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In order to improve the adaptation of driver to the advanced driver assistance system (ADAS) and optimize the active safety
control technology of vehicle under man-computer cooperative driving, this paper investigated the correlation between driver’s
improper driving behaviors and abnormal vehicle states under the ADAS. Based on the warning data collected from the driver’s
assistance warning system equipped on buses, the interaction between improper behaviors, between abnormal vehicle states, and
between improper behaviors and abnormal vehicle states were quantitatively analyzed through the hierarchical clustering method
and improved Apriori algorithm. The results showed that eye closure and yawn were high in concurrency (probability: 0.888) and
interaction (average probability: 0.946); the interaction among lane departure, rapid acceleration, and rapid deceleration are
frequent (average probability: 0.7224); eye closure (average probability: 0.452) and yawn (average probability: 0.444) are likely to
induce abnormal vehicle states such as rapid acceleration and rapid deceleration. Some suggestions proposed based on the results
are as follows. First, it is suggested that the ADAS should combine the warning modes of eye closure and yawn; second, when the
driver closes eyes or yawns, the control of the ADAS over the lateral and longitudinal performance of vehicle should be enhanced;
third, the extent of control by the ADAS should be determined according to the relationship probability; finally, the lateral control

over the vehicle by the ADAS should be strengthened when there is a forward collision warning.

1. Introduction

The . Department of Transportation, SAE, etc. [1] classified
the development of the intelligent vehicle into six levels of no
automation, driver assistance, partial automation, condi-
tional automation, high automation, and full automation.
Although different levels and functions of intelligent vehicle
technology are developing rapidly, the real sense of full
working condition automatic driving has been difficult to
achieve in the short term [2]. We have only entered the
initial stage of man-computer cooperative driving where
drivers and automatic driving systems collaborate with each
other and will be in this phase for a long time. Man-com-
puter collaborative driving means that under nonfully au-
tomated driving conditions, the driver and the vehicle’s

intelligent control system can cooperatively complete
driving in the loop. And how to realize the hybrid en-
hancement of the man-computer system to avoid causing
man-computer conflict and nonco-operative mode is the
most important key to improve the efficiency of man-
computer cooperative driving key factors [3].

However, interaction of automated vehicle and human
driver is not a well-studied subject [4]. During man-com-
puter cooperative driving, the automated vehicle and the
driver can be described as two entities that perform control
together [5]. In this regard, many scholars often study both
the driving behavior of the driver and the state of the vehicle
to facilitate the driver’s and the intelligent vehicle’s efficient
cooperation. Sun et al. [6] analyzed driver lane change
behavior characteristics and proposed an adaptive algorithm
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for estimating the optimal threshold of lane change warning
(LCW) in real time to improve the performance of the LCW
system. Zhu et al. [7] analyzed the driver’s lane change time
and lane change behavior characteristics under typical
conditions using driving simulators and proposed a per-
sonalized vehicle lane change assistance system that com-
bined driver behavior recognition strategies. Sang et al. [8]
determined the collision risk based on the driver’s driving
characteristics and proposed a collision warning system
based on the individual driver’s driving behavior. Wang et al.
[9] determined different time-to-collision (TTC) warning
thresholds based on different driving styles. Ahmadi and
Machiani [10] considered the driver perceived reaction time
(PRT) factor and adjusted the warning time in real time
using the reward and punishment function. And an adaptive
curve speed warning system (ACSW) was designed.

Vehicle performance and safety are directly related to the
control measures taken by the driver as the adaptive, optimal
decision controller of the vehicle. Among them, the esti-
mation of the vehicle state is an important issue in vehicle
dynamics and is one of the key technologies to achieve an
active safety control system for the vehicle [11]. Therefore,
there has also been consideration of vehicle condition factors
to improve advanced driver assistance systems to optimize
human-machine interaction. Hsiao et al. [12] considered the
vehicle as a polygon in the lane departure warning mech-
anism and added the vehicle speed information towards the
lane boundary to optimize the warning judgment. Sun et al.
[13] designed a risk prediction model considering the speed
parameters when the vehicle is in the two states of critical
skid or rollover. And the warnings of system were also
optimized according to the risk level. Many other scholars
have used the vibration diagnostic method [14], cyber-
physical method [15], unscented Kalman filtering algorithm
[16], multiple models [17], and multiple algorithms [18] to
optimize the system for accurate estimation of vehicle states
and control, considering vehicle state parameters such as
rolling bearing state, reliable distribution of vehicle’s lon-
gitudinal velocity, lateral deviation of vehicle mass center,
and tire adhesion.

From the above literature, although optimizing man-
computer cooperation in terms of driver’s driving behavior
and vehicle state, respectively, has been quite effective.
However, they had neglected the influence between driving
behavior and vehicle state in the process of man-computer
cooperative driving. Li et al. [19] indicated that for intelligent
vehicles with advanced driver assistance systems, it is nec-
essary to combine the two directions of driver and system
control (the effect of their control is reflected by the vehicle
state) into a single integrated system to improve the safety
and comfort of the vehicle. Li et al. [20] proposed a driving
style estimation method based on maneuver transition
probability to promote the optimization of man-computer
cooperation, considering multiple vehicle maneuver states
(e.g., free driving, approaching, near following, and con-
strained left and right lane changes). Na and Cole [21]
explored the relationship between driving behavior and
vehicle front wheel steering using the Stackelberg equilib-
rium theory. They also explored the control strategy of driver
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and active front wheel steering by applying a linear quadratic
dynamic optimization algorithm and a distributed model
predictive control method, respectively. Zhou et al. [22]
considered relevant vehicle state indicators to study the
behavior characteristics of driver while driving on the de-
celeration lane of city expressway ramp. Despite that, they
failed to consider the quantification of the relationship
between driving behavior and vehicle state. The limitation of
these studies lies in that the driver’s safety control over the
vehicle is studied only from the driving behavior or vehicle
state before the warning or accident. Also, the interactive
influence of multiple warning occurrences in the ADAS was
not considered. In the study of man-computer cooperative
driving, we should further investigate the interaction be-
tween multiple warnings in the ADAS [23]. The best method
for the man-computer cooperative control research, the
ADAS as the mainstream equipment of man-computer
cooperative control systems nowadays, is to conduct sta-
tistical analysis on the actual warning date of vehicles
equipped with the common ADAS [24].

Therefore, based on warning data of the driver state
monitoring (DSM) system and advanced driver assistance
system (ADAS), the relationship between improper driver
behaviors and abnormal vehicle states was explored under
ADAS conditions, and the interactive influence between
multiple warnings was analyzed. So as to provide scientific
basis for optimizing the interaction between driver and the
ADAS research and promote the development of man-
computer cooperative driving. In this study, the warning
data were preprocessed and classified into the corresponding
intervals through the hierarchical clustering method for later
investigation of the association rules. Then, an improved
effectivity-based Apriori algorithm was proposed to explore
the association between driver’s improper driving behaviors,
abnormal vehicle states, and improper driving behaviors and
abnormal vehicle states, so as to quantify the correlation
between driving behavior and vehicle state.

The rest of this paper was arranged as follows. In the next
section, Materials and Methods, we introduced the general
situation of data acquisition equipment together with the
data selection method and preprocessing process and pro-
posed a relationship mining method based on the improved
Apriori algorithm. In Section 3, Results, we verified the
existence of the mined relationships and the validity of data
clustering results and analyzed the relationship mining re-
sults based on the improved Apriori algorithm (including
relationship between improper driving behaviors, rela-
tionship between abnormal vehicle states, and relationship
between improper driving behaviors and abnormal vehicle
states). In the final section, Discussion, we discussed the
practical significance of the association rules and put for-
ward some suggestions on optimizing the active safety
control technology of the ADAS.

2. Materials and Methods

2.1. Equipment Overview. In this paper, the warning data of
Zhenjiang municipal bus driver’s assistance warning system
was adopted for the analysis, which can avoid the influence
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on effectiveness of research results brought by the subjec-
tivity of questionnaire and unfaithful environmental sim-
ulation of the simulator.

The driver assistance warning system is composed of the
driver state monitoring system and ADAS. Its front-end
equipment mainly consists of an intelligent driving terminal
and a DVR (digital video recorder) vehicle data recorder
installed on the bus. The intelligent driving terminal, which
contains a DSM camera of the built-in fatigue driving
warning system, an ADAS camera, and an active safety
warning system loudspeaker, is used to collect the real-time
video warning data of the bus driver. The DVR vehicle data
recorder, which is composed of a video displayer and two
DVR vehicle data recorders, can cooperate with the intel-
ligent driving terminal to realize the real-time data acqui-
sition of radar warning data of the bus and the front vehicle
and of the driving characteristics of the bus. The video
displayer is used to display the images captured by the
camera of the DVR vehicle data recorder. The layout of the
equipment is shown in Figure 1.

2.2. Data. In order to ensure the stability and effectivity of
the collected warning data as well as the universality of the
research results, in this paper, special bus routes such as
temporary bus lines, community bus lines, Medicheng
circulation lines, and tourism bus lines were excluded. The
warning data were collected from the rest 113 bus lines for
analysis.

Aiming at the problems such as data redundancy, data
exception, data missing, inconsistent data forms, and data
matching errors, data cleaning is conducted. The basic data
obtained include time, warning type, longitude, latitude,
route, warning location, and license plate number. The
warning types include eye closure, yawn, and looking away.
As for the warning data regarding vehicle state, there are lane
deviation, rapid acceleration, rapid deceleration, and for-
ward collision. The warning types and the conditions for
triggering the warning system are presented in Table 1.

2.3. An Improved Apriori Algorithm Based on Effectivity.
Association rule analysis is one of the effective methods for
exploring the potential relationship between data items.
Among them, the most typical approach is the Apriori al-
gorithm. In this Apriori algorithm, the data are scanned
repeatedly to generate the candidate k-item set and calculate
the support count; then, the frequent k-item set is selected
based on support, so the strong association rules can be
extracted based on confidence. This process is repeated until
the candidate k-item set is empty, in which case the ex-
traction of association rules is complete, and so the Apriori
algorithm is ended.

In the conventional Apriori algorithm, some support
(confidence) is slightly smaller than the minimum threshold,
but the corresponding confidence (support) is large enough,
so that the association rules that can well reflect the rela-
tionship between things are lost. It is not feasible to solve this
problem by adjusting the minimum threshold given that a
large number of redundant rules will be generated. Aiming

at this problem, four concepts, namely effectivity, minimum
effectivity, ordered k-items set, and ordered frequent k-items
set, are introduced as shown below:

Effectivity (Eff):

1
Eff = 5(Sup2 +Conf”), O0<Eff<1. (1)

The minimum effectivity (Mineff):

1
Mineff = \/5 (Minsup2 + Minconfz). (2)

Ordered k-item set: the set containing k items is un-
ordered except for the last item whose order is fixed

Ordered frequent k-item set: an ordered k-item set with
the effectivity larger than the minimum effectivity

The improved Apriori algorithm flow is shown in Fig-
ure 2. This algorithm can not only extract the strong as-
sociation rules obtained by the traditional Apriori algorithm
but also mine the general correlation rules between strong
association rules and invalid rules, fully mining the hidden
correlation rules in the database. Furthermore, it can avoid
the redundant rules in the conventional Apriori algorithm
generated by adjusting the minimum support (or confi-
dence) threshold and the aimless adjustment of the mini-
mum support (or confidence) threshold. The minimum
optimization degree of the improved Apriori algorithm is
calculated to be

7I(Minsup2 + Minconfz) — Minsup - Minconf

Mi ti = ,
tnopt Minsup - (1 — Minconf) + (1 — Minsup) - Minconf

(3)

where Minopti was the minimum degree of optimization,
Minsup is the minimum support, and Minconf is the
minimum confidence.

The improved Apriori algorithm proposed based on the
introduced validity metrics has the following algorithmic
steps:

Step 1. Set thresholds for minimum support (Minsup)
and minimum confidence (Minconf), and calculate
minimum effectiveness (Mineft) according to actual
needs, so that k=1

Step 2. Scan the transaction database for a total number
of transactions (sets of items) of N, and calculate the
support count for all 1 set

Step 3. Generate the ordered k-item set and judge
whether the ordered k-terms set is empty or not; if it is
empty, output all strong association rules and general
association rules and end the algorithm; if it is not
empty, proceed to the next step

Step 4. Calculate the validity of each ordered k-item set,
and extract the ordered k-item set that meets the
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Ficure 1: Equipment layout.
TaBLE 1: Description of the trigger for each type of warning.
Warning type Condition for triggering the warning system Sample size

The warning system will be triggered when the driver’s eyes keep closed for a long time

Eye closure while driving, 6414
Yawn The warning system will be triggered once the driver yawns while driving. 6665
Looking away The warning system will be triggered when the driver keeps looking to the left or right for 287
over 5s.
The warning system will be triggered once the vehicle’s speed exceeds 55k m/h and deviates
from the lane to cross the lane line, except when the vehicle’s turn signal is on, the lane
Lane departure . . . . . . . 3457
change occurs in acceleration/deceleration state, the vehicle switches lanes rapidly, there is
no line, or the lane lines are not clear.
Rapid acceleration and rapid The warning system will be triggered once the longitudinal acceleration change value 1035 and
deceleration exceeds the corresponding threshold value prescribed by the SGS safety standard. 3146
The warning system will be triggered once the vehicle’s speed exceeds 55 km/h or when the
vehicle is running at a constant speed of over 30 km/h, and meanwhile, its relative speed is
Forward collision faster than the vehicle in the front of it, and the relative time distance (the distance between 2360

the vehicle’s head and the tail of its front vehicle/(vehicle speed—speed of the front vehicle))

is within 3s.

conditions as the ordered frequent k-item set (note that
when k = 1, the validity is the degree of support, and the
minimum validity is equal to the minimum degree of
support)

Step 5. Determine whether the conditions are met for
an ordered set of frequent k items; if so, the rule from
the set of frequent k items is classified as a strong rule;
otherwise, the rule from that set of frequent k items is
classified as a general rule

Step 6. Connect the ordered frequent k-item set to the
ordered frequent 1-item set, get N k-item sets (at this
time k=k+ 1), and calculate the support count, return
to Step 3

3. Results

3.1. Data Clustering. To facilitate the use of association rule
algorithm to explore the relationship between improper

driving behaviors and abnormal vehicle states, the warning
data were classified into their corresponding intervals, re-
spectively. The person correlation analysis was conducted on
the warning data after cleaning, and the analysis results are
shown in Table 2. It could be observed that the correlation
coefficient between any two warning types was larger than
0.9, and the significance level was lower than 0.01, indicating
that the interaction between various warning types was
obvious, and thus cluster analysis was feasible.

The unsupervised learning hierarchical clustering anal-
ysis and nearest neighbor were used to calculate the be-
tween-class distance for cluster analysis. The number of
clusters (number of intervals) was 363.

The spatial distribution of the processed warning data
was consistent with that of the bus lines, so was their density.
The spatial distribution of data is shown in Figure 3. It can be
seen from Figure 4 that the intervals with 2 warning items
are the most, followed by 3, 4, and 5 items. In contrast, the
intervals containing 6 or 7 warning items were the least,
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FiGure 2: The algorithm flowchart of improved Apriori based on effectivity.
which agrees with the occurrence rule of actual warning.  driving behaviors and abnormal vehicle state was

After hierarchical clustering, the data were reliable, and
analysis can be carried out on association rules.

3.2. Association Rules between Improper Driving Behaviors
and Abnormal Vehicle States. The improved Apriori algo-
rithm was employed to mine the warning data so as to
quantify the relationship between driving behavior and
vehicle state. After referring to previous experience [25, 26]
and considering the characteristics of warning data, the
minimum support was set to 0.2 and the minimum confi-
dence was set to 0.4, so the minimum effectivity is 0.316. The
improved Apriori algorithm program was then written in
python language for calculation. In view of the actual op-
erating state of bus and the existing experimental conditions,
the relationship between improper driving behaviors, be-
tween abnormal vehicle states, and between improper

investigated.

3.2.1. Relationship between Improper Driving Behaviors.
The rules of association between improper driving behaviors
are given in Table 3.

It could be seen that the support and confidence between
eye closure and yawn were greater than the corresponding
minimum thresholds. Thus, “eye closure-yawn” and
“yawn-eye closure” were strong rules, indicating that the
interaction between eye closure and yawn was significant.
The probability of eye closure and yawn where both occur
was 0.888, and the probability of eye closure (yawn) followed
by yawn (eye closure) was 0.928 (0.963). The probabilities of
looking away occurring with eye closure or yawn were
smaller than the minimum support, but the effectivity was
larger than the minimum effectivity, so the rule was effective.
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TaBLE 2: The Person correlation analysis results among the warning types.

Warning types

Warning types Results Eye Vawn Looking Lane Rapid Rapid Forward
closure W away departure acceleration deceleration collision
P.R. 1 0.988** 0.944** 0.998** 0.994** 0.994** 0.999**
Eye closure S. 0.000 0.000 0.000 0.000 0.000 0.000
N 2753 1585 180 1153 760 2316 1052
P.R. 0.988"" 1 0.976*" 0.991*~ 0.995** 0.983** 0.989**
Yawn S. 0.000 0.000 0.000 0.000 0.000 0.000
N 1585 1585 180 1153 760 1585 1052
P.R. 0.944"" 0.976™* 1 0.991** 0.994"* 0.981"* 0.982""
Looking away S. 0.000 0.000 0.000 0.000 0.000 0.000
N 180 180 180 180 180 180 180
P.R. 0.998"* 0.991** 0.991** 1 0.997** 0.996** 0.999**
Lane departure S. 0.000 0.000 0.000 0.000 0.000 0.000
N 1153 1153 180 1153 760 1153 1052
Rapid P.R. 0.994** 0.995%* 0.994** 0.997** 1 0.993** 0.992**
accpeleration S. 0.000 0.000 0.000 0.000 0.000 0.000
N 760 760 180 760 760 760 760
Rapid PR 0.994*~ 0.983** 0.981** 0.996** 0.993** 1 0.998*
decl:jeleration S. 0.000 0.000 0.000 0.000 0.000 0.000
N 2316 1585 180 1153 760 2316 1052
Forward P.R. 0.999** 0.989** 0.982*" 0.999"* 0.992** 0.998"* 1
collision S. 0.000 0.000 0.000 0.000 0.000 0.000
N 1052 1052 180 1052 760 1052 1052

P.R. is Pearson correlation; S. denotes significant (two-tailed); N denotes the degree of freedom; **indicates that the correlation is significant at a significance
level (double test) less than 0.01.
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FIGURE 3: Spatial and temporal distribution of warning data after clustering processing.

The probabilities of looking away followed by eye closure
and yawn were, respectively, 0.961 and 0.922. Similarly, the
probability of looking away and yawn (eye closure) followed
by eye closure (yawn) was 0.957 (0.918).

The spatial and temporal distributions of eye closure and
yawn are shown in Figure 5 where the vertical axis was the
spatial data obtained by dimensionality reduction of the
latitude and longitude data, and the horizontal axis was the
time data obtained by standardizing the warning occurrence
time data. Figure 5 shows that the spatial and temporal
distributions of eye closure and yawn are roughly consistent,
and the two centers of mass are close to each other, indi-
cating that the warning data used for association rule mining

are effective and reliable. The cumulative degree of inter-
actions between eye closure, yawn, and looking away is il-
lustrated in Figure 6. The number of interactions between
eye closure and yawn was significantly higher than that
between eye closure and looking away, as well as that be-
tween yawn and looking away. This result was consistent
with the association rules, indicating that the association
rules were effective and reliable.

3.2.2. Relationship between Abnormal Vehicle States. The
association rules between abnormal vehicle states obtained
are given in Table 4. The association rules among lane
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FIGURE 4: Distribution of the number of warning items.

TaBLE 3: Association rules for improper driving behaviors.

Association rules Support Confidence Effectivity

Eye closure-yawn* 0.888 0.928 0.908
Yawn-eye closure* 0.888 0.963 0.926
Looking away-eye closure 0.140 0.961 0.687
Looking away-yawn 0.135 0.922 0.659
Looking away-yawn-eye 0129 0957 0.683
closure
Looking away-eye 0129 0918 0.656
closure—yawn
Note: *indicates strong rules; otherwise, they are general rules.
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FIGURE 5: Spatial and temporal distributions of eye closure and
yawn.

departure, rapid acceleration, and rapid deceleration were all
strong rules, and they interacted with each other remarkably.
The occurrence probabilities of any two or all three were
higher than the minimum support, 0.2. The probabilities of
lane departure followed by rapid acceleration and rapid
deceleration were 0.763 and 0.675, respectively. The prob-
abilities of rapid deceleration followed by lane departure and
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—— Eye closure and yawn
—— Eye closure and looking away
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Figure 6: Cumulative interaction among eye closure, yawn, and
looking away.

rapid acceleration were 0.507 and 0.875, respectively. The
occurrence probability of rapid acceleration followed by
rapid deceleration was 0.792, indicating a strong interaction
between rapid acceleration and rapid deceleration.

The probability of rapid acceleration and lane departure
followed by rapid deceleration was 0.874, while the prob-
ability of rapid deceleration and lane departure followed by
rapid acceleration was 0.987, as compared against 0.571, the
probability of rapid deceleration and rapid acceleration
followed by lane departure. The probability of forward
collision and lane departure where both occur was smaller
than the minimum support, but the probability of forward
collision followed by lane departure was 1.000, much higher
than the minimum effectivity.

Figure 7 shows the distribution of various warning types,
from which it can be seen that the distributions of lane
departure, rapid acceleration, and rapid deceleration are
roughly the same, and the three centers of mass are close to
each other, indicating that the warning data used for associ-
ation rule mining are effective and reliable. The interaction
among rapid deceleration, rapid acceleration, and lane de-
parture is shown in Figure 8 where the horizontal axis rep-
resents the sequence of warnings at the time of occurrence,
vertical axis represents the warning type (1 stands for lane
departure, 2 for rapid acceleration, and 3 for rapid decelera-
tion), and the numbers in the legend are the interval numbers.
By connecting the warning points, the lines in Figure 8 are
formed, from which the interaction between the points could
be observed. The interaction among lane departure and rapid
acceleration and rapid deceleration was frequent, among which
that between rapid acceleration and rapid deceleration was the
most significant, which agreed with the association rules, in-
dicating that the association rules were reliable.

3.2.3. Relationship between Improper Driving Behaviors and
Abnormal Vehicle States. The association rules are listed in
Table 5. The association rules among eye closure, yawn, rapid
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TABLE 4: Association rules among various abnormal vehicle states.

Association rules Support Confidence Effectivity
Lane departure-rapid acceleration” 0.249 0.763 0.568
Lane departure-rapid deceleration® 0.221 0.675 0.502
Rapid acceleration-lane departure-rapid deceleration* 0.218 0.874 0.637
Rapid acceleration-rapid deceleration® 0.381 0.792 0.621
Rapid deceleration-lane departure* 0.221 0.507 0.391
Rapid deceleration-rapid acceleration-lane departure® 0.218 0.987 0.715
Rapid deceleration-rapid acceleration* 0.381 0.875 0.675
Rapid deceleration-rapid acceleration-lane departure* 0.218 0.571 0.432
Forward collision-lane departure 0.109 1.000 0.711
Note: *indicates strong rules; otherwise, they are general rules.
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FIGURE 7: Spatial and temporal distribution of lane departure, rapid
acceleration, and rapid deceleration.

acceleration, and rapid deceleration were all strong rules,
indicating that they were the major influencing indicators in
interaction between improper driving behaviors and ab-
normal vehicle states. The probabilities of rapid acceleration,
rapid deceleration, and lane departure induced by eye
closure were 0.476, 0.428, and 0.335, respectively. The
probabilities of rapid acceleration, rapid deceleration, and
lane departure induced by yawn were 0.481, 0.407, and 0.354,
respectively. The probabilities of rapid acceleration, rapid
deceleration, and lane departure induced by eye closure and
yawn together were 0.481, 0.403, and 0.361, respectively. The
probabilities of rapid acceleration and rapid deceleration
induced by yawn and lane departure together were 0.763 and
0.675, respectively.

The spatial and temporal distributions of eye closure,
yawn, lane departure, rapid acceleration, and rapid decel-
eration were roughly consistent. Moreover, the mass centers
were close to each other, and the tendencies of the lines
connecting the mass centers were similar, indicating that the
warning data used for association rule exploring were re-
liable. Figure 9 shows the spatial and temporal distributions
of various warning types. The cumulative changes in the
interaction of improper driving behaviors (eye closure and
yawn) with abnormal vehicle states (lane departure, rapid

Time sequence
Various interaction interval

—o— 2.00 32.00
—o— 8.00 —o— 33.00
9.00 —o— 34.00
—o— 10.00 —o— 35.00
11.00 36.00
—o— 13.00 37.00
14.00 —o— 39.00
15.00 40.00
19.00 —o— 41.00
—o— 20.00 —o— 45.00
21.00 —o— 48.00
24.00 —o— 49.00
—o— 25.00 —o— 50.00
27.00 —o— 51.00
—o— 28.00 52.00
25.00 —o— 60.00
—o— 30.00 76.00
31.00

Figure 8: The interaction among lane departure, rapid accelera-
tion, and rapid deceleration.

acceleration, and rapid deceleration) are presented in Figure 10.
Despite that the number of interactions between eye closure (or
yawn) and rapid acceleration (or rapid deceleration) was higher
than that between eye closure (or yawn) and lane departure, the
interactive tendencies of eye closure and yawn with rapid
acceleration and rapid deceleration of vehicle were roughly the
same, which was consistent with the results of association rules,
turther proving the reliability of the rules.

4. Discussion

In this section, we further discussed the association rules
between improper driving behaviors, between abnormal
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TABLE 5: Association rules between improper driving behavior and abnormal vehicle states.
Association rules Support Confidence Effectivity
Eye closure--rapid acceleration® 0.456 0.476 0.466
Eye closure--rapid deceleration” 0.410 0.428 0.419
Eye closure-lane departure 0.321 0.335 0.328
Yawn--rapid acceleration” 0.444 0.481 0.463
Yawn--rapid deceleration* 0.375 0.407 0.391
Yawn-lane departure 0.327 0.354 0.341
Yawn--eye closure--rapid acceleration” 0.427 0.481 0.455
Yawn--eye closure--rapid deceleration® 0.358 0.403 0.381
Yawn-eye closure-lane departure 0.321 0.361 0.342
Yawn--lane departure--rapid acceleration® 0.249 0.763 0.568
Yawn--lane departure--rapid deceleration” 0.221 0.675 0.502

Note: *indicates strong rules; otherwise, they are general rules.
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FIGURE 9: Spatial and temporal distributions of eye closure, yawn, lane departure, rapid acceleration, and rapid deceleration.
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Figure 10: The accumulative changes in the interaction between improper driving behaviors and abnormal vehicle states.
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vehicle states, and between improper driving behaviors and
abnormal vehicle states and explored the practical signifi-
cance of the rules. Furthermore, some suggestions for op-
timizing the active safety control of the ADAS were
proposed.

This section further discussed the association rules be-
tween improper driver behaviors, between abnormal vehicle
states, and between improper driver behaviors and abnormal
vehicle states, explored the practical significance of various
rules, and suggested ideas for optimizing the active security
control of the ADAS.

4.1. Relationships between Improper Driving Behavior.
The exploring of association rules between improper driving
behaviors is conducive to the optimization of improper
behavior collection and warning mode. According to the
results, the interaction between eye closure and yawn is the
most frequent, and most of the interactions are caused by
fatigue driving. In terms of optimizing the warning mode of
the ADAS for eye closure (yawn), it is suggested to give
early-warning of yawn (eye closure) or combine eye closure
warning with yawn warning.

Despite that the occurrence probability of looking away
was relatively low, the probability of looking away inducing
eye closure and yawn was quite high. This suggests that
driver’s attention may not only be distracted by environ-
mental factors (the traffic environment has an effect on
driver scanning behavior, such as the effect of different
intersection types on scanning behavior [27]) but also by
fatigue and the complex traffic situation. Thus, apart from
looking away, the DSM system should give early-warning of
eye closure and yawn as well. In short, in warning the
improper driving behaviors, the ADAS should give priory
consideration to the association between improper driving
behaviors, so as to optimize the warning mode and improve
the effectiveness of the warning.

4.2. Relationships between Abnormal Vehicle States. The
exploring of association rules between abnormal vehicle
states can help improve the performance of vehicle in all
aspects. The results show that rapid deceleration is usually
accompanied by rapid acceleration (0.875) or lane departure
(0.507). It can be seen that there are frequent interactions
between rapid acceleration and rapid deceleration. The
possible reason for that is the driver accelerates (or decel-
erates) out of attention distraction or response to some
traffic emergencies, so the driver needs to decelerate (or
accelerate) the vehicle until it returns to normal velocity.
Forward collision interacts more frequently with lane
departure than with other abnormal vehicle states. This is
possibly the result of drivers becoming more aggressive and
focused on the area ahead after congestion [28]. It can easily
cause the vehicle to trigger forward collision warning, and
the driver’s corresponding emergency actions often cause
the vehicle to drift sideways. Prynne and Martin [29] also
noted that drivers who braked and steered at the same time
had the highest success rate in avoiding collisions. Therefore,
the ADAS should moderately regulate the lateral deviation
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performance of the vehicle when there is a forward collision
warning. In the present paper, the investigation on abnormal
vehicle states is hope to help vehicles to be equipped with
suitable intelligent driver assistance technologies so as to
avoid knock-on effects of abnormal vehicle states.

4.3. Relationships between Improper Driving Behavior and
Abnormal Vehicle States. The research on the association
rules between improper driving behaviors and abnormal
vehicle states contributes to enhancing driver’s adaptation to
the ADAS and also provides the theoretical basis for real-
izing the personalized interaction between driver and vehicle
and for studying the man-computer interaction conflicts and
personalized interaction needs in man-computer coopera-
tive driving.

The results showed that eye closure and yawn are likely
to induce abnormal states such as rapid acceleration and
rapid deceleration. When the driver closes eyes and yawns,
the ADAS should enhance the longitudinal control over the
vehicle, especially the regulation of acceleration and de-
celeration. Since the effectivity of association rules of eye
closure and yawn with lane departure is larger than the
minimum effectivity, eye closure and yawn are very likely to
induce lane departure. Therefore, besides the longitudinal
control mentioned above, moderate regulation of vehicle’s
lateral deviation is also needed. The extent of longitudinal
and lateral control over vehicle can be determined according
to the probabilities of rapid acceleration, rapid deceleration,
and lane departure induced by eye closure and yawn.

Rapid acceleration and deceleration are very likely to
occur after yawn and lane departure. That is because the
driver needs to slow down or speed up the vehicle to make it
stay on the original lane after the driver yawns and the
vehicle deviates from the lane. Thus, the control optimi-
zation of the ADAS should take the driver’s emergency
operations into account, so that the system can better assist
the vehicle in emergency situations.

4.4. Practical Application of Research Results. Through these
three aspects, the focus points for optimizing the ADAS and
DSM system were explored. Next, how the results of this
study could be applied to the ADAS would be further
discussed. In this paper, the relationships between inap-
propriate driving behaviors and abnormal vehicle states
were quantified by association rules, and the probability
values (relationship occurrence probabilities) of mutual
triggering and concurrency between improper driving be-
haviors and abnormal vehicle states were calculated. Some
effective machine learning algorithms are taken based on
value of the relationship occurrence probability, so that the
optimization of the ADAS can be determined effort and
direction. For example, based on the value of the relationship
occurrence probability between various types of warnings
and rapid acceleration and rapid deceleration, lane depar-
ture, the ADAS can be effectively assigned to the weight ratio
of lateral and longitudinal performance in vehicles” control
process.
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Also, when a certain warning occurs, based on the re-
lationship occurrence probability and the corresponding
algorithm, the system can effectively prejudge the upcoming
abnormal vehicle states. This is beneficial to the effective
control of the vehicle by the ADAS and avoids the lagging
effect and improper prevention and control brought about
by traditional prevention and control. At the same time, the
concurrent probabilities of inappropriate driving behaviors
and abnormal vehicle states are used to determine the
multimodal fusion of warning methods, which can avoid the
poor results brought about by a single method, for example,
how to set warning modes from visual, auditory, and tactile
perspectives. Based on the relationship occurrence proba-
bility of improper driving behaviors, determine whether
multiple perspectives are considered simultaneously, from
which perspectives and the weight of each perspective ac-
count for optimized alarm methods.

5. Conclusions

This paper explored the relationship between improver
driving behavior and abnormal vehicle state under the
ADAS, with the aim of providing a theoretical basis for
improving driver’s adaptation to the ADAS and promoting
the research on the technologies regarding man-computer
driving, such as the vehicle control right switching timing,
interaction modes, interactive personalization, and active
safety control.

The warning data collected from the driver assistance
warning system installed on bus (including the warning data
in forms of video, the radar warning data about the bus and
its front vehicle, and the Beidou-based vehicle moving data)
were cleaned and processed. Then, Person correlation
analysis (the correlation coefficients were all greater than 0.9,
and the significance levels were less than 0.01.) was used to
verify the correlation rules between improper driving be-
havior and abnormal vehicle state explored with the pro-
cessed data. The results showed that the warning data of
various types can be clustered. A hierarchical clustering
method was used to classify the warning data into the
corresponding intervals. And the clustered results and
processed data were verified to be reliable and effective based
on the spatial distribution of bus lines and distribution
characteristics of the clustered warning items. Then, an
effectivity-based improved Apriori algorithm was proposed
to explore the association rules between improper driving
behaviors, between abnormal vehicle states, and between
improper driving behaviors and abnormal vehicle states.
Subsequently, the validity of these association rules was
verified with the spatial-temporal distribution charac-
teristics and cumulative interaction curve. The results
showed that eye closure and yawn were high in concur-
rency (probability: 0.888) and interaction (average
probability: 0.946); the interaction among lane departure,
rapid acceleration, and rapid deceleration are frequent
(average probability: 0.7224); eye closure (average prob-
ability: 0.452) and yawn (average probability: 0.444) are
likely to induce abnormal vehicle states such as rapid
acceleration and rapid deceleration.
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Finally, the practical significance of the association rules
was discussed, and some suggestions for optimizing the
active security control of the ADAS were proposed. In terms
of optimizing the ADAS warnings, multiangle (visual, au-
ditory, and tactile) fusion can be considered, e.g., eye closure
and yawn warning mode for integration. In terms of the
ADAS’ auxiliary control of the vehicle, e.g., when eye closure
or yawn occurs, the ADAS’ control of the vehicle’s lateral
and longitudinal performance should be enhanced. Since the
occurrence of forward collision is often followed by lane
departure, the ADAS should be strengthened to control the
vehicle’s lateral drift when the vehicle has forward collision
warning.
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