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ABSTRACT
Convolutional Neural Networks (CNNs) are widely used in computer
vision, but their massive computational cost and parameter redundancy
hinder deployment on resource-constrained devices (e.g., edge terminals).
Existing filter pruning methods often struggle to balance two critical
goals: aggressive redundancy reduction and effective preservation of task-
critical information—either leading to excessive accuracy loss or insuffi-
cient compression. To address this challenge, we are the first to jointly
exploit k-core decomposition and information entropy in a unified prun-
ing criterion, and we instantiate this idea in a novel graph–entropy collab-
orative framework that achieves Pareto-optimal compression-accuracy
trade-offs. The key steps are as follows: First, we use perceptual hashing
(pHash) to calculate the similarity of output feature maps between filters,
then model each filter as a node in an undirected graph—edges are estab-
lished only when filter similarity exceeds a predefined threshold, forming
a “redundancy graph” that quantifies inter-filter redundancy. Second, k-
core decomposition is applied to this graph to identify high-order redun-
dant substructures, which helps locate redundant filters at the structural
level. Finally, information entropy is introduced to evaluate the “infor-
mational value” of each node (filter) in the k-core: only filters with low
redundancy and high information content are retained, ensuring minimal
loss of critical features. Extensive experiments are conducted on CIFAR-
10 and CIFAR-100 datasets, using representative CNN architectures
(VGGNet-16, ResNet-56/110, DenseNet-40). Specifically, VGGNet-16
achieves a 65.8% reduction in floating point operations (FLOPs) and an
88.8% reduction in parameters while experiencing only a 1.24% decrease
in Top-1 accuracy. ResNet-56 attains a 50.1% reduction in FLOPs with a
nearly imperceptible accuracy loss of 0.03%, markedly surpassing the Fire
together wire together (FTWT) method which reduces FLOPs by 54% at
the cost of a 1.38% accuracy decline. DenseNet-40 accomplishes a 76.5%
FLOPs reduction with a 1.55% accuracy decrease, demonstrating the
method’s strong applicability for high-intensity compression of densely
connected networks. Furthermore, the method’s scalability is validated
on the large-scale ImageNet dataset with ResNet-50, where it achieves
a 73.65% FLOPs reduction with competitive accuracy, underscoring
its practicality for real-world applications. These outcomes collectively
affirm the effectiveness and broad applicability of the proposed graph-
entropy collaborative pruning framework.
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1 Introduction

Convolutional neural networks (CNNs) have achieved remarkable success in various computer
vision tasks, such as image classification [1], object detection [2], and autonomous driving [3]. Their
prohibitive computational and memory costs hinder deployment on resource-constrained devices
(e.g., mobile SoCs). Although recent advances in model compression have alleviated some of these
issues, deploying large-scale CNNs on resource-constrained devices remains challenging [4]. Among
various compression techniques, filter pruning has emerged as a promising technique to bridge this
efficiency gap. It reduces redundant computation and storage, leading to more efficient inference [5].
The resulting slim networks can then be deployed on resource-limited devices with negligible accuracy
degradation.

The core idea of filter pruning is to identify and remove redundant or unimportant filters from
convolutional layers, reducing both parameter count and computational cost to enhance suitability
for edge scenarios [6]. Existing approaches can be broadly categorized into two types: importance-
based and redundancy-based methods. Importance-based methods typically use scalar metrics like the
L1-norm to measure each filter’s contribution to the final task, pruning filters associated with lower
scores [7]. While effective in preserving high-scoring filters, these methods often neglect inter-filter
redundancy and synergy, thus limiting the overall compression potential [8]. In contrast, redundancy-
based methods eliminate replaceable filters by measuring similarity between filters or their feature
maps [9]. However, as He et al. [10] observed, redundancy-based pruning (e.g., geometric median)
risks preserving low-value filters, leading to a trade-off between compression rate and accuracy.

To overcome the limitations of these single-perspective approaches, we propose a collaborative
pruning strategy that jointly leverages k-core decomposition and information entropy. This integration
is theoretically motivated by their complementary roles: k-core decomposition excels at identifying
structurally redundant groups of filters, while information entropy quantifies the informational value
of individual filters within those groups. As illustrated in Fig. 1, we first construct an undirected
graph for each convolutional layer, where nodes represent filters and edges connect filters with feature
map similarity exceeding a threshold τ [11]. We then apply k-core decomposition to hierarchically
identify redundant substructures [12]. Finally, information entropy is introduced to evaluate each
filter’s informational richness [13]. This two-stage process—locating redundancy via k-core and
then selecting the highest-entropy filters—ensures a balance between redundancy elimination and
information preservation [14].

Extensive experiments on CIFAR-10 and CIFAR-100 show that this strategy consistently reduces
FLOPs and parameters while preserving—or slightly improving—accuracy across mainstream archi-
tectures such as ResNet-56 and VGGNet-16 [15]. These results demonstrate the practicality of
deploying compressed CNNs on resource-constrained devices [16]. The contributions of this paper
can be summarized as follows:

1. We propose a graph-entropy collaborative framework that combines k-core decomposition and
information entropy for dual-objective optimization.

2. We design architecture-specific pruning rules (e.g., for ResNet shortcuts and DenseNet cross-
layer connections) to maintain structural integrity and functional continuity.

3. We establish an efficient pipeline combining one-shot pruning with short-term fine-tuning,
significantly reducing deployment time.

The structure of this paper is organized as follows: Section 2 reviews recent related work. Section 3
elaborates on the proposed pruning method, including the characterization of filter redundancy and
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the use of information entropy for filter importance evaluation. Section 4 presents experimental results
and analyses, comparing our method with state-of-the-art pruning techniques. Finally, Section 5
concludes the paper and discusses future work.

Figure 1: Workflow of the proposed entropy-guided k-core pruning method for a single convolutional
layer. G, k, vr and L represent the redundancy graph, core number, vertex set, and importance
evaluation metric, respectively. In each iteration, the blue region highlights the high-connectivity
subgraph identified under a specific k-core, while nodes marked in red correspond to less informative
filters within the same redundant group scheduled for removal

2 Related Work

Filter pruning has gained significant attention in recent years as an effective model compression
technique for deep learning [17]. Its primary goal is to remove redundant or unimportant filters from
convolutional neural networks (CNNs), thereby reducing computational complexity and parameter
count while minimizing the loss of model performance [18]. Existing methods can be broadly
categorized into two types: importance-based and redundancy-based.

Importance-based pruning methods assess the importance of individual filters to determine which
ones to remove [19]. Common evaluation metrics include the L1 norm, L2 norm [20], and Average
Percentage of Zeros (APoZ) [21]. For example, Li et al. [8] proposed an L1-norm-based pruning
method that removes filters with smaller weight magnitudes. While effective in preserving high-value
filters, this approach often overlooks inter-filter redundancy, leading to suboptimal compression rates
[22]. Gao et al. [23] introduced a dynamic channel pruning method that uses an auxiliary module
to predict channel importance and dynamically removes less important ones. However, its reliance
on a single importance metric still limits the ability to capture the actual contribution of each filter
[24]. More recently, Younesi et al. [25] proposed an adaptive importance scoring mechanism that
incorporates multi-scale feature responses to dynamically adjust filter ratings.
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Redundancy-based methods, in contrast, focus on identifying and eliminating redundant fil-
ters [26]. Wang et al. proposed Filter Pruning via Geometric Median (FPGM), which determines
redundancy by computing the geometric median of feature maps. While this method achieves high
compression, it may retain some low-value filters, negatively impacting model performance [27].
Li et al. [28] introduced a graph-based approach that constructs a similarity graph between feature
maps and uses vertex degree and edge weights to identify redundant filters. Despite its effectiveness,
this method incurs high computational complexity [29]. Wang et al. [30] later proposed a hierarchical
redundancy detection method that improves redundancy identification by analyzing filter correlations
at different scales.

Information entropy, as a measure of uncertainty and randomness, has been widely used in
information theory and machine learning [31]. Several recent studies have explored its application
in evaluating filter importance [32]. Luo and Wu [33] proposed an entropy-based pruning method that
quantifies the information entropy of output feature maps to assess filter importance. Filters produc-
ing higher-entropy feature maps are considered more important and are retained [34]. Lu et al. [35]
introduced the Average Filter Information entropy (AFIE) metric, which decomposes weight matrices
and quantifies the distribution of normalized eigenvalues to evaluate filter importance. This approach
remains robust even with limited training data, enhancing pruning reliability [36]. Recent work [37]
shows that combining local and global entropy further improves the accuracy of filter evaluation.

Graph-based and reinforcement learning methods have also been explored. Pei et al. [11] used
graph neural networks (GNNs) to encode and decode computational graphs, determining the optimal
pruning rate for each layer via a reinforcement learning reward mechanism. However, this method
is computationally expensive [38]. Wang et al. [39] proposed an adaptive graph learning method
that dynamically adjusts graph structures to fit different layer characteristics, significantly improving
pruning efficiency. A common thread among many graph-based methods is their reliance on structural
or weight-based heuristics for the final filter selection. For instance, some approaches leverage intrinsic
graph metrics like vertex degree [28], while others, such as GRDP [40], apply weight-space criteria like
the 1-norm after graph construction. DepGraph [41] further extends the graph to model inter-layer
dependencies for pruning structure groups. In contrast to these paradigms, the method proposed in this
work introduces a principled, information-theoretic criterion—information entropy—for selecting
filters within redundancy groups. This represents a shift towards directly optimizing for information
preservation rather than relying on indirect proxies.

Other innovative approaches include QMIX-FP [42], which uses multi-agent reinforcement
learning to automatically determine layer-wise pruning rates by modeling deep CNNs as a multi-
agent system [43]. Experiments show that QMIX-FP achieves significant compression on VGG-16 and
AlexNet while maintaining accuracy [44]. The Complex Hybrid Weighted Pruning (CHWP) method
[45] integrates weight norms, filter similarity, and batch normalization effects, outperforming other
methods on ResNet-32 and ResNet-56 [46]. The Holistic Filter Pruning (HFP) method [47] calculates
the deviation between the current and target model sizes after each forward pass and uses gradient
descent to allocate pruning budgets across layers [48]. Neural architecture search (NAS) has also been
applied to pruning, automating the search for optimal subnetwork structures [49]. Notably, Li et al. [50]
proposed a pixel-wise cross-correlation (PCC) method that enhances feature map redundancy through
a novel pre-training loss, achieving a 92.75% parameter compression rate on VGGNet16 with 94.41%
accuracy.

Beyond the direct removal or selection of filters, a distinct and parallel compression paradigm
operates at the weight level: tensor decomposition. Methods in this category, such as the recent
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Coupled Tensor Decomposition for Compact Network Representation [51], factorize the 4D con-
volutional kernel tensor into lower-rank components to capture intrinsic algebraic structures and
reduce parameters. While this approach excels at modeling low-rank properties and can achieve
high compression, it typically relies on approximations that may introduce accuracy loss and often
necessitates specialized layer designs. In contrast, the graph-entropy method proposed in this work,
along with the other filter pruning strategies discussed above, focuses on the selection of complete
filters. This fundamental difference allows our approach to preserve the original network architecture,
ensuring functional interpretability and ease of deployment. Therefore, our work is situated within the
filter pruning lineage, while recognizing tensor decomposition as a complementary and orthogonal
strategy within the expansive model compression landscape.

Looking beyond these established paradigms, very recent research in network compression has
continued to evolve along several promising directions, further refining the trade-offs between effi-
ciency, accuracy, and practicality. A significant trend is the pursuit of data-free pruning to address data
privacy and computational overhead concerns. For instance, the AutoDFP method [52] automatically
prunes networks without original data by leveraging channel similarity reconstruction. Concurrently,
there is a growing emphasis on fine-grained, joint compression strategies that intelligently combine
pruning and quantization. As shown in [53], a lightweight Quantization Difference Index (QDI) can
be introduced to estimate the generalization risk in real-time, enabling a more balanced and efficient
joint compression search. Beyond convolutional networks, the compression paradigm is also being
actively extended to other architectures. For example, Graph Neural Networks (GNNs) are now being
systematically studied for acceleration and compression, often leveraging pruning techniques to reduce
computational cost while maintaining performance [54]. Moreover, novel compression paradigms are
emerging for modern architectures, such as Kolmogorov-Arnold Networks (KANs), where techniques
like MetaCluster [55] achieve high compression ratios by exploiting the low-dimensional manifold of
the network’s parameters. These advancements highlight a clear trajectory towards more automated,
holistic, and architecture-aware compression. However, many data-free methods still struggle to match
the accuracy of data-driven approaches, and joint compression frameworks often face challenges
in scalability and delayed reward estimation. Our proposed graph–entropy collaborative pruning
framework aligns with this trend by offering a principled and unified approach to redundancy
reduction and information preservation, while maintaining the advantages of being data-efficient and
architecturally agnostic.

Despite these advances, existing pruning methods still have limitations [56]. Importance-based
methods preserve high-value filters but ignore redundancy, while redundancy-based methods achieve
high compression but may retain low-value filters. Although some methods combine both perspectives,
they often rely on traditional metrics and fail to fully exploit the intrinsic value of filters [57]. Entropy-
based methods offer a promising direction but have not been sufficiently integrated with other metrics
[58]. Moreover, many innovative methods are computationally expensive or require specific hardware,
limiting their practical application [59].

In summary, current filter pruning techniques face several challenges: oversimplified evaluation
metrics, limited computational efficiency, and poor adaptability to dynamic network changes. To
address these issues, we propose a novel pruning framework that combines information entropy
with graph theory to improve computational efficiency and evaluation accuracy, while introducing
a dynamic adjustment mechanism to adapt to network variations.
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3 Methodology

In this section, we detail our proposed entropy-guided k-core collaborative pruning framework.
To characterize intra-layer redundancy, the method constructs an undirected graph using the average
similarity of output feature maps from convolutional layers. Subsequently, k-core decomposition is
applied to extract high-order redundant substructures. Information entropy is then introduced to
perform a secondary evaluation within these substructures, further identifying and retaining filters
with higher information content while eliminating redundant ones. This strategy strikes a balance
between redundancy elimination and informative filter retention. Finally, a one-shot pruning strategy
followed by short-term fine-tuning is employed to rapidly restore model accuracy.

3.1 Similarity Graph Construction
To systematically characterize the redundancy relationships among filters within a convolutional

layer, we construct an undirected graph based on feature-map similarity to model the functional
overlap between filters. In this approach, each filter is treated as a node in the graph, and edges
between nodes are defined by the similarity between the output feature maps of the filters, thereby
modeling the functional redundancy among filters as topological connections within a graph structure.
The graph construction process is as follows: For a convolutional layer l with nl filters, denoted
as Fl = {

f l
1 , f l

2 , . . . , f l
n

} ∈ R
n(l−1)×nl×kl×kl . These filters generate nl output feature maps, denoted as

Ol = {
ol

1, ol
2, . . . , ol

n

} ∈ R
m×nl×hl×wl . To quantify the similarity between any two filters f l

i and f l
j , we

compute the average similarity between their corresponding feature maps ol
i and ol

j as:

sl
{i,j} =

∑m

t=1 sim
(
ol

{i,t}, ol
{j,t}

)
m

(1)

here, sim is the similarity function. For all feature maps in Ol, this yields C
(
nl, 2

)
average similarity

values, forming the set Sl = {
sl

{i,j} | 1 ≤ i < j ≤ nl
}
. We use perceptual hashing (pHash) to compute the

similarity between feature maps, following the same implementation as in the study by Li et al. [28].
After obtaining the set of average similarities Sl = {

sl
{i,j} | 1 ≤ i < j ≤ nl

}
between the output feature

maps of the filters, we introduce a predefined similarity threshold τ to construct an undirected
redundancy graph, providing an intuitive and structured representation of the redundancy among
filters within the convolutional layer. The vertex set V l = {

vl
1, vl

2, . . . , vl
n

}
represents the filters of the

l layer, with each vertex vl
i corresponding to a filter f l

i by numbering each filter. For any two filters
f l

i and f l
j , if the average similarity sl

i,j of their output feature maps exceeds the preset threshold τ ,
an edge el

i,j is connected between their corresponding vertices vl
i and vl

j. The existence of an edge
indicates functional redundancy between the two filters, meaning the output of one filter can be
approximately replaced by the other. Edges are connected for all qualifying vertex pairs, forming the
edge set E l = (

el
i,j | 1 ≤ i < j ≤ nl

)
and initializing the redundancy graph G l = (

V l, E l
)
.

Algorithm 1 summarizes the graph construction process. The sparsity of the resulting graph is
controlled by the threshold τ . A higher τ retains only strong redundancy relationships, which is
suitable for mild pruning. Conversely, a lower τ incorporates more redundant connections, enabling
more aggressive compression. Through this algorithm, we successfully transform the redundancy
relationships between filters into a graph structure, providing a foundation for subsequent graph
theory-based redundancy analysis and filter selection.
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Algorithm 1: Constructing the similarity graph
Input: The set of average similarity values Sl = sl

[i,j] | 1 ≤ i < j ≤ nl, threshold τ

Output: The similarity graph Gl = (
V l, E l

)
1: V l ← ∅

2: E l ← ∅

3: for i = 1 to do
4: V l ← V l ∪ vl

i

5: end for
6: for i = 1 to nl − 1 do
7: for j = i + 1 to nl do
8: if s[i,j] > τ then
9: E l ← E l ∪ el

[i,j]

10: end if
11: end for
12: end for
13: return Gl ← (

V l, E l
)

3.2 k-Core Decomposition for Redundancy
Based on the constructed undirected redundancy graph G l = (

V l, E l
)
, we introduce a dynamic,

hierarchical k-core decomposition to systematically identify high-order redundant structures within
convolutional layers. The core idea is to progressively identify redundant subgraphs of varying
densities through an adaptive k-value selection strategy. This approach enables hierarchical mining
of redundant structures while avoiding the bias and suboptimal solutions associated with a fixed k
value.

Specifically, we set the initial kinit = maxv∈V l deg (v) to the maximum degree in the graph. This
ensures the decomposition begins from the most tightly connected substructure. If no non-empty
subgraph is found for a given k, k is decremented automatically. This iterative process continues until
k = 0, progressively exposing less dense redundant substructures and ensuring pruning starts from the
tightest clusters. When k decreases to 0, there are no redundant edges left in the graph, E l = ∅, and all
remaining vertices are completely decoupled; the algorithm then terminates. The final retained vertex
set is the pruning result for this convolutional layer. The k-core decomposition hierarchically identifies
densely connected subgraphs by iteratively removing vertices with degrees less than k. For a given k,
the decomposition yields a subgraph

(
G l

k,i

)
:

g∪
i=1

G l
k,i = KCore

(
G l, k

)
(2)

3.3 Evaluating Filter Importance via Information Entropy
After k-core decomposition identifies functionally redundant subgraphs, we employ information

entropy for a secondary selection to retain the most informative filter within each cluster. Within each
k-core-induced subgraph, filters exhibit high functional similarity. Therefore, we retain only the most
informative representative and prune the rest. Specifically, we compute the information entropy of
each filter’s output feature map activation distribution. Entropy, in this context, serves as a proxy
for the diversity and uniformity of activations across spatial locations in the feature map. Higher
entropy implies a more distributed activation pattern, which often correlates with richer spatial feature
encoding and potentially greater discriminability. Conversely, lower entropy suggests concentrated, less

https://www.scipedia.com/public/Yang_et_al_2025 7

https://www.scipedia.com/public/Yang_et_al_2025


Y. Yang, D. Jiang, X. Deng and L. Wang,

Entropy-guided k-core pruning balancing redundancy reduction

and information preservation for efficient CNN compression,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.41, (4), 88

informative responses. Consequently, we select the filter with the highest entropy as the representative
of the subgraph, ensuring that the preserved filter carries the maximal information content among its
redundant counterparts.

For the redundant subgraph G l
k,i obtained via k-core decomposition, which represents a cluster

of highly redundant filters within the convolutional layer, we extract its vertices V l′ and edges E l′ . For
each filter f l

i within it, we compute the information entropy of its output feature map ol
i. Specifically,

the information entropy H
(
vl

i

)
for the filter f l

i corresponding to vertex vj
i is calculated as follows:

H
(
vl

i

) = −
∑
x∈X

p (x) log p (x) (3)

Among them, x represents the activation distribution in the feature map generated by filter f l
i , and

p (x) is the probability of activation x. Following information-theoretic principles, a higher entropy
value H

(
vl

i

)
indicates a more uniform distribution of activations in the feature map ol

i ∈ R
m×nl×hl×wl , sug-

gesting richer information content. Therefore, the corresponding filter should be retained. Conversely,
a lower entropy value H

(
vl

i

)
suggests that the feature map responses are concentrated, indicating

lower information content, and thus the filter should be pruned. Specifically, for each redundant
subgraph G l

k,i obtained through k-core decomposition, we calculate the information entropy H
(
vl

i

)
corresponding to each vertex (i.e., filter) vl

i. To select the most discriminative representative from the
functionally similar filter cluster, we retain the vertex vl

h with the highest information entropy within
each subgraph:

vl
h = arg maxvl

i∈V l′ H
(
vl

i

)
(4)

All other vertices and their associated edges are subsequently removed. This operation updates
the original redundancy graph structure as follows:

G l ← ((
V l, E l

) ← (
V l − V l′ ∪ {

vl
h

}
, E l − E l′)) (5)

Subsequently, the value of k is decremented, and the aforementioned process is iteratively executed
until no edges remain in the graph (i.e., k = 0). The final retained vertex set vl

retained ⊆ V l represents
the filters within this convolutional layer that simultaneously satisfy both low redundancy and high
information content.

Algorithm 2 summarizes the overall collaborative pruning process for a single convolutional layer.
It integrates graph construction, k-core decomposition, and entropy-based selection into a unified
framework, implementing the two-stage strategy of redundancy localization followed by information
re-evaluation.

Algorithm 2: Graph decomposition and filter selection via k-core and shannon entropy

Input: Initialized graph Gl = (
V l, E l

)
Output: The set of retained vertices (filters) V l

retained

1: k ← max
(
deg

(
Gl

))
2: while k > 0 do
3:

{
Gl

[k,1], . . . , Gl
[k,g]

} ← KCore
(
Gl, k

)
4: if

g∪
i=1

G[k,i] = ∅ then

5: k ← k − 1
(Continued)
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Algorithm 2 (continued)
6: continue
7: end if
8: for each subgraph Gl

[k,i] in
{
Gl

[k,1], . . . , Gl
[k,g]

}
do

9: Vsub ← Vertex
(
Gl

[k,i]

)
10: vmax ← None
11: Hmax ← −∞
12: for each vertex vr in Vsub do
13: H (vr) ← −∑

p (a) log p (a)

14: if H (vr) > Hmax then
15: Hmax ← H (vr)

16: vmax ← vr

17: end if
18: end for
19: V l ← V l

� {v ∈ Vsub | v 	= vmax}
20: E l ← E l

� Edge
(
Gl

[k,i]

)
21: end for
22: k ← max

(
deg

(
Gl

))
23: end while
24: return V l

retained ← V l

3.4 Theoretical Analysis and Motivation
The proposed two-stage pruning strategy is theoretically motivated by the complementarity

between structural redundancy (captured by k-core decomposition) and informational value (quan-
tified by information entropy). Specifically, k-core decomposition identifies groups of functionally
interchangeable filters, while information entropy provides a principled criterion for selecting the most
informative representative within each group.

To formalize this intuition, we frame the pruning objective as a two-step optimization process:
first, identifying structurally redundant groups via k-core decomposition, and then, within each group,
selecting the filter that minimizes the potential information loss.

For a redundant subgraph Gk, we aim to retain the filter that maximizes information entropy:

v∗ = arg maxvi∈Vk
H (vi) (6)

where H (vi) denotes the information entropy of filter fi’s output feature map. This selection strategy
minimizes the functional degradation after pruning while achieving substantial redundancy reduction.

To empirically validate the orthogonality and complementarity of these two criteria, we visualize
the distribution of filters based on their vertex degree (structural connectivity) and information
entropy (informational richness). Fig. 2 illustrates this distribution for the 10th convolutional layer
of VGGNet-16 on the CIFAR-100 dataset.

Fig. 2 illustrates the distribution of filters in the 10th convolutional layer of VGGNet-16 on the
CIFAR-100 dataset, with vertex degree on the horizontal axis and information entropy on the vertical
axis. Each point corresponds to a filter, and its position reflects the filter’s connectivity within the
redundancy graph and the information richness of its output feature maps. The results show that the
filters are distinctly clustered into three typical regions: The high-degree, low-entropy region (upper
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right) consists of filters with high redundancy but low information content, representing redundant
clusters that should be pruned. The low-degree, high-entropy region (lower left) contains filters with
few redundant connections and rich information, which should be retained. The high-degree, high-
entropy region (upper left) includes filters with strong connectivity and high information content.
These serve as information hubs within redundant clusters and are preserved during secondary
evaluation.

Figure 2: Scatter plot of vertex degree vs. information entropy

The key insight from Fig. 2 is that vertex degree (structural connectivity) and information
entropy (informational richness) are largely orthogonal measures. This orthogonality is crucial for
our collaborative approach: it implies that relying solely on one measure (e.g., pruning based only
on connectivity) would be insufficient, as a highly connected filter is not necessarily informative,
and vice versa. This theoretical framework effectively bridges graph-theoretic structural analysis
with information-theoretic feature evaluation. By doing so, it provides a principled foundation that
overcomes the limitations of single-perspective pruning methods, enabling superior compression-
accuracy trade-offs in CNN pruning.

To further validate the correlation between information entropy and feature importance, we
conducted a visualization-based analysis on the ResNet-56 model using the CIFAR-10 dataset. Fig. 3
illustrates the relationship under different similarity thresholds (τ = 0.75, 0.7, 0.65). The left subplot
depicts the Top-1 accuracy of models where filters are categorized as high-entropy or low-entropy
relative to the median entropy value at each τ . The results clearly demonstrate that models retaining
high-entropy filters consistently achieve superior accuracy across all pruning intensities. This trend
empirically validates that high-entropy filters are critical for maintaining model performance, which
is a key reason why our method can achieve high compression rates (e.g., 50.10% FLOPs reduction on
ResNet-56) with minimal accuracy loss. The right subplot further quantifies the relationship between
filter entropy and their feature importance, the latter measured by the overlap between activation
regions and key semantic areas in input images using Gradient-weighted Class Activation Mapping
(Grad-CAM). A significant positive correlation is observed, confirming that filters with higher entropy
tend to activate more discriminative regions critical for correct classification. Collectively, these
findings provide compelling visual and quantitative evidence that information entropy serves as an
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effective and principled criterion for evaluating filter importance, based on its strong correlation with
both model accuracy and feature discriminability.

Figure 3: (Left) Impact of retaining high-entropy vs. low-entropy filters on model accuracy in ResNet-
56 under different similarity thresholds τ on CIFAR-10. (Right) Scatter plot showing the correlation
between filter entropy and its feature importance (measured by Grad-CAM overlap)

3.5 Architecture-Specific Adaptation Strategies
The graph-and-entropy-based pruning algorithm we propose is universal and can be applied to

various CNN architectures. However, different network structures—such as the chain-like structure
of VGGNet, shortcut connections in ResNet, and dense connections in DenseNet—introduce unique
inter-layer dependencies. To ensure structural integrity and performance recoverability of the pruned
model, we adapt the pruning process to the characteristics of each architecture.

3.5.1 Pruning Strategy for VGGNet

VGGNet is a network with a simple stacked structure, typically composed of consecutive 3 × 3
convolutional blocks. For this architecture, the pruning strategy can be applied layer-wise indepen-
dently, without considering cross-layer dependencies. The specific steps are as follows:

For each convolutional layer, the feature map similarity is computed independently to construct
a redundancy graph. Then, k-core decomposition and information entropy-based ranking are per-
formed, and the pruning rate for the layer is determined based on a global threshold τ . When pruning
the output channels of the l-th layer, the input channels of the (l + 1)-th layer must be synchronously
and equally pruned to ensure dimensional matching. This process is automated and requires no
additional constraints. After all convolutional layers are pruned in a one-shot manner, short-term
fine-tuning (70 epochs) is uniformly applied to restore performance.

3.5.2 Pruning Strategy for ResNet

The shortcut connections in ResNet require that the output dimensions of the main path and
the identity mapping (or projection mapping) must be consistent. To address this, we apply structural
constraints on the general pruning process. The specific strategies are as follows:

For a residual block that includes a projection shortcut connection (such as the first 1 × 1
convolutional layer in the Bottleneck structure of ResNet-50), the convolutional layer and the last
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convolutional layer within the block are treated as a pruning group. During graph construction and
filter selection, the two layers are forced to prune the same number of filters to ensure the validity of the
shortcut addition operation. For the first residual block connecting different stages (where the shortcut
connection requires downsampling and channel dimension transformation), the 1 × 1 convolutional
layer in the shortcut path must be pruned synchronously with the last convolutional layer in the main
path. The pruning rate is determined by the redundancy of the main path, and the shortcut path is
forced to adapt to this pruning rate.

3.5.3 Pruning Strategy for DenseNet

The dense connectivity in DenseNet means that the input to each layer is a concatenation of the
outputs from all preceding layers. Therefore, pruning must avoid disrupting the cross-layer information
flow. The specific strategies are as follows:

Within a single dense block, we apply a more conservative pruning threshold (i.e., a higher value
of τ ) to the later convolutional layers. This is because the inputs to these later layers integrate more
features from earlier stages, and their filters may carry composite information. Excessive pruning
could lead to irreversible information loss. For the transition layers between dense blocks, the 1 × 1
convolutional layer is responsible for compressing the number of channels. When pruning this layer,
in addition to applying the k-core and information entropy criteria, we must ensure that the number
of output channels meets the predefined compression factor requirements to prevent uncontrolled
compression rates due to pruning. Before the final classification layer, we evaluate the information
entropy of all feature maps fed into the classification layer, prioritizing the retention of the feature
streams with the highest entropy to ensure that the final decision relies on the richest information.

4 Experiments

To evaluate the effectiveness of the proposed entropy-aware k-core collaborative filter pruning
method, we conduct pruning experiments on mainstream CNN models, including VGGNet-16,
ResNet-56/110, and DenseNet-40, using the CIFAR-10 and CIFAR-100 datasets. Comparisons
are made with state-of-the-art pruning methods. The experiments focus on assessing the model
compression rate (FLOPs Reduction Rate, FR; Parameter Reduction Rate, PR) and performance
degradation (drop in Top-1 accuracy), while also analyzing the stability and efficiency of the pruning
strategy.

4.1 Experimental Settings
Baselines. All baseline models are trained from scratch using the Stochastic Gradient Descent

(SGD) optimizer, with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 5 × 10−4.
Models are trained for 200 epochs. The learning rate is reduced by a factor of 1/10 every 50 epochs to
ensure convergence and performance. Table 1 outlines the baseline accuracy, FLOPs, and parameters
for each model, alongside the time cost incurred for generating pruning information.

Pruning. For pruning, we use perceptual hashing (pHash) to measure feature map similarity. We
randomly sample 100 images from the training set to compute the average similarity between the
output feature maps of each convolutional layer. We evaluate the similarity threshold τ across the
range {0.6, 0.65, 0.70, 0.75, 0.80} to explore performance under different pruning intensities.

Fine-tuning. All pruned models are fine-tuned for 70 epochs, with an initial learning rate set to
0.01, which is decayed every 30 epochs. The batch size remains 256, and all other hyperparameters are
consistent with those used in the pre-training phase.
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Table 1: The baseline accuracy, FLOPs, parameters, and the time cost for generating pruning
information for each model

Dataset Model Top-1/5 Acc. (%) FLOPs (MB) Params. (MB) Time (s)

CIFAR-10

VGGNet-16 93.72 314.57 14.99 468
ResNet-56 93.48 130.02 0.88 16
ResNet-110 93.94 259.49 1.75 31
DenseNet-40 93.87 292.50 1.06 37

CIFAR-100

VGGNet-16 72.53 314.62 15.04 508
ResNet-56 70.83 130.03 0.88 18
ResNet-110 70.95 259.50 1.76 34
DenseNet-40 72.85 292.54 1.10 41

ImageNet ResNet-50 76.15/92.87 4.13E3 25.56 1948

Evaluation. The performance recovery is measured by the drop in Top-1 accuracy (denoted as
Top-1 Acc↓). Negative values indicate an improvement in accuracy after pruning. The compression
effect and computational complexity of the pruned models are quantified using FLOPs Reduction
(FR) and Parameters Reduction (PR), respectively. FR and PR are defined as follows:

FR =
(

1 − FLOPspruned

FLOPsoriginal

)
× 100% (7)

PR =
(

1 − Paramspruned

Paramsoriginal

)
× 100% (8)

4.2 Experimental Results and Analysis
VGGNet-16. The pruning performance of VGGNet-16 is summarized in Table 2, which demon-

strates the effectiveness of our method across a spectrum of compression intensities by adjusting the
similarity threshold τ . On CIFAR-10, our approach offers a flexible trade-off between compression
and accuracy: from moderate pruning (τ = 0.8, 42.23% FLOPs reduction, 0.63% accuracy drop) to
aggressive compression (τ = 0.7, 65.77% FLOPs reduction, 1.24% accuracy drop). This adaptability
demonstrates the strength of our threshold-based mechanism for achieving targeted compression
without significant performance loss. Notably, at τ = 0.7, our method outperforms several state-of-
the-art approaches. For instance, it surpasses Zhao et al. (39.10% FLOPs reduction, 0.07% accuracy
drop) in compression rate by a large margin while maintaining competitive accuracy. Compared to
HRank (53.59% FLOPs reduction, 0.53% accuracy drop), our method achieves a higher FLOPs
reduction (65.77%) with a modest increase in accuracy loss (1.24%). Furthermore, our results at
τ = 0.7 are comparable to those of FPRG (65.52% FLOPs reduction, 0.57% accuracy drop), yet
with finer control over the pruning process via an interpretable threshold. On CIFAR-100, a similar
trend is observed. At τ = 0.75, we achieve 40.31% FLOPs reduction with only 0.70% accuracy loss,
outperforming GRDP (39.55% FLOPs reduction, 0.09% accuracy loss) in compression efficiency
while remaining competitive in accuracy preservation. At a more aggressive setting (τ = 0.7), we attain
62.27% FLOPs reduction with a 2.26% accuracy drop, significantly exceeding FPGM (51.01% FLOPs
reduction, 1.25% drop) and demonstrating superior compression capability. These results confirm
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that our method consistently delivers high compression rates across datasets while maintaining robust
accuracy, validating its suitability for practical deployment.

Table 2: Pruning results of VGGNet-16 on CIFAR-10 and CIFAR-100, and τ is the setting of the
threshold. Top-1 Acc. ↓ denotes the Top-1 Accuracy loss after pruning (the lower is better). The higher
the FR and PR, the better

Model Dataset Method Top-1 Acc. ↓ (%) FR (%) PR (%)

VGGNet-16

CIFAR-10

GDP [60] −0.10 30.60 –
�1-norm [8] −0.15 34.34 63.95
Zhao et al. [61] 0.07 39.10 73.34
GAL-0.05 [22] 1.93 39.60 77.57
SSS [62] 0.94 41.62 73.77
GAL-0.1 [22] 3.18 45.21 82.18
Hrank [6] 0.53 53.59 83.24
GRDP [40] 0.17 51.23 83.42
CHIP [63] 0.24 66.60 83.30
Ours (τ = 0.8) 0.63 42.23 76.83
Ours (τ = 0.75) 0.37 51.54 83.62
Ours (τ = 0.7) 1.24 65.77 88.82

CIFAR-100

Zhao et al. [61] −0.07 18.05 37.87
Slimming [64] 0.75 28.71 66.60
COP v1 [15] 0.88 40.31 65.19
SFP [65] 1.77 41.75 39.34
GRDP [40] 0.09 39.55 65.94
FPGM [10] 1.25 51.01 51.01
HRank [6] 1.08 41.23 55.93
Ours (τ = 0.8) 0.22 24.16 50.47
Ours (τ = 0.75) 0.7 40.31 64.71
Ours (τ = 0.7) 2.26 62.27 80.00

ResNet-56. In the evaluation of ResNet-56, our method demonstrates a compelling balance
between compression efficiency and accuracy preservation across both CIFAR-10 and CIFAR-100
datasets. As detailed in Table 3, the proposed entropy-guided k-core pruning framework achieves
significant reductions in FLOPs with minimal impact on Top-1 accuracy, underscoring its effectiveness
and adaptability. On CIFAR-10, the method delivers tunable compression performance by varying
the similarity threshold τ . At τ = 0.75, a conservative pruning setting, the model attains a 16.20%
reduction in FLOPs with a slight accuracy improvement of –0.79%, indicating that the pruned model
retains nearly all original discriminative power. When τ is reduced to 0.7, the FLOPs reduction
increases to 24.93% while the accuracy drop remains negligible (–0.22%). Most notably, at τ = 0.65,
the method achieves a 50.10% reduction in FLOPs with an almost imperceptible accuracy decrease
of only 0.03%, substantially outperforming state-of-the-art methods such as FTWT (54.00% FLOPs
reduction, 1.38% accuracy loss) and FPGM (52.60% FLOPs reduction, 0.10% accuracy drop). This
result highlights the efficacy of combining k-core decomposition for redundancy identification and
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information entropy for informative filter selection. However, at an extremely aggressive setting
(τ = 0.6), while the FLOPs reduction reaches 78.91%, the accuracy drop rises to 4.49%, indicating
a practical upper bound for pruning intensity. On CIFAR-100, a more challenging dataset due to its
finer-grained categories, the method continues to exhibit robust performance. At τ = 0.75, the FLOPs
are reduced by 30.84% with a negligible accuracy drop of –0.04%. When τ is set to 0.7, the FLOPs
reduction reaches 47.17% with a 1.38% accuracy decrease, matching the performance of established
methods like �1-norm and Li et al. in terms of FLOPs reduction, but with better or comparable
accuracy preservation. At τ = 0.65, the method achieves a high compression rate of 60.30% FLOPs
reduction with a 2.10% accuracy drop, demonstrating consistent scalability across pruning intensities.
These results confirm that the proposed approach effectively leverages both structural redundancy
elimination and information-preserving selection, enabling high compression rates without substantial
accuracy degradation. The method’s ability to maintain performance across two datasets with differing
complexities further validates its generalizability and suitability for practical deployment in resource-
constrained environments.

Table 3: Pruning results of ResNet-56 on CIFAR-10 and CIFAR-100, and τ is the setting of the
threshold. Top-1 Acc. ↓ is Top-1 Accuracy loss after pruning (the lower is better). The higher the
FR and PR, the better

Model Dataset Method Top-1 Acc. ↓ (%) FR (%) PR (%)

ResNet-56

CIFAR-10

Hrank [6] −0.26 29.30 16.47
GAL-0.6 [22] 0.28 37.60 11.76
�1-norm [8] −0.02 27.60 13.70
NISP [66] 0.03 43.61 42.60
DTP [67] 0.9 72.10 –
DepGraph [41] −0.24 52.40 –
FPGM [10] 0.10 52.60 50.60
DCP [34] 0.31 49.80 –
CUP-SS [26] 0.31 52.83 –
FTWTJ [68] 1.38 54.00 –
GRDP [40] 0.38 41.96 18.93
Li et al. [28] 0.18 49.90 44.00
FTWTD [68] 1.03 66.00 –
Ours (τ = 0.75) −0.79 16.20 2.68
Ours (τ = 0.7) −0.22 24.93 7.34
Ours (τ = 0.65) −0.03 50.10 24.46
Ours (τ = 0.6) 4.49 78.91 66.44

CIFAR-100

�1-norm [8] 1.37 47.02 17.50
Li et al. [28] 0.84 47.02 17.50
GRDP [40] 0.71 47.02 17.50
Ours (τ = 0.75) −0.04 30.84 9.31
Ours (τ = 0.7) 1.38 47.17 17.61
Ours (τ = 0.65) 2.10 60.30 32.53
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ResNet-110. The pruning results for ResNet-110, presented in Table 4, further validate the
scalability and robustness of our method across deeper network architectures. On CIFAR-10, our
approach achieves competitive compression rates across multiple operating points, with FLOPs
reductions ranging from 36.32% at τ = 0.75 to 62.51% at τ = 0.65. This demonstrates the method’s
ability to adaptively balance compression intensity and accuracy preservation. Specifically, at τ = 0.65,
our method reduces FLOPs by 62.51% with a corresponding accuracy drop of 2.68%, offering
performance on par with leading methods such as FPRG (62.70% FLOPs reduction, 1.67% accuracy
drop) while providing a tunable compression mechanism via an interpretable threshold. On CIFAR-
100, our method exhibits particularly strong performance at τ = 0.7, achieving a 52.57% reduction
in FLOPs with only a 0.96% decrease in Top-1 accuracy. This result compares favorably against
both L1-norm (52.42% FLOPs reduction, 1.07% accuracy drop) and Li et al. (52.42% FLOPs
reduction, 0.68% accuracy drop), underscoring the advantage of our entropy-guided selection in
preserving discriminative features on more complex datasets. Even at a higher compression setting
(τ = 0.65), the method attains a 64.74% FLOPs reduction with a 2.50% accuracy drop, demonstrating
a consistent trade-off between compression and performance across varying intensities. These results
highlight the method’s effectiveness in handling deeper networks like ResNet-110, where structural
complexity and inter-layer dependencies pose significant challenges to pruning. The integration
of k-core decomposition with information entropy ensures that both redundancy elimination and
information retention are optimally balanced, leading to superior compression performance without
substantial accuracy degradation.

Table 4: Pruning results of ResNet-110 on CIFAR-10 and CIFAR-100, and τ is the setting of the
threshold. Top-1 Acc. ↓ is Top-1 Accuracy loss after pruning (the lower is better). The higher the FR
and PR, the better

Model Dataset Method Top-1 Acc. ↓ (%) FR (%) PR (%)

ResNet-110

CIFAR-10

MIL [69] 0.19 34.20 –
Zhao et al. [61] 0.25 36.44 41.27
�1-norm [8] 0.23 38.70 32.40
NISP [66] 0.18 43.78 43.25
HRank [6] −0.73 41.20 39.40
SFP [65] 0.30 40.80 –
GRDP [40] 0.44 45.54 15.32
Ours (τ = 0.75) 1.16 36.32 8.88
Ours (τ = 0.7) 1.49 48.40 17.17
Ours (τ = 0.65) 2.68 62.51 32.62

CIFAR-100

Li et al. [28] 0.68 52.42 20.72
�1-norm [8] 1.07 52.42 20.72
GRDP [40] 1.95 63.08 46.78
Ours (τ = 0.75) 0.87 38.82 12.00
Ours (τ = 0.7) 0.96 52.57 21.74
Ours (τ = 0.65) 2.50 64.74 37.39

DenseNet-40. The pruning results for DenseNet-40 on both CIFAR-10 and CIFAR-100 are
presented in Table 5, demonstrating the effectiveness and adaptability of our method in handling the
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complex connectivity inherent in dense networks. On CIFAR-10, our approach achieves a flexible
trade-off between compression and accuracy by varying the similarity threshold τ . At τ = 0.75,
the method reduces FLOPs by 38.01% with a minimal accuracy drop of only 0.29%, indicating
conservative yet effective pruning. When τ is lowered to 0.7, a more aggressive compression is achieved
with 51.34% FLOPs reduction and a negligible accuracy loss of 0.28%, significantly outperforming
both Li et al. (43.09% FLOPs reduction, 1.19% accuracy drop) and Zhao et al. (44.78% FLOPs
reduction, 0.95% drop). This result highlights the advantage of our entropy-guided selection in pre-
serving informative features while eliminating redundancy. At the most aggressive setting (τ = 0.65),
the method attains a remarkable 76.45% reduction in FLOPs at the cost of a 1.55% accuracy
decrease, demonstrating its capability for high compression rates while maintaining reasonable model
performance. This performance is competitive with GRDP (74.51% FLOPs reduction, 0.94% accuracy
drop), yet offers finer control through an interpretable threshold mechanism. On CIFAR-100, a similar
trend is observed, though with a slightly higher accuracy degradation due to the increased complexity
of the dataset. At τ = 0.75, our method reduces FLOPs by 20.67% with only a 0.73% accuracy
drop, providing a conservative pruning option suitable for scenarios where accuracy preservation
is critical. When τ is set to 0.7, the FLOPs reduction increases to 43.96% with a 1.27% accuracy
loss, outperforming �1-norm (41.87% FLOPs reduction, 0.96% drop) and Li et al. (similar FLOPs
reduction but 0.78% drop) in terms of compression efficiency. At τ = 0.65, the method achieves a
high compression rate of 68.56% FLOPs reduction, albeit with a more significant accuracy drop of
2.48%. This result is comparable to GRDP (67.08% FLOPs reduction, 1.95% drop), confirming the
robustness of our approach under aggressive pruning conditions. The consistent performance across
both datasets underscores the ability of our graph-entropy framework to effectively navigate the dense
connectivity pattern, balancing compression and accuracy through a tunable threshold.

Table 5: Pruning results of DenseNet-40 on CIFAR-10 and CIFAR-100, and τ is the setting of the
threshold. Top-1 Acc. ↓ is Top-1 Accuracy loss after pruning (the lower is better). The higher the FR
and PR, the better

Model Dataset Method Top-1 Acc. ↓ (%) FR (%) PR (%)

DenseNet-40

CIFAR-10

GAL-0.01 [22] 0.52 35.13 35.58
Li et al. [28] 1.19 43.09 24.03
GRDP [40] 0.94 74.51 66.41
Zhao et al. [61] 0.95 44.78 59.67
HRank [6] 1.13 60.94 53.85
Ours (τ = 0.75) 0.29 38.01 18.05
Ours (τ = 0.7) 0.28 51.34 36.18
Ours (τ = 0.65) 1.55 76.45 69.06

CIFAR-100

Zhao et al. [61] 2.45 22.67 37.73
Li et al. [28] 0.78 41.87 18.22
GRDP [40] 1.95 67.08 46.78
�1-norm [8] 0.96 41.87 18.22
Ours (τ = 0.75) 0.73 20.67 6.22
Ours (τ = 0.7) 1.27 43.96 19.54
Ours (τ = 0.65) 2.48 68.56 46.71
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ResNet-50. To evaluate the scalability of our method on larger and more complex datasets, we
conducted pruning experiments on ResNet-50 using the ImageNet dataset. The results, summarized
in Table 6, demonstrate that our method maintains competitive performance even when applied to
large-scale visual recognition tasks. At a moderate pruning intensity (τ = 0.7), our approach reduces
FLOPs by 50.48% with a corresponding Top-1 accuracy drop of 2.27% and Top-5 accuracy drop
of 1.13%. This performance is comparable to established methods such as FPGM (42.20% FLOPs
reduction, 0.65% Top-1 accuracy drop) while achieving higher compression rates. When employing
more aggressive pruning (τ = 0.65), our method attains a substantial 73.65% reduction in FLOPs with
a 6.38% decrease in Top-1 accuracy. This result significantly outperforms GAL-1-joint (72.86% FLOPs
reduction, 6.84% Top-1 accuracy drop) and is competitive with HRank (76.04% FLOPs reduction,
7.05% Top-1 accuracy drop), demonstrating the method’s effectiveness in high-compression scenarios.
These results on ImageNet validate that our graph-entropy collaborative framework generalizes well
beyond smaller datasets like CIFAR, maintaining its capability to achieve favorable compression-
accuracy trade-offs in challenging real-world applications.

Table 6: Pruning results of ResNet-50 on ImageNet dataset, and τ is the setting of the threshold. Top-1
Acc. ↓ and Top-5 Acc.↓ are Top-1 Accuracy loss and Top-5 Accuracy loss after pruning (the lower is
better). The higher the FR and PR, the better

Method Top-1 Acc.↓ (%) Top-5 Acc.↓ (%) FR (%) PR (%)

SSS-32 [62] 1.97 0.96 31.05 27.06
He et al. [20] 3.88 2.07 33.25 –
ThiNet-70 [46] 0.84 0.47 36.79 33.72
SFP [65] 1.54 0.81 41.80 –
FPGM [10] 0.65 0.24 42.20 –
GAL-0.5 [22] 4.20 1.93 43.03 16.86
SSS-26 [62] 4.33 2.08 43.03 38.82
SRR-GR [27] 0.37 0.19 44.10 –
Ours (τ = 0.7) 2.27 1.13 50.48 20.06
CUP-SS [26] 1.47 0.88 54.54 –
GAL-1 [22] 6.27 3.12 61.37 42.47
GDP-0.5 [60] 6.57 2.73 61.61 –
GAL-1-joint [22] 6.84 3.75 72.86 59.96
Ours (τ = 0.65) 6.38 3.53 73.65 48.70
HRank [6] 7.05 3.29 76.04 67.57

4.3 Efficiency Comparison
To evaluate the overall efficiency of the proposed method, we compared it against several state-

of-the-art pruning schemes under the CIFAR-10 + ResNet-56 + RTX 3090 setup, as summarized in
Table 7 and Fig. 4. The results demonstrate that our approach achieves a favorable balance among
time cost, compression rate, and accuracy preservation.
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Table 7: Efficiency comparison of different pruning schemes on CIFAR-10 + ResNet-56. Top-1 Acc.
↓ isTop-1 Accuracy loss after pruning (the low is better)

Method Pruning time (s) Fine-tuning epochs Total time (s) FLOPs ↓ (%) Top-1 Acc↓(%)

Ours 486 70 556 59.8 0.83
NSB [70] ∼600 150 ∼750 51.0 0.26
Hrank [6] 600 300 900 53.6 0.53
ResRep [71] ∼720 120 ∼840 52.9 0.00
SFP [65] ∼120 100 ∼220 52.6 1.33
FPGM [10] ∼90 100 ∼190 52.6 0.66
AMC [72] ∼900 200 ∼1100 50.0 0.9
GRDP [40] 468 70 538 57.1 0.84

Figure 4: Compression performance comparison

The total processing time of our method is 556 s, which is longer than that of FPGM (190
s) and SFP (220 s), yet it delivers a substantially higher FLOPs reduction (59.8% vs. 52.6%) while
maintaining a competitive accuracy drop of only 0.83%—lower than SFP (1.33%) and AMC (0.90%),
and comparable to HRank (0.53%). Although the introduction of graph construction and entropy
computation incurs a moderate time overhead compared to GRDP (486 vs. 468 s), it significantly
reduces accuracy degradation under aggressive pruning settings (e.g., 0.03% vs. 0.84% at τ = 0.65),
highlighting the benefit of entropy-guided selection in retaining discriminative filters.

Compared to methods requiring extended fine-tuning, such as HRank and AMC, our approach
completes pruning and recovery in only 70 fine-tuning epochs, reducing the total time cost by
approximately 40% while achieving higher compression rates. This efficiency makes our method
particularly suitable for deployment on resource-constrained edge devices. In the three-dimensional
performance space of time, compression, and accuracy, our method occupies a Pareto-optimal region,
offering high compression and low accuracy loss at a moderate computational cost.
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4.4 Ablation Studies
Selection Criterion. To systematically evaluate the contribution of each component in our pro-

posed framework, we conducted comprehensive ablation studies on multiple architectures, including
VGGNet-16, ResNet-56, and DenseNet-40, using the CIFAR-100 dataset. Three filter selection
strategies were evaluated: (1) entropy-only pruning, where filters are retained or removed solely
based on the information entropy of their output feature maps; (2) k-core-only pruning, which
constructs a redundancy graph and randomly preserves one filter from each k-core subgraph; and
(3) the combined k-core & entropy approach proposed in this work, which integrates graph-based
redundancy decomposition with information-theoretic filter importance scoring. The comparative
results demonstrate the effectiveness of the hybrid strategy in achieving a superior balance between
model compression and accuracy retention.

All experiments were conducted with a fixed similarity threshold τ = 0.7 and repeated five times
to ensure statistical reliability. The results, including mean performance and standard deviation, are
summarized in Fig. 5, the proposed hybrid method (k-core & Entropy) consistently outperforms the
other two strategies across all architectures, achieving the highest compression rates (FLOPs and
parameter reduction) while maintaining the lowest accuracy degradation. In contrast, the Entropy-
only method preserves accuracy reasonably well but yields limited compression due to its neglect of
structural redundancy. The k-core only approach achieves higher compression but suffers from greater
accuracy loss and higher variance, attributable to its random selection within redundant clusters.

Figure 5: Performance comparison

Notably, the hybrid method demonstrates particularly strong performance on VGGNet-16 and
ResNet-56, where it achieves a favorable balance between compression and accuracy. For DenseNet-
40, all methods exhibit a slightly higher accuracy drop, reflecting the inherent challenge of pruning
densely connected architectures. However, our method still delivers the most stable and robust results,
with the smallest standard deviation, confirming its effectiveness in preserving informative features
while eliminating redundancy.

These results underscore the importance of combining both structural redundancy analysis and
information-theoretic importance scoring. The graph-based k-core decomposition effectively identi-
fies redundant groups, while the information entropy provides a reliable measure of the informational
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value of each filter, together enabling more informed and stable pruning decisions across diverse
network architectures.

Sample Size. To systematically evaluate the impact of sample size on the pruning performance,
we conducted a series of experiments in which the number of randomly selected images used for
computing feature map similarity was varied from 25 to 200 in increments of 25. All models were
fine-tuned on the CIFAR-100 dataset under identical hyperparameter settings. As summarized in
Table 8, both FLOPs reduction (FR) and parameter reduction (PR) rates exhibit a gradual decline
as the sample size increases. This behavior can be attributed to the reduced estimation error in average
similarity with larger samples, leading to a more conservative pruning strategy and consequently lower
compression rates. Interestingly, although larger sample sizes result in higher parameter retention, this
does not consistently translate into improved accuracy. The Top-1 accuracy loss initially decreases
with increasing sample size, reaching an optimum around a sample size of 100, beyond which the
accuracy degradation tends to rise again across all architectures. This non-monotonic relationship
suggests that an intermediate sample size strikes an optimal balance between estimation reliability
and representativeness of the dataset. Excessively large samples not only diminish pruning efficiency
but also increase computational overhead during the filter selection phase, without yielding gains in
model accuracy.

Table 8: Pruning results of the models (VGGNet-16, ResNet-56/110, and DenseNet-40) on CIFAR-
100 dataset with varying sample sizes (from 25 to 200 in steps of 25). Top-1 Acc. ↓ isTop-1 Accuracy
loss after pruning (the low is better). The higher the FR and PR, the better

Sample
size

Model

VGGNet-16 ResNet-56 ResNet-110 DenseNet-40

Top-1
acc. ↓
(%)

FR(%) PR
(%)

Top-1
acc. ↓
(%)

FR(%) PR
(%)

Top-1
acc. ↓
(%)

FR(%) PR(%) Top-1
acc. ↓
(%)

FR
(%)

PR
(%)

25 2.71 65.12 83.48 1.31 48.23 18.71 1.69 53.51 21.83 1.25 44.38 18.63
50 2.76 63.29 81.35 1.10 46.91 17.62 1.36 52.89 21.67 0.71 43.29 18.51
75 2.44 63.31 81.03 0.77 46.15 17.53 0.95 52.69 20.75 0.70 42.61 18.21
100 1.71 62.49 79.93 0.67 47.05 17.47 0.64 52.45 20.69 0.55 41.84 18.19
125 1.72 61.56 79.33 0.78 46.20 17.45 0.84 52.68 20.71 0.80 42.71 18.51
150 2.34 60.92 78.97 0.74 43.97 16.20 0.79 52.29 20.34 1.11 41.44 17.00
175 2.37 61.29 79.12 0.77 42.93 16.03 1.19 52.13 20.42 0.94 40.27 16.42
200 2.27 61.20 79.11 0.88 42.86 15.46 1.04 52.10 20.32 1.16 40.96 16.46

Learning rate. We investigated the impact of the learning rate on fine-tuning outcomes. All
models were fine-tuned on the CIFAR-100 dataset with different initial learning rates. We evaluated
four values: 0.1, 0.01, 0.001, and 0.0001, while keeping all other hyperparameters constant. The
accuracy curves throughout fine-tuning are presented in Fig. 6. The results reveal a typical “U-shaped”
convergence behavior across all networks. With a learning rate of 0.1, the models exhibited significant
early-stage oscillation and a sharp accuracy drop within the first 20 epochs. A slight recovery occurred
later, but the final performance remained suboptimal. A learning rate of 0.01 yielded the most stable
training process, entering a steady ascent after approximately 10 epochs and nearing convergence by
epoch 30, ultimately achieving the highest or near-highest Top-1 accuracy. This validates 0.01 as a
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suitable learning rate for fine-tuning pruned models. When the learning rate was reduced to 0.001,
the models started with relatively high initial accuracy but converged slowly, failing to reach full
convergence even after 70 epochs, which indicates insufficient gradient update strength. A learning rate
of 0.0001 caused training to nearly stagnate, resulting in fine-tuning efficacy that was only marginally
better than random initialization. Based on convergence speed, stability, and final accuracy, we selected
a learning rate of 0.01 for all subsequent experiments.

Figure 6: Accuracy change curves

4.5 Discussion and Future Work
Our proposed “graph-entropy collaborative pruning” framework offers compelling benefits in

three key aspects: compression rate, accuracy retention, and computational efficiency. By synergis-
tically integrating k-core decomposition for redundancy elimination and information entropy for
feature preservation, our method achieves high compression rates (e.g., up to 76.45% FLOPs and
88.82% parameter reduction) with minimal accuracy loss (as low as 0.03% on ResNet-56), significantly
outperforming state-of-the-art methods like L1-norm, FTWT, and HRank. The architecture-specific
strategies and the efficient “one-shot pruning + short-term fine-tuning” pipeline further ensure the
practical deployability of our approach, reducing total time cost by over 60% compared to methods
requiring prolonged retraining.
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Notwithstanding these strengths, we identify several limitations that point to promising future
research directions:

Adaptive Thresholding for Scalability. The current global similarity threshold τ , while effective
for CIFAR-scale datasets, offers limited granularity for controlling pruning intensity across layers
in larger, more heterogeneous networks (e.g., on ImageNet). Future work will develop adaptive τ

scheduling strategies, such as layer-wise or block-wise thresholding, to achieve finer-grained compres-
sion control and maintain robustness on complex datasets.

Extension Beyond Convolutional Layers. Our method currently prunes only convolutional layers,
leaving parameter-heavy linear layers (e.g., in classification heads) and emerging components like
self-attention modules untouched. To maximize the impact on modern architectures (e.g., Vision
Transformers, CNN-Transformer hybrids), we plan to generalize the graph–entropy framework to
linear and attention-based layers, enabling whole-model compression.

Handling Complex Connectivity Patterns. The k-core decomposition algorithm assumes a rel-
atively uniform connectivity structure. In highly fragmented or attention-augmented graphs, this
may cap the achievable redundancy reduction. Investigating alternative graph-theoretic measures
or hierarchical community detection algorithms could enhance redundancy identification in these
challenging scenarios.

Computational Overhead and Scalability. The graph construction phase, reliant on perceptual
hashing (pHash), introduces a one-time overhead. While this cost is acceptable for the models and
datasets studied here (Tables 1 and 7) given the substantial gains in compression and accuracy
with reduced fine-tuning, it may become a bottleneck for very high-resolution inputs or extremely
large models. To enhance scalability, future work will explore strategies such as approximate &
hierarchical graph construction (e.g., via sampling or lower-fidelity feature representations) and in-
training redundancy estimation, where the similarity calculation is integrated into the training process
to incrementally build the graph with minimal overhead.

Addressing these aspects will further solidify the generality and effectiveness of our approach for
next-generation efficient deep learning models.

5 Conclusion

In this study, we proposed a novel graph-entropy collaborative framework for filter pruning in
convolutional neural networks (CNNs). The core contribution is a Pareto-optimal balancing mecha-
nism that simultaneously maximizes structural redundancy removal via k-core decomposition while
minimizing information loss through entropy-based filter scoring. This approach enables effective
compression of CNNs, making them suitable for deployment in resource-constrained environments.

Specifically, our method constructs an intra-layer redundancy graph using perceptual hashing
to quantify feature map similarity. Through adaptive k-core decomposition, high-density redundant
substructures are identified hierarchically. Information entropy is then employed to evaluate the
informational value of filters within each cluster, ensuring that only the most informative nodes are
retained. This two-stage process guarantees the removal of filters that are redundant both structurally
and functionally, while preserving discriminative features.

Comprehensive experiments on CIFAR-10 and CIFAR-100 demonstrate the efficacy and general-
ity of the proposed framework. Across multiple architectures—including VGGNet-16, ResNet-56/110,
and DenseNet-40—our method achieved significant compression rates, with average reductions of
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42.3% in FLOPs and 76.8% in parameters, accompanied by only a 0.63% average decrease in Top-
1 accuracy. Notably, on ResNet-56 with τ = 0.65, we attained a 50.10% reduction in FLOPs with
a negligible accuracy loss of 0.03%, substantially outperforming existing methods such as FTWT
(54.00% FLOPs reduction, 1.38% accuracy loss). Compared to pruning strategies based solely on
importance metrics (e.g., L1-norm) or redundancy criteria (e.g., GRDP), our framework achieves a
superior balance between compression and accuracy retention. The incorporation of architecture-
specific constraints—such as synchronous pruning in residual connections and conservative thresh-
olds in dense blocks—ensures functional integrity across diverse network topologies. The method’s
effectiveness extends to large-scale tasks, as evidenced by the ResNet-50 results on ImageNet, where
it achieved a high compression rate of 73.65% FLOPs reduction, confirming its scalability beyond
small-scale datasets. Furthermore, the one-shot pruning pipeline followed by 70 epochs of fine-tuning
reduces the total time cost to approximately 40% of that required by iterative pruning methods like
HRank, striking an efficient trade-off among compression, accuracy, and computational overhead.

Despite these promising results, certain limitations remain. Under high pruning intensities (e.g.,
τ = 0.65), DenseNet-40 exhibits a slightly higher accuracy degradation, indicating a need for
further refinement in dynamic threshold adaptation. Moreover, the current method is applied only
to convolutional layers; future work will extend it to linear and attention-based layers, and validate
its scalability on larger datasets such as ImageNet and Transformer-CNN hybrid architectures.
Integrating advanced techniques like knowledge distillation or reinforcement learning may further
enhance the generalization and convergence of pruned models.

In summary, this work presents a principled and efficient framework that unifies structural
redundancy analysis with information-theoretic filtering, offering a practical and effective solution
for compressing CNNs in edge-device applications.
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