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ABSTRACT

The paper presents total-stress numerical analyses of large-displacement soil-structure interaction prob-
lems in geomechanics using the Particle Finite Element Method (PFEM). This method is characterized by
frequent remeshing and the use of low order finite elements to evaluate the solution. Several important
features of the method are: (i) a mixed formulation (displacement-mean pressure) stabilized numerically
to alleviate the volumetric locking effects that are characteristic of low order elements when the medium
is incompressible, (ii) a penalty method to prescribe the contact constraints between a rigid body and a
deformable media combined with an implicit scheme to solve the tangential contact constraint, (iii) an
explicit algorithm with adaptive substepping and correction of the yield surface drift to integrate the
finite-strain multiplicative elasto-plastic constitutive relationship, and (iv) the mapping schemes to
transfer information between successive discretizations. The performance of the method is demonstrated
by several numerical examples, of increasing complexity, ranging from the insertion of a rigid strip foot-
ing to a rough cone penetration test. It is shown that the proposed method requires fewer computational

resources than other numerical approaches addressing the same type of problems.

1. Introduction

Many activities in geotechnical engineering (probing, sampling,
pile installation, ...) involve the insertion of a rigid body into the
soil. In this kind of problem large displacements and deformations
of the soil mass are always present. The coupled hydro-
mechanical response of the soil adds further complexity, even in
cases where insertion speed is tightly controlled. Analysis of prob-
lems of rigid body insertion into soil masses had traditionally relied
on highly idealized approaches such as geometrically simple cavity
expansion mechanisms [1]. Although much insight is gained from
such analyses, a number of basic features of the problem are left
aside and, as a consequence, a host of not fully understood empirical
corrections and methods have been relied upon for practical
applications.

Numerical simulation seems an obvious alternative to advance
understanding in this area. However, the numerical simulation of
rigid body insertion into soils is a complex task, since the system
is full of non-linearities, contact-related, material-related and also
geometrical. This latter kind of non-linearity was a fundamental
obstacle to the Lagrangian or updated Lagrangian formulations of
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the finite element method (FEM) that are successful in other areas
of geotechnical engineering. Strong mesh distortion resulted in
large inaccuracies and/or stopped calculation at relatively small
displacements [2].

In the last decades several numerical frameworks have been
developed to address those problems. Some approaches are not
based on continuum mechanics and use instead discrete element
methods [3,4]; however, continuum-based approaches are domi-
nant, particularly for fine-grained soils. Within continuum-based
methods the approach most frequently applied to geotechnical
insertion problems has been that of Arbitrary Lagrangian-
Eulerian formulations (ALE). ALE finite element formulations
combine the Lagrangian and Eulerian kinematic descriptions, by
separately considering material and computational mesh motions
[5].

The application of ALE to insertion problems in soil mechanics
may be traced to Van den Berg et al. [6]. Afterwards, three main
FEM ALE methods have been increasingly developed and repeat-
edly applied in this area: the so-called remeshing and interpolation
technique by small strain (RITSS) developed by Randolph and
co-workers [7-9], the so-called efficient ALE approach (EALE)
developed by Nazem and co-workers [10-12] and the successive
built-in implementation of ALE in Abaqus/Explicit, currently
known as the Coupled Eulerian-Lagrangian (CEL) method [13]



which have been applied to insertion problems by several teams
(e.g. [14-16]). A comparative review of these ALE methods has
been recently presented by Wang et al. [17].

A second continuum-based numerical framework is that of the
Material Point Method (MPM). A set of particles (material points)
move within a fixed finite element computational grid. Material
points carry all the information (density, velocity, stress, strain,
external loads) which, at each step, is transferred to the grid to
solve the mechanical problem. The computed solution allows
updating of position and properties of the material points. The
application of MPM to geotechnical problems is relatively recent
[18,19]. Despite that, several implementations of MPM have been
already used to model rigid body insertion into soils [20-22].

The Particle Finite Element Method (PFEM) is a third
continuum-based approach that seems suitable to address
geotechnical insertion problems. PFEM is actually an updated
Lagrangian approach, but one that avoids mesh distortion prob-
lems by frequent remeshing. The nodes discretizing the analysis
domain are treated as material particles the motion of which is
tracked during the numerical solution. Remeshing in PFEM is based
in Delaunay tessellations and uses low-order elements. PFEM was
first developed to solve fluid-structure interaction problems [23]
and then extended to other areas, like erosion, solid-solid interac-
tion and thermo-plastic problems [24,25].

Carbonell et al. [26,27] first applied PFEM to geomechanical
problems, extending the method to deal with tool-rock interaction
problems in small and large scale excavations. In their work, how-
ever, material removal at the interface, rather than tool insertion
was the focus. The excavated material was treated as a single-
phase solid using a damage law as a constitutive model. Later, Sal-
azar et al. [28], extended the code to include Bingham-like rheol-
ogy to model flowslides.

Zhang et al. [29] presented a new PFEM implementation for
granular flow applications, using a variational theorem to dis-
cretize the governing equations. A single-phase rigid plastic consti-
tutive description of the soil was employed. An example of pipeline
insertion into a Tresca soil was presented in Zhang et al. [29], how-
ever most applications have focused on soil flow problems [30,31].

This work documents an ongoing effort to develop a PFEM-
based code for the analysis of solid insertion problems in soils.
Monforte et al. [32] briefly illustrated how the code, named G-
PFEM, is currently capable of handling coupled hydro-mechanical
quasi-static problems in 2D using classic elasto-plastic soil consti-
tutive descriptions (e.g. Cam clay). This paper focuses in a narrower
range of applications: that of undrained problems, which may be
analyzed using a total stress approach. G-PFEM has been imple-
mented into Kratos [33] an object-oriented multi-disciplinary FE
framework.

In the first part of this work a general description of the numer-
ical method is given, with particular emphasis on the treatment of
the contact between solid and soil and on the mapping procedures
between successive meshes. In the second part of this work, the
performance of the proposed approach is assessed solving three
classical problems, of increasing complexity, for which previous
solutions (numerical and/or analytical) were available: punching
of a rigid strip footing from the surface, embedded T-bar motion
and cone penetration test (CPT).

For reasons of space, not all algorithmic aspects of the method
could be described here, and the reader is referred elsewhere to
more in-depth treatment of some aspects. For instance, Monforte
et al. [34] discuss in detail the performance of alternative mixed
and stabilized formulations for G-PFEM, which are used to avoid
the numerical problems induced by incompressibility (volumetric
locking). The numerical schemes adopted for the integration of
the constitutive equations have also been presented in more detail
elsewhere [35].

2. Numerical method

This section addresses the numerical algorithms used in this
work. After a brief review of the fundamentals of the Particle Finite
Element Method, the large deformation displacement-mean pres-
sure formulation for the problem is presented. The implementation
of the constitutive equations and contact constraints are then
briefly described. Finally, the interpolation procedures between
different finite element meshes are explained.

2.1. Particle Finite Element Method (PFEM)

PFEM is a mesh-based continuum method: the solution is com-
puted in a finite element mesh built with well-shaped low order
elements. This computational mesh evolves during problem solu-
tion by means of frequent remeshing. A cornerstone of the PFEM
implementation used here is an efficient remeshing strategy [23].
Basic tasks used in that strategy include adaptive inclusion of
new nodes, Delaunay tessellation based on nodes and element
smoothing. A Lagrangian description of the continuum is used
and information between meshes is transferred using interpolation
algorithms, later detailed. This general PFEM scheme is enriched
with the inclusion of rigid bodies of specified motion that may con-
tact, penetrate and reshape the discretized continuum.

In summary the solution algorithm involves the following steps:

1. Initialization. Discretize the domain with a Finite Element
mesh. Define the shape and movement of the rigid structure.

2. Identify the external boundary. Search the nodes that are in
contact or close to rigid bodies and initialize their contact
conditions.

3. Compute some increments of the mechanical problem.

4. Construct a new mesh. This includes the introduction of new
elements in areas with large plastic deformation, re-
tessellation and some post-tessellation mesh smoothing.

5. State variables are interpolated from the previous mesh to the
new one.

6. Go back to step 2 and repeat until problem-dependent stop
condition.

The algorithm presented has some similitudes with other meth-
ods based on different approaches such as EALE and RITSS. A fun-
damental difference with EALE lies on mesh treatment. In EALE
the number of nodes, elements and the topology of the FE mesh
are preserved during the analysis and the boundary and interior
nodes are relocated between solution steps by computing comple-
mentary elastic problems [10]. In contrast, the original idea of
PFEM was to minimize nodal position changes during computation
while constantly updating mesh topology using a Delaunay’s Tes-
sellation. Subsequently, in order to reduce the dependence of the
solution on the initial discretization, additional adaptive tech-
niques have been introduced: (i) insertion and removal of nodes
based on plastic dissipation and (ii) improvement of mesh quality
through Laplacian smoothing [25]. Despite these new features,
modification of original nodal positions in PFEM remains relatively
infrequent.

The remeshing aspect of PFEM makes it closer to RITSS, partic-
ularly in its first implementations [7,36]. In RITSS, periodical
remeshing was performed using retriangulation, h-adaptive tech-
niques and mesh smoothing. The algorithmic details are, however,
different, particularly concerning retriangulation. The degree of
adaptivity of some newer versions of RITSS that rely on Abaqus
for mesh generation is perhaps more limited, as the role of users’
experience was emphasized by Wang et al. [17]. The algorithms
employed for transfer of information between successive meshes



in PFEM (see Section 2.6 below) are also different from those
employed in RITSS.

Another significant difference is that whereas both RITSS and
EALE use high-order elements to solve the governing equations
(quadratic elements in RITSS and quadratic and higher in EALE);
in the PFEM code presented here only linear elements are used.
This, however, is not the only possible choice: Zhang et al. [31]
used mixed elements with higher order interpolants. Other differ-
ences between the code presented here and previous approaches
may also be a matter of choice, for instance the constitutive formu-
lation using a multiplicative decomposition of the deformation
gradient that is later presented (Section 2.3) has not been generally
employed in RITSS or EALE, although, in principle, there is no major
obstacle for it.

2.2. Governing equations

The current implementation of G-PFEM (i.e. Geotechnical-
PFEM) contemplates only quasi-static problems. For the single-
phase case presented here the linear momentum balance equation
written in the current deformed configuration may be expressed
as:

{V~a+b:0

M(u) =0 M

where ¢ is the Cauchy stress tensor, b are the external volumetric
loads, u represents solid displacements and .# stands for the initial
conditions and the boundary conditions, that include fixed displace-
ments and prescribed tractions.

The same problem may be restated with a mixed displacement -
mean-pressure formulation (see [37]). Splitting the Cauchy stress
between the deviatoric and volumetric part the problem reads:

V-64+Vp+b=0
p—3tr(e) =0 (2)
() =0

where ¢ is the deviatoric part of the Cauchy stress tensor and p the
Cauchy mean pressure.

The low order finite elements used in PFEM employ the same
shape functions for displacement and mean pressure. At the
incompressible limit they do not satisfy the Babuska-Brezzy condi-
tions [37] and, as a consequence, volumetric locking may occur.
Volumetric locking is characterized by a numerically-induced stif-
fer response of the system.

This problem may be bypassed by several strategies but the one
best adapted to the method is to use a stabilized form of the mean-
pressure equation that appears on the mixed formulation. The
algorithm selected for stabilization is the so-called Pressure Lapla-
cian technique (FPL, [37]). The FPL technique is also performant in
consolidation problems [38], which may facilitate the extension of
the code to coupled problems. Another suitable stabilization
method is the so-called Polynomial Pressure Projection (PPP), pre-
viously applied for Stokes flow problems [39,40]|. The former
method has the advantage of not requiring mesh-size dependent
numerical parameters. A detailed presentation of the implementa-
tion and performance of different numerical stabilization algo-
rithms is given in [34].

Using a mixed formulation increases computational cost, since
an extra degree of freedom (in this case, the pressure) is added
at each node. On the other hand, linear elements reduce the num-
ber of gauss points, with important time saving advantages in the
local stress integration step.

The discrete equations of the problem are obtained from the
weak form of the problem defined in Equation (2) introducing
the Finite Element shape functions. An Updated Lagrangian

approach is used. The resulting quasi-static equations are inte-
grated implicitly in time.

2.3. Constitutive equations

In the literature, two frameworks have been proposed for the
formulation of large deformation elasto-plasticity [41].

The first one is based on an additive decomposition of the plas-
tic and elastic strains and the use of hypoelastic rate constitutive
models. This approach directly extends the usual small strains for-
mulation and additional terms are added in order to deal with the
rigid body rotation and ensure the objectivity of the resulting
stress increment (e.g. Nazem et al. [10]). In the second approach,
a multiplicative decomposition of the deformation gradient and
hyperelastic response are assumed. This second approach is best
suited to problems involving both large displacements and large
deformations [42] and is the one adopted in G-PFEM.

The total deformation gradient, F, is thus decomposed into an
elastic and plastic part. The elastic part applies to an intermediate
configuration of irreversible (plastic) deformation. Hence:

_ 8‘P(X7 t) _ e D
F = X = F¢-F 3)

The elastic deformation gradient may itself be decomposed into
a volumetric and deviatoric part multiplicatively: F* = F¢, - F¢; the
volumetric part is given by F; = J° ®{ and the deviatoric part by
Fe = F° . (F%) " where J* = det(F°) is the elastic Jacobian.

Elastic deformation is assumed hyper-elastic, with uncoupled
volumetric and deviatoric responses,

w(b%)
ob°
where 7 is the Kirchhoff stress tensor, related to the Cauchy stress
through t = Jo and J = det(F) is the determinant of the deformation
gradient. W is the stored energy function, b° the elastic left Cauchy
Green tensor, b°=F .F, with its deviatoric part given by

b = F .
In general the plastic part will require the specification of a

yield criterion, f, a hardening law, h and a flow rule, g, in addition
to the Kuhn-Tucker conditions [43]:

7= 2b° = 2(b%) = Jp(f°) + s(B°) (4)

fz,9) <0
q=h(F*-F") 5)
P= j,agl{;q)

where f(t, q) is the yield surface, q represents the hardening param-
eters, g is the plastic potential and 7 stands for the plastic multiplier.
Note that P = F¢-L- (F%) ' is the plastic velocity gradient defined in

the final configuration whereas L = F? - (I"”)’1 is the plastic velocity
gradient defined in the intermediate (plastic) configuration.

For the elastic-perfectly plastic analyses performed here, the
hyperelastic model is given by

__2G(1+v) InJ®
{p —301-2v) ]

— Inb?
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(6)

where G and v are, respectively, the shear and Poisson modulus.
Plastic deformation is isochoric and, therefore, elastic and total

volumetric strains coincide: J = J°)’ = J* and J* = 1. A perfectly plas-

tic model with smoothed Tresca yield surface is employed [44]:

f(z,q) =], cos(0) - S, <0

q=0 (7)
g=f



where J, and 0 are the second invariant and the Lodes Angle of the
Kirchhoff stress and S, is the undrained shear strength.

2.4. Local integration

The robustness and accuracy of mechanical finite element anal-
ysis relies on the local integration scheme of the constitutive equa-
tions. When the multiplicative strain decomposition formulation is
employed, the integration algorithm is usually implicit in time,
leading to the return mapping algorithms [43,45]. Although implicit
methods render second order convergence of the global problem
[46], strong non-linear features of complex plastic models, such
as high curvature of the yield surface, may lead to a lack of conver-
gence of the local problem for a range of initial trial states [47].

In this work, an explicit integration scheme for multiplicative
finite-strains elasto-plasticity is presented. This is based on the
assumption of an exponential approximation of the variation of
the plastic deformation gradient [43], from which the following
explicit approximation is obtained:

F,, =exp(AtD) - P (8)

n+1 —

Then, introducing this equation to the definition of the total
deformation gradient, Eq. (3):

Fon=F, ~eXp(At(F$)71 -I-F)-F,
_ og(t,
=F,, - (F)" -exp (Av —(a: q)) -Fy 9)
Finally, the elastic Left Cauchy Green tensor is expressed as:

og(t,
b1 =Fut - F,' - exp (_AV %) B

exp (- EED) RE (10)

Note that this last equation defines the new elastic configura-
tion (and stress state) in terms of quantities in the previous config-
uration, the new deformation gradient, obtained in the global
scheme, and the plastic multiplier. The value of the plastic multi-
plier is obtained from the consistency condition.

In implicit methods a similar expression is obtained. In that
case, the Hencky strain measure (ee = %) is usually introduced

and the obtained equations have the same formal structure of
the small strains schemes. This is not the case of explicit methods:
in the right hand side, the deformation gradient at time t,,; and t,
have different eigenvectors and, thus, these terms do not commute.
As a consequence, the logarithm of the right hand side is not equal
to the sum of the logarithm of each term.

Explicit stress integration schemes render first order accuracy
in time and, in elasto-plastic regime, the obtained stress state typ-
ically does not lay in the yield surface. To overcome these draw-
backs, the integration of stresses at each Gauss point is governed
with a numerical scheme based on Sloan et al. [48] that includes
adaptive substepping and correction of the yield surface drift. More
details on the implementation of this scheme can be found in [35].

2.5. Contact discretization

The interaction between multiple bodies produces a set of nor-
mal and tangential forces at the interface. Mathematically, contact
conditions are expressed as a set of geometrical restrictions to the
solution and the interaction forces are deduced from these con-
straints. In this work, one of the contacting bodies -the structure-
is assumed to be rigid; this hypothesis is approximate enough
when the Youngs moduli ratio between the structure and soil is
large [49].

The geometrical constraints in the normal direction are that (i)
penetration of the two bodies is not permitted, (ii) null normal
force when the bodies are not in contact and (iii) only compressive
normal force is allowed. These restrictions read:

gn<0
p.>0 ifg,=0 (11)
p.=0 ifg, <0

where g, is the normal gap and p, is the normal contact stress.

These constraints may be introduced into the solution of the
problem by several methods. In this work, the penalty method is
used; this way, a term proportional to the error on the constraint
is added to the residual of the problem and the restrictions are only
approximately fulfilled. In this case the normal contact force, F,, is
expressed as:

{engnwn ifg, >0
F, =

12
0 if g, <0 (12)

where €, is the normal penalty factor, w is the integration weight
and n is the normal to the surface. As a consequence, a nodal con-
tact force proportional to normal penetration is introduced at nodes
of the contact surface of the deformable body.

The tangential part of the contact condition is elasto-plastic
[50,51], where the so-called stick condition -no permanent tangen-
tial displacement between the two contacting bodies- corresponds
to the elastic part and the slip condition - characterized by perma-
nent relative tangential movement- is represented by the plastic
flow. The elasto-plastic analogy is expressed as:

8 =8+8

t=¢gf

fo(t.pn,8,) = [t — fs(Pn,8,) <O (13)
&=y l,))_fts =jn

g,=7

where g{ and g; are respectively the elastic and plastic parts of the
tangential gap g;; t is the tangential contact stress, n, = t/||t|| and ¢,
the tangential contact stiffness or penalty factor, f; is the slip yield
condition 7} is the plastic multiplier and g, is a hardening (strain-
like) variable. In addition to these equations, the solution must ful-
fill the Kuhn-Tucker conditions.

The contact forces are calculated with an implicit integration
procedure. The integration algorithm used to evaluate the tangen-
tial contact stress is detailed in Algorithm 1. It has the same formal
structure than the well-known return mapping algorithm of
elasto-plastic constitutive equations. First, a trial elastic step is
computed as:

lﬂal' =t, + EtAgnH (14)
gg?ﬁ” =8&un
where Ag,,, is the increment of tangential gap in the time-step. The
yield function is evaluated at this trial state; if it is lower or equal to
zero the increment of displacement is purely elastic and no plastic
slip appears.

Note that, for two-dimensional problems, all the vectors (tan-
gential stresses and gaps) have the same direction, n,, so it is pos-
sible to simplify the expressions and use only the projection of the
variables in this direction. Therefore the integration variable is sca-
lar and not vectorial.

(t7 ny) - ne = TN, = (6 + €A, ,) M (15)
gg?;’ . gv,n



Then, the problem reduces to finding the value of the plastic
multiplier, Ay, such that the stress state belongs to the plastic sur-
face, fi(tns1, Do, &2,1) = 0, where:

tut = €e8her = €c(85 + Agn1 — AZhyy) = thd — €AY (16)
Soni1 = 8oty + Ay
The tangent matrix may be obtained as:
He, & Of
dt = dg — —n.d 17
H+e " Hye op, MPn a7

where H = —% and dp, = €,dg,.

Algorithm 1. Implicit integration of the contact tangential
stresses.

Data: Agt', Pn;s tn
Trial State:

it =t + e Agy
Ay =0

trial __
gv,n«kl - gv,n

if fo(ti%, pn, giritt)) < 0 then
Elastic step:

t __ 4trial
n+l — bpy1l

Gomt1 = 9T,
else

Plastic Step:
1=0

trial

b{l) = f5<t21all,pn7 gv,n+1>

while ||f§z) | > Tols do
oy = _f;é)f
" D9y
1=1+1

AYD = Ay 4 Gy
tfﬁrl _ ftrial _ etA,y(i)
gDy = giriel + Ay @
fsgi) = fs(tffil,pn,gfflﬂ)

end

end

Result: tn+1 y Juntl

2.6. Mapping between evolving meshes

One of the main difficulties encountered in adaptive methods is
the transfer of information between different discretizations. In
G-PFEM information is transferred between the previous mesh
and the newly constructed one at every remeshing stage. Nodal
variables (displacements and mean pressure) are mapped into
the new mesh using the previous mesh shape functions.

Note that for the simple constitutive model employed here, the
only internal variables that need mapping are the deviatoric part of
the Elastic Left Cauchy Green tensor and the determinant of the
deformation gradient (Jacobian). Through the hyperelastic model
these two variables uniquely determine the Cauchy Stress tensor.

Two different transfer operators have been used. The algorithms
selected share a common trait: when an element of the old mesh is
preserved, the new value of the variable coincides with the value
on the previous mesh. The first method consists simply on copying
to each element of the new mesh the information of the element of
the previous mesh whose centroid is nearest to the centroid of the
new element. In the second strategy, a least square interpolation
procedure is used [52]: let T; and T, be some internal variable in
the new and previous mesh; a piecewice constat interpolation of
these variables over the whole domain is constructed, T = T;w;
and T = T, W, where the interpolation functions w; and W are
equal to the unity in elements i and k of the new and old mesh
and zero elsewhere.

The value of the internal variable in the new mesh is computed
solving the following problem:

T; = arg (mTlin ( /Q (Tiw; — Tkwk)2d9>> (18)

After carrying out the minimization, the following explicit
expression is found for the new value of the internal variable for
one integration point elements:

- Tk fg W W; aQ

=" wda (19)

Therefore, the value of the internal variable on an element of
the new mesh is the mean value of the variable of the elements
of the previous mesh that overlaped that position, averaged by
the area of overlapping. This algorithm is implemented using the
super-mesh concept [53].

Only the first transfer algorithm ensures that the new state is
admissible (using the second algorithm the stress state may be
outside of the yield surface); none of the two guarantee that the
deformable body is in equilibrium. The first problem is directly
tackled applying a yield surface drift correction algorithm if the
stress state lies outside the yield surface. Possible errors due to
out-of-balance forces after remeshing are ignored and a time-
step is advanced before mechanical equilibrium is again imposed.
In this respect the method appears again as closer to RITSS than
to EALE [10,54].

3. Application examples

In this section several examples of increasing numerical com-
plexity are presented to illustrate the performance of the method.
The first one involves the penetration of a perfectly rigid rough
footing into a soil and it is used to discuss the influence of remesh-
ing procedures. Afterwards, results of two important penetration
problems involving contact interface slip of increasing difficulty,
namely the T-Bar and the CPT, are reported to assess the accuracy
and robustness of the numerical method.

3.1. Strip footing on clay

A first example involves the computation of bearing capacity for
a strip footing lying on a weightless uniform Tresca soil (Fig. 1),
pushed to a depth equal to the footing width. The contact algo-
rithm is not yet involved, because instead of simulating the footing
as arigid body the problem is simplified prescribing a uniform ver-
tical displacement as boundary condition. The example is used
instead to illustrate the benefits of the stabilization procedure
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Fig. 1. Problem definition: a strip footing on undrained soil layer.

and to explore the influence of the different mesh mapping
schemes described above. As this problem has been frequently
addressed in the literature, it does also allow some comparisons
with other numerical approaches.

As shown in Table 1, the first 5 cases analyzed differ in several
numerical aspects: formulation of the governing equations, map-
ping rule, number of elements at the beginning and at the end of
the simulation. The mixed stabilized formulation of the governing
equations was applied in all cases, except in PFEM_F_1, where a
displacement only formulation was used. The stabilized cases dif-
fered in the choice of initial mesh and in the mapping procedure
applied between successive meshes.

The terminology used to label the different meshes employed
was inspired by Kardani et al. [12]. For instance, the coarse dis-
cretization employed for cases PFEM_F_1 and PFEM_F_2 used
twice the number of nodes of Kardani et al. coarse case (the differ-
ence arising because here the symmetry of the problem was not
used to reduce the model).

All these cases used the same set of material parameters, also
taken from Kardani et al. [12] and are characteristic of a very soft
clay (E=100KkPa, S, =1kPa, v=0.495). These values imply a
rigidity index, I, of 33. The rigidity index is defined as the ratio
between the shear modulus, G :ﬁ, and the undrained shear
strength, S,,.

Fig. 2(a) presents curves of normalized settlement vs normal-
ized soil resistance for these 5 cases. The normalized limit resis-
tance provides a bearing capacity factor for this problem, N, = g—:

where g, is the vertical stress applied by the footing and S, the
strength of the soil.

The first thing to note is that the curve obtained using the dis-
placement only formulation (PFEM_F_1) is much higher than those
obtained using the mixed stabilized formulation. This is a conse-
quence of the spurious increase in stiffness that results from volu-
metric locking. Indeed, the oscillations on the mean-pressure field
caused by this problem became so severe that the computation of
this case could not be finished.

The other four cases show a very similar response. Normalized
load-displacement curves show some small oscillations that are
mostly due to the lack of equilibrium of the interpolated fields after
remeshing. It is apparent that these oscillations remain controlled.
Neither the coarseness of the initial mesh, (compare PFEM_F_2 and
PFEM_F_3), nor the enforcement of problem symmetry, (compare
PFEM_F_3 and PFEM_F_5), seem to have much influence in the
solution.

The mapping algorithm came more into play for simulations
using the initially coarser mesh (termed X-coarse or extra-
coarse), because there mesh refinement was more pronounced
(Fig. 3(d)). Again, the effect of this numerical choice on the solution
was minimal. Because of the good performance of nearest-
neighbor interpolation and its relatively smaller computational
cost, this strategy was adopted in all the following examples.

It is interesting to compare these results with those of a para-
metric study of the same case presented by Kardani et al. [12]
using the EALE method. They analyzed the problem with different
higher-order elements (6-node, 15-node and 21 nodes) using
structured meshes in which the number of degrees of freedom
was maintained constant hence trading element order for number
of elements. Two levels of discretization were explored, a coarse
mesh with 3721 nodes and a fine one with 14,641 nodes. The

Table 1
Characteristics of the G-PFEM simulations for the strip footing example.
Case Formulation Mapping Initial Mesh Initial number of elements Final number of elements N¢ (z/IB=1)
PFEM_F_1 Displacement (u-only) Centroid Coarse 14,427 14,556 9.34 (at z/B=0.25)
PFEM_F_2 Mixed stabilized (u-p) Centroid Coarse 14,427 14,601 7.14
PFEM_F_3 Mixed stabilized (u-p) Centroid X-Coarse 1669 4669 7.04
PFEM_F_4 Mixed stabilized (u-p) Least Square X-Coarse 1669 4977 7.17
PFEM_F_5 Mixed stabilized (u-p) Centroid Half X-Coarse 832 2551 7.16
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Fig. 2. Rigid footing penetration on Tresca soil. Effect of different numerical options on the normalized load settlement curves. I = 33 for all cases (a) G-PFEM parametric
analyses (see Table 1) (b) EALE parametric analyses presented by Kardani et al. [12] (see Table 2 for details).
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Fig. 3. Initial, (a) and (b), and final, (c) and (d) mesh for two different initial discretizations of the footing problem.

results obtained in several of their analyses are reproduced here as
Fig. 2(b).

The stiffer response obtained in EALE with smaller-order ele-
ments may be interpreted as an effect of volumetric locking. It is
well-known that one possible strategy to attenuate locking is, pre-
cisely, to increase the interpolation order of the elements. This,
however, adds some extra computational cost. Table 2 presents a
comparison of computational cost indicators (interpolation order,
degrees of freedom, Gauss points) for this EALE models and model
PFEM_F_5 -the one closer in geometry, as all the EALE models had
imposed symmetry. It would seem that for this type of problem
GPFEM offers some computational advantage: similar performance
is obtained with order of magnitude savings on integration point
numbers and d.o.f.

A separate parametric analysis of this case has been performed
to explore the effect of the rigidity index on the solution. The base
model used in the analysis is PFEM_F_3. The undrained shear
strength and Poisson ratio is kept constant and Young modulus is
varied to cover a range of I, between 16 and 500, (16, 33.4 167
and 500).

Fig. 4(a) shows the normalized load vs penetration curves that
result from this analysis. As may be expected, the effect of rigidity

index is very pronounced at the beginning of the loading, becoming
less important as penetration progresses. The analysis was stopped
at a penetration depth equal to footing width (1 m). At that stage
the normalized resistance is similar for all the cases, between 6.9
and 7.3; larger values are encountered as the rigidity index
increases.

In soils with low rigidity index, the first loading steps are dom-
inated by elastic loading. For example, in the case of a rigidity
index of 16, the first plastic gauss point appears at a normalized
penetration depth of z/B=0.05 and the failure surface does not
reach the ground surface at the end of the computation (Fig. 5
(a)). On the other hand, with a rigidity index of 500, the first plastic
gauss point appears at a z/B = 0.001 (that is, at the first computa-
tional step), and the failure mechanism reaches the ground surface
at z/B = 0.014; this point corresponds to the drastic change of slope
of the penetration curve (Fig. 4(a)). The small effect of rigidity on
the bearing capacity factor for the large strain analyses is more
clearly illustrated in Fig. 6.

Fig. 4(b) shows the result of a similar parametric analysis con-
ducted by Sotowski and Sloan [20] using a MPM method. The
results obtained are remarkably similar (Fig. 6). Because the meth-
ods are quite different it is difficult to compare performance

Table 2

Indicators of computational cost and bearing capacity factor for solutions of the strip footing example. Data for the EALE models is taken from Kardani et al. [12].
Case Elements Interp. order Degrees of freedom Gauss points Ne¢

Initial Final Initial Final (z/B=1)

PFEM_F_5 3-noded triangle 1 1371 3978 832 2551 7.16
EALE-6-Coarse 6-noded 2 7442 7442 10,800 10,800 11.38
EALE-6-Fine 6-noded 2 29,282 29,282 43,200 43,200 9.99
EALE-10-Fine 10-noded 3 29,282 29,282 19,200 19,200 8.59
EALE-15-Fine 15-noded 4 29,282 29,282 21,600 21,600 8.02
EALE-21-Fine 21-noded 5 29,282 29,282 18,432 18,432 6.73
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(a)

Fig. 5. Strip footing on undrained soil layer. Magnitude of the Plastic deviatoric incremental strain at z/B =1 for case I, = 500, (a), and I, = 16, (b).

through indicators. Sotowski and Sloan [20] obtained those results
using a model with 60,000 grid cells, requiring 46 h of machine
time (3.4 GHz single core). The PFEM simulations presented in
Fig. 4(a) required between 0.5 and 3.5h of machine time
(1.8 GHz x 4).

In Figs. 4 and 6 are also plotted the values obtained by Silva
et al. [55] using sequential limit analysis, for a rigid-plastic mate-
rial. Although they describe the formulation used as an upper
bound the penetration curve lies below the large deformation ones
once these enter the plastic regime. Interestingly, the small-strain

(b)

wished-in-place analyses presented by Gourvenec and Mana [56]
lie between the rigid-plastic and large strain results.

Finally, for completeness, Fig. 4(c) presents results for the same
problem using other ALE-based methods (RITSS [57,58], CEL [59]).
The RITSS computations show good coincidence with the results of
the small-strain wished-in-place results of Gourvenec and Mana
[56]. That coincidence is somewhat perplexing, since small strain
analyses cannot represent the effect of the small, but noticeable,
surface heave that accompanies footing penetration (Fig. 3). The
CEL computation stops earlier and shows almost no increase after
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a penetration of z/B =~ 0.03; this behavior may be due to the rela-
tively small soil domain considered (only B x 2B, assuming sym-
metry), far smaller than the extension of the active plastic zone
encountered using PFEM (Fig. 5).

3.2. T-bar

In this example, the displacement of an embedded T-bar is
studied assuming plane strain. The penetrometer is placed in the
middle of a square domain of 20 times the T-bar diameter
(Fig. 7). The horizontal displacement is restricted in the vertical
boundaries and the bottom boundary is fixed. At the beginning
of the simulation, the soil is undisturbed; a vertical stress of
100 kPa is applied to the upper boundary to ensure the contact

Table 3
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Fig. 8. Effect of contact roughness on normalized penetration curves for the T-Bar.
Thin black lines: upper bound-strain path solution of Einav and Randolph [60].

between the whole penetrometer and the soil throughout the sim-
ulation. Ky is 0.95. The soil is weightless and characterized by
undrained strength S, = 10 kPa, a Poisson’s coefficient equal to
0.49 and a shear modulus of 1000 kPa (hence I, = 100).

Interface tangential slip follows a von Mises yield criterion (i.e.
fs =t —oSy,). The maximum shear strength admissible between the
soil and rigid body interface is a fraction o of the undrained shear
strength of the soil. A parametric analysis is then performed on the
effect of interface roughness.

In this problem the contact nodal density (i.e. the number of
nodes in contact with the rigid structure) plays a significant role
in the accuracy of the solution. A characteristic length, h, is defined
so that a new node is inserted midway between two contacting
nodes if the distance between them is larger than h. Coarsening
i.e. contact node removal takes place when the distance between
two adjacent contact nodes is smaller than gh/2, where g < 1 is
the coarsening parameter.

Fig. 8 shows the normalized penetration vs resistance curves for
the simulations of the embedded T-bar. For this analysis, the main
result of interest is the resistance factor, Ny, defined as the total
vertical force acting on the T-bar divided by the projected area,
plotted against normalized penetration. The curves are punctuated
by periodic drops. These correspond to interface remeshing events.
As indicated in Table 3 the variability induced by this numerical
noise on the capacity estimate is small, with coefficient of variation
(Standard Deviation/Mean) below 1%. For all of these analyses the
characteristic length value was fixed at h = 0.28 R, where Ris the T-
bar radius; as a result the number of nodes in contact with the bar
varied between 22 and 55 nodes. The initial overall node number is
the same for all cases (1175) and does not change very much dur-
ing simulation.

The dependence of Ny, on interface roughness that is obtained
from these simulations is plotted in Fig. 9, where it is compared

T-bar PFEM simulations. Discretization details and T-bar factor (mean and standard deviation, STD). Initial number of nodes 1175, initial number of elements 2199.

Refinement Roughness Nrpar Characteristic Interface nodes Final number Final number
factor, o length, h (Nmin-Nmax) of nodes of elements
Mean STD UB [60]
Reference 0 9.71 0.083 9.20 0.28 22-55 1040 1923
Reference 0.25 10.48 0.065 10.09 Idem 22-55 1191 2221
Reference 0.5 11.16 0.617 10.83 Idem 22-55 1302 2501
Reference 0.75 11.71 0.062 11.46 Idem 22-55 1080 2656
Reference 1 12.14 0.048 11.94 Idem 22-55 1259 2418
Intense 0 9.45 0.029 9.20 0.12 50-125 2215 4087
Reduced 0 9.77 0.105 9.20 0.34 18-46 704 1257




with previous upper bound results [60] as well as with small strain
(Updated Lagrangian) FE solutions [61] and RITSS results [62]. The
results obtained with G-PFEM are slightly above (between 1.2%
and 5.5%) the plasticity upper bound solution, with a smaller dis-
crepancy for larger interface roughness values.

These observed discrepancies are mostly a byproduct of the rel-
atively coarse mesh employed in the simulations. A numerical
exercise was performed to prove this: two more cases were run
at 0 interface roughness in which the only change was in the inter-
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face characteristic length, h. In one case h=0.12R and contact
refinement was more intense than in the reference case, whereas
in other h = 0.34R and contact refinement was reduced.

The results of this exercise are presented in Fig. 10(b). A more
intense discretization of the interface contact has direct impact
on the Ny, factor, which becomes closer to the UB limit as the
refinement proceeds (Fig. 10(a)). The trend of the G-PFEM simula-
tions, in this respect, is aligned with a previous RITSS result [62]. It
does also have a direct impact on the smoothness of the numerical
solution (Fig. 10(b)), which increases with contact refinement.
Finally (Fig. 11) it does also allow more precise definition of the full
flow mechanism [61].

3.3. CPT

In this section, the proposed numerical technique is applied to
an axisymmetric case: the cone penetration test (Fig. 12). A CPT
with standard dimensions (D = 35.7 mm; apex angle 60°) is pushed
25 radii into a weightless Tresca material. In order to bypass the
numerical problems that arise at the first steps of the calculation,
when only a node of the soil is in contact with the rigid structure,
the cone tip starts from a prebored situation, at a depth of 2.8 radii.

No initial stress is imposed in the soil domain, hence the initial
stress state is isotropic. Identical constitutive parameters to those
in the previous example are used (S, = 10kPa; v=0.49;
I, = 100). These conditions also allow comparisons with previously
reported work on the same problem. Both the cone tip and the
whole shaft are rough. A parametric study is carried out on the
effect of interface roughness.
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Fig. 10. Effect of characteristic nodal refinement length (h) on the embedded T-bar simulation (a) on the Np,,, factor (b) on the penetration curve.

(@)

I 1.2 Ve

)

Fig. 11. T-bar. Contour plot of the magnitude of the velocity for the smooth contact case for (a) the reference refinement parameter h = 0.28R (b) the intense refinement

setting h = 0.12R.



Fixed u,
40 R

Fixed u,

Fixed u
18 R

Fig. 12. Problem definition: Cone Penetration Test. Outlined in black is the initial
position and in gray the final one.

The relevant bearing capacity factor in this case is given by the
cone factor Ny = "fs’u‘r”. Cone tip resistance, q, is computed adding
vertical forces from nodes at the cone tip. Vertical forces are also
integrated on a shaft length 7.5 radius behind the cone tip to eval-
uate sleeve friction.

Fig. 13 shows the evolution of cone factor and sleeve friction vs
normalized depth for different adhesions (ranging from 0 to 0.7 S,,).
All the cone factor curves seem to reach a steady state at around 20
penetration radii. It is worth noting that all the differences appear
within the first penetration radius; afterwards all the curves seem
parallel. As expected, the resistance in the friction sleeve is equal to
the imposed adhesion.
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Fig. 13. Effect of contact roughness on CPT response for a rigidity index of 100 on
unstressed Tresca soil. Left hand side normalized tip resistance (cone factor). Right
hand side: sleeve friction.

There has been much previous work on this problem
[63,64,8,65]; which has been also used for benchmarking purposes
[17]. In general, tip resistance depends on cone roughness, on ini-
tial stress anisotropy and on the rigidity factor. For the isotropically
stressed, smooth, I, =100, case Table 4 compiles previously
reported cone factors, which show some variation. Some of the dif-
ferences reported can be attributed to the different yield envelope
used: many computations employ a Mises envelope, a shape less
realistic for soils but more computationally-friendly than the
Tresca model. When using the same method, computations using
a Mises strength envelope result on smaller cone factors by about
10% (something similar had been observed for the T-bar problem
by Lu et al. [62]). The value obtained using G-PFEM is well within
the range obtained in other computations using a Tresca model.

As roughness increases, the cone factor at steady state increases
almost linearly. The gradient of the variation of the cone factor as
the roughness increases is 1.8; this value is within the range of pre-
vious analyses (see Fig. 14). A detailed analysis of the numerical
reasons for the observed variation in this slope is beyond the scope
of this work.

The initial mesh employed in the CPT analysis is illustrated in
Fig. 15. The characteristic length, h was again 0.28 R, R now being
the radius of the cone. Because the contact surface was longer, the
model was more demanding in terms of mesh refinement that of
the T-bar and by the end of the computation the number of

Table 4
Comparative cone factors for a smooth cone (o = 0) penetrating a I, = 100 soil under
isotropic confinement.

Reference Method Nie Failure criteria
Teh and Houlsby [63]  Strain path method + FE =~ 9.4 Mises
Walker and Yu [14] CEL 9.5 Mises
Wang et al. [17] CEL 111 Mises
Wang et al. [17] EALE 10.2 Mises
Wang et al. [17] RITSS 9.8 Mises
Van den Berg [64] ALE 11 Tresca
Lu et al. [8] RITSS 10.77  Tresca
Beuth [65] MPM 10.2 Tresca
This work G-PFEM 10.26  Tresca
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Table 5

G-PFEM CPT simulations discretization details, Cone Factor (mean and Standard Deviation) and Friction Ratio (mean value and Standard deviation).

Roughness Initial number Initial number Final number Final number Cone factor Friction ratio Lu et al. RITSS [8]
factor of nodes of elements of nodes of elements
Mean STD Mean (%) STD
CPTO 0 1360 2485 2501 4650 10.26 0.1792 10.77
CPT3 0.3 1360 2485 2526 4696 10.64 0.1171 245 419.1074 11.16
CTP5 0.5 1360 2485 2595 4823 11.11 0.1227 4.50 6.69-10~% 1142
CPT7 0.7 1360 2485 2407 4476 11.53 0.1212 6.07 0.18.10°4 11.68

elements had roughly doubled (Fig. 15(b) and Table 5). The finer
mesh used here results in a very small numerical oscillation, with
coefficient of variations for the cone factor of around 1% and even
smaller for sleeve friction.

Although the mesh used is relatively fine, the computational
load remains moderate. The initial mesh is composed by 1360
nodes and 2485 elements whereas the coarser final mesh has
2595 nodes and 4823 elements (Table 5). For reference, Wang
et al. [17] used 5000 quadratic elements in their EALE mesh,
whereas Beuth [65] used more than 20,000 elements and one order
of magnitude more material points, (a 20° slice of the axisymmet-
ric problem was simulated in 3D).

4. Conclusions

This work has presented a numerical framework for the simula-
tion of total stress analysis problems in geomechanics using the
Particle Finite Element Method (PFEM). This method is based on
an updated Lagrangian Finite Element method, using low-order
elements and frequent remeshing. In order to bypass the drastic
volumetric locking of low-order elements in the incompressible
limit, a stabilized displacement-mean pressure formulation is
employed. Contact constraints are discretized with a penalty
method and the tangential part is modeled by an elasto-plastic
model; contact tangential stresses are integrated implicitly and
the developed algorithm retains the formal structure of one dimen-
sional return mapping.

The method performance has been illustrated by means of sev-
eral numerical examples. In the first one, the penetration of a rigid
strip footing, it has been shown that stabilized formulations allevi-
ate the severe volumetric locking that suffer low order elements; in
addition, the effects of rigidity index on the penetration response
appear to be well captured. In the T-bar and CPT examples the con-
tact algorithm comes into play. The degree of interface refinement
has an important effect on the precision of the numerical solution.
Interface refinement is easy to control and adapt to the require-
ments of the specific problem being analyzed. Despite using rela-
tively coarse meshes, the results obtained agree well with
previous analyses using other methods.

It appears that the numerical strategy followed by G-PFEM,
using adaptive low-order discretization of the domain, obtains
similar results than those attained with alternative numerical
methods with significant savings in computational effort. The cur-
rent implementation is also capable of handling coupled analysis,
and benchmarking of that capability is the object of current devel-
opment. Furthermore, since G-PFEM has been built in the general-
purpose FE Kratos environment, extension of its current capabili-
ties to other scenarios (dynamic, fluid-soil interaction, thermal)
would seem relatively straightforward.
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