact (right) and
approximate (left) when h = 0.01 and �t = 0.001
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Figure 8: Absolute error distribution for Example 3 at t = 1 when h = 0.01 and �t = 0.0001.
The symmetric error patters confirm the stability of our method, with errors remaining bounded
throughout the computational domain

Figure 9: Space-time evolution of exact (left) and approximate (right) solutions for Example 3 over
t ∈ [0, 1] when h = 0.01, �t = 0.001

6 Concluding Remarks

This article has outlined a numerical scheme for the sine-Gordon equation using the method
of lines together with space discretization using cubic B-splines. The most original part of this
contribution is in the specific combination of these techniques and its implemented efficiency. Our
technique, as opposed to the other spline based approaches, takes advantage of the thoroughly
studied characteristics of cubic B-splines. Moreover, unlike other cubic B-spline methods like the
DQM technique, our scheme takes advantage of a simple RK4 solver with high precision and
computational efficiency without requiring more sophisticated time-stepping schemes. The numerical
solution confirms that this specific combination is a robust substitute for existing spline-based
solutions. Furthermore, the utilization of cubic B-spline interpolation within the method of lines
framework offers an optimistic numerical approach. The spatial derivative is approximated using cubic
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B-splins following the discretization of the spatial domain and approximating the spatial derivative 
with cubic B-splines, we have demonstrated high accuracy and stability in our numerical simulations. 
The resulting system of ordinary differential equations is solved reliably using the Runge-Kutta 
method. Our method exhibits computational efficiency and accuracy when compared to existing 
approaches, making it better tool for studying the dynamics and behavior of systems governed by 
the sine-Gordon equation. Further research could explore the extension of this method to higher 
dimensions and its applications to more complex systems in physics and engineering.
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