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1 Introduction

In this deliverable we provide the details related to the design, implementation, and
scalability analysis of two nonlinear domain decomposition (DD) methods that have been
released in the frame of the FEMPAR project [4]. First, we introduce the linear solvers
being used in Sect. 2. Next, we will consider nonlinear domain decomposition solvers in
Sect. 3. Two different nonlinear solvers are proposed. Sect. 4 is devoted to the numerical
analysis of these algorithms. After a thorough analysis for the p-Laplacian problem, the
method that provides better results will be used for the simulation of complex and highly
nonlinear electromagnetics problems.

2 The BDDC (linear) preconditioner

Balancing Domain Decomposition by Constraints (BDDC) preconditioners [10] belong to
the family of non-overlapping DD methods [26]. They can be understood as an evolution
of the earlier Balancing DD method [16]. These methods rely on the definition of a finite
element (FE) space with relaxed inter-element continuity, which is defined by choosing
some quantities to be continuous across subdomain interfaces, i.e., the coarse or primal
degrees of freedom (DOFs). Then, the continuity of the solution at the interface between
subdomains is restored with an averaging operator. The method has two properties
that make it an outstanding candidate for extreme scale computing, namely it allows for
aggressive coarsening and computations among the different levels can be performed in
parallel. Outstanding scalability results have been achieved by an implementation in the
scientific computing software FEMPAR [4], which exploits these two properties in up to
almost half a million cores and two million subdomains (MPI tasks) [1]. Another work
showing excellent scalability properties up to two hundred thousand cores is [27], which
is implemented in the software project PETSc [6].

Modern BDDC methods [21] propose coarse space enrichment techniques that adapt
to the variation of coefficients of the problem [9, 15, 17, 23–25], where coarse DOFs are
adaptively selected by solving generalized eigenvalue problems. This approach is backed
up by rigorous mathematical theory and has been numerically shown to be robust for
general heterogeneous problems. On the other hand, several different scalings have been
proposed for the averaging operator in the literature to improve the lack of robustness of
the cardinality (i.e., arithmetic mean) scaling for coefficient jumps. The stiffness1 scaling
takes more information into account but can lead to poor preconditioner performance
with mildly varying coefficients [22]. The most robust approach up-to-date is the deluxe
scaling, first introduced in [11] for 3D problems in curl-conforming spaces. It is based on
the solution of local auxiliary Dirichlet problems to compute efficient averaging operators
[12, 19, 21, 27–29], involving dense matrices per subdomain vertex/edge/face. However,
to solve eigenvalue and auxiliary problems is expensive and extra implementation effort is
required as coarse spaces in DD methods are not naturally formulated as eigenfunctions.

One of the lines of research of the authors of this report is to construct robust BDDC
preconditioners for problems in curl-conforming spaces that keep the simplicity of the
standard BDDC method, i.e., to avoid the spectral solvers of adaptive versions, whereas
keeping robustness and low computational cost. In order to do so, we follow the idea

1weighted averages with the diagonal entries of the operator for every DOF
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of the physics-based BDDC (PB-BDDC) preconditioner, presented in [5] for problems
in grad-conforming spaces. Based on the fact that BDDC methods (and DD methods in
general) are robust with regard to jumps in the material coefficients when these jumps are
aligned with the partition [13, 26], one can use a physics-based (PB)-partition obtained by
aggregating elements of the same (or similar) coefficient value. However, using this type
of partition can lead to a poor load balancing among subdomains and large interfaces. To
overcome this situation, the PB-BDDC respects the original partition (well-balanced) but
considers a sub-partition of every subdomain based on the physical coefficients, leading
to a partition of the objects into sub-objects defined according to the variation of the
coefficients. Consequently, the method is also based on an enrichment of the coarse space
but with the great advantage of not requiring to solve eigenvalue or auxiliary problems,
i.e., the simplicity of the original BDDC preconditioner is maintained. The PB-BDDC
preconditioner turned out to be one order of magnitude faster than the BDDC method
with deluxe scaling in [27] for linear elasticity and thermal conductivity problems with
high contrast. A relaxed definition of the PB subdomains, where we only require that the
maximal contrast of the two physical coefficients is smaller than a predefined thresholds,
allows one to extend the range of applicability of the preconditioner to truly heterogeneous
materials. The extension of PB-BDDC to electromagnetics applications has been recently
developed in [2].

The interested reader is referred to [1, 2, 5] for a detailed exposition of BDDC,
PB-BDDC, and relaxed PB-BDDC (rPB-BDDC) methods, resp., which is not the aim of
this deliverable.

3 Nonlinear domain decomposition solvers

For nonlinear problems, there are additional mechanisms to boost the scalability of linear
solvers, oriented to reduce synchronization at the expense of additional local computa-
tions. The Newton method and its inexact versions are the most common linearization
procedures. Every nonlinear iteration consists in a linear solver with the (possibly inex-
act) Jacobian matrix, where all the DD-Krylov solvers discussed above can be used; this
approach is usually denoted as Newton-Krylov (NK) DD. However, the first linearize/next
distribute approach must be re-thought to increase work load between checkpoints (syn-
chronizations), e.g., inner products at every Krylov solver iteration. One approach is
to consider the mesh partition first and linearization next as originally proposed in the
ASPIN method in the context of additive Schwarz preconditioners [8]. Nonlinear exten-
sions of two-level BNN, BDDC and FETI-DP methods have also been considered in [14].
The composition of nonlinear solvers of different types have been proved to be essen-
tial to reduce time-to-solution in nonlinear problems [7], e.g., combining (quasi-)Newton,
Anderson acceleration, and line search schemes.

In this work, we consider first a standard Newton-Krylov BDDC solver, which com-
bines an outer Newton nonlinear solver (possibly with, e.g., cubic backtracking) and a
BDDC solver for the linearized problem at every nonlinear iteration. Next, in order to
increase parallelism, the nonlinear BDDC method in [14] will be considered, which is just
a combination of a Newton nonlinear solver, a nonlinear interior correction, i.e., solving
subdomain-wise nonlinear problems in parallel, which will act as linearization point, and
finally one of the BDDC linear systems commented above.
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4 Numerical experiments

4.1 Experimental environment

The numerical experiments are run at the Marenostrum-IV (MN-IV) supercomputer,
hosted by Barcelona Supercomputing Center (BSC). This petascale machine is equipped
with 3,456 compute nodes interconnected together with the Intel OPA HPC network.
Each node has 2x Intel Xeon Platinum 8160 multi-core CPUs, with 24 cores each (i.e. 48
cores per node) and 96 GBytes of RAM.

With respect to the software, we used FEMPAR v1.0.0 [3], compiled with Intel v18.0.5
compilers using system recommended optimization flags. FEMPAR was linked against the
Intel Message Passing Interface (MPI) Library (v2018.4.274) for message-passing and the
BLAS/LAPACK and PARDISO available on the Intel MKL library for optimized dense
linear algebra kernels and sparse direct solvers, resp. All floating-point operations were
performed in IEEE double precision.

4.2 p-Laplacian problem

4.2.1 Problem description

We study the weak scalability2 on MN-IV of the nonlinear solver algorithms presented in
Sect. 3 when applied to the solution of the following 2D p-Laplacian model problem:

−∇ · (|u|p−2∇u) = 0 in Ω, (1)

u = g on ∂Ω, (2)

with a rectangle domain Ω = [0, lx]× [0, ly], and Dirichlet data given by g = x + y. This
problem has known analytical solution u = x+ y.

The linearized residual of (1) at a given nonlinear iterate u = u∗, i.e., R(u∗)(v), is
given by the following expression:

R(u∗)i :=

∫
Ω

|∇u∗|p−2∇u∗ · ∇ϕidΩ , (3)

where we have used the basis representation of v. On the other hand, by computing
the derivative of this expression i.e., DR(u∗)(v), in the direction w, and by using the
the basis representation of v and w, we obtain the following expression for the Jacobian
matrix required for the Newton-Raphson nonlinear problem solver:

DR(u∗)ij :=

∫
Ω

|∇u∗|p−2∇ϕi ·∇ϕjdΩ+(p−2)

∫
Ω

|∇u∗|p−4(∇u∗ ·∇ϕi)(∇u∗ ·∇ϕj)dΩ . (4)

In the numerical experiments, we also consider an approximate version of the Jacobian
matrix given by

DR(u∗)ij :≈
∫

Ω

|∇u∗|p−2∇ϕi · ∇ϕjdΩ , (5)

leading to a Quasi-Newton-Raphson nonlinear iterative scheme.

2Weak scalability is the ability of a parallel system (i.e., a software implementation of an algorithm
run on a parallel computer) to efficiently exploit increasing computational resources (i.e., CPU cores,
memory, etc.) in the solution of proportionally larger problem sizes. An ideally weakly scalable system
maintains its efficiency (i.e., number of iterations, time-to-solution, etc.) as we increase the number of
CPU cores in the same proportion as the global problem size, i.e., with a fixed problem size per processor.
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4.2.2 Weak scaling study: setup, results and discussion

We consider p = 3 in (1) for all experiments reported in this deliverable. For the dis-
cretization of this problem, we use a global conforming uniform partition (mesh) of Ω
into hexahedra and bilinear FEs i.e., Q1(K) FEs. This 2D mesh is partitioned uniformly
(optimally) into a rectangular grid of Px×Py subdomains. The size of the local FE mesh
at each subdomain is H

h
× H

h
hexahedral cells. The size of the global FE mesh is there-

fore equal to Px
H
h
× Py Hh hexahedra. We in particular scale the subdomain grid Px × Py

as 8k × 6k, with k = 1, 2, 3, 4, and consider four different values for the subdomain size(
H
h

)2
= 102, 202, 302, 402, i.e., four different fixed loads per core for the weak scaling study.

The domain is scaled as Ω = [0, 1.33k]× [0, 1.0k], leading to square-shape subdomains.
We set up the nonlinear and linear iterative solvers as follows:

1. The outer Newton-Raphson iteration is stopped whenever the linearized residual
at a given iteration satisfies ||R(u∗)||2 ≤ nls rtol ∗ ||R(u0)||2 + nls atol, with
u∗ being the current solution iterate, u0 the initial solution iterate, and nls rtol

and nls atol the relative and absolute linearized residual tolerances, resp. We in
particular used u0 = 1

2
(x + y) as initial solution iterate, nls rtol = 10−8, and

nls atol = 10−14.

2. The BDDC-PCG linear solver for the Jacobian linear system at each Newton-
Raphson iteration is stopped whenever ||rk||2 ≤ ils rtol ∗ ||r0||2 + ils atol, with
rk being the linear system residual corresponding to the current iterate, r0 the initial
residual, and ils rtol and ils atol the relative and absolute linear system residual
tolerances. We in particular used x0 = 0 as initial solution, ils rtol = 10−6, and
ils atol = 10−14. The BDDC preconditioner is configured such that the BDDC
space correction is continuous on corners and edges of the partition of the global
mesh into subdomains.

3. In the particular case of the nonlinear BDDC solver, the interior Newton-Raphson
iteration at each local subdomain is stopped whenever ||RI

i (u
∗
i )||2 ≤ nlic rtol ∗

||RI
i (u

0
i )||2 + nlic atol, or a maximum of 5 nonlinear iterations is reached. RI

i (u
∗
i )

denotes the linearized residual restricted to the interior DOFs of subdomain Ωi at
the local current iterate u∗i , and u0

i the initial solution iterate at subdomain Ωi. As
required by the nonlinear BDDC solver, u0

i is just the restriction of u∗ (i.e., the
current solution iterate of the outer nonlinear iteration) to the DOFs of subdomain
Ωi. nlic rtol and nlic atol play the role of nls rtol and nls atol, resp., in
the case of the interior Newton-Raphson iteration. We used nlic rtol = 10−2 and
nlic rtol = 10−14.

The results of the weak scaling study are provided in Table 1 and 2 for the two different
ways of computing the Jacobian matrix, i.e., (4) and (5), resp. In the tables, we provide
three different performance indicators for PCG-BDDC-Newton-Raphson and Nonlinear
BDDC; see Sect 3. In particular, the columns labelled as “#NL iters.“ provide the
number of outer Newton-Raphson solver iterations, the ones labelled as ”#PCG iters.“,
the minimum and maximum number of PCG-BDDC linear solver iterations among all
outer iterations, and the ones labelled as ”T“, the total computation time in seconds.

Let us first discuss the results in Table 1. First, we can observe almost ideal weak
scaling in terms of ”#NL iters.“ and ”#PCG iters.“. In particular, an almost constant
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number of iterations is observed when the global problem size is scaled by a factor of
16. For example, with a fixed load per core H

h
= 40, ”#NL iters.“ and ”#PCG iters.“

scale as 11, 11, 12, and 12, and 6-8, 6-8, 6-8, and 5-8, resp., for the PCG-BDDC-Newton-
Raphson nonlinear solver, and as 10, 10, 11, 11, and 7-8, 7-10, 7-12, 7-14, resp., for the
nonlinear BDDC solver. These results confirm, on the one hand, optimality of the BDDC
preconditioning approach (i.e., condition numbers of the preconditioned Jacobian linear
systems bounded by a constant as we scale the global problem size) and, on the other hand,
that this optimality is cornerstone for the high scalability of the whole nonlinear iterative
scheme. Second, although scalability in terms of computation times is not as ideal, it
is still very remarkable. For example, with a fixed load per core H

h
= 40, “T“ increases

from 0.695 to 1.019 seconds for PCG-BDDC-Newton-Raphson, and from 1.434 to 2.194
seconds for nonlinear BDDC. In other words, computation times only mildly increase by
a factor of 1.47 and 1.53, resp., when the global problem size is scaled by a factor of
16. Finally, if we compare the performance of both nonlinear solvers, we can observe
that PCG-BDDC-Newton-Raphson is up-to twice as fast as nonlinear BDDC. The extra
computational cost spent by nonlinear BDDC in the iterative solution of the nonlinear
local-to-subdomain problems is not compensated by the very mild reduction in the outer
Newton-Raphson iterations, resulting in a higher total time-to-solution. Apart from the
former factor, a higher number of PCG-BDDC linear solver iterations of nonlinear BDDC
compared to PCG-BDDC-Newton-Raphson also contributes to nonlinear BDDC being
slower than PCG-BDDC-Newton-Raphson.

PCG-BDDC-Newton-Raphson Nonlinear BDDC

subdomain grid H
h #NL #PCG iters. T #NL #PCG iters. T

(Px × Py) iters. (min-max) (secs.) iters. (min-max) (secs.)

8× 6

10 9 5-6 0.053 8 6-8 0.081
20 10 6-7 0.170 9 7-8 0.301
30 11 6-7 0.395 9 7-8 0.665
40 11 6-8 0.695 10 7-8 1.434

16× 12

10 10 5-6 0.106 9 6-10 0.135
20 11 5-7 0.241 10 7-10 0.427
30 11 6-7 0.431 10 7-10 0.969
40 11 6-8 0.736 10 7-10 1.661

24× 18

10 11 5-6 0.185 9 6-12 0.211
20 11 5-7 0.315 10 7-12 0.559
30 11 5-7 0.510 11 7-12 1.170
40 12 6-8 0.886 11 7-12 1.977

32× 24

10 11 5-6 0.305 10 6-14 0.385
20 11 5-7 0.422 10 7-14 0.714
30 12 5-7 0.736 11 7-14 1.354
40 12 5-8 1.019 11 7-14 2.194

Table 1: 2D p = 3-Laplacian problem results on the MN-IV supercomputer. The Jacobian
of the linearized residual was computed as (4).

The results reported in Table 2 reveal a quite different overall picture to the ones
reported in Table 1. Although computing (5) is cheaper than (4), the approximate com-
putation of the Jacobian matrix leads to a significant degradation of the outer nonlinear
solver convergence speed, i.e., a higher value of ”#NL iters.“ in Table 2 than in Ta-
ble 1. Due to this factor, both PCG-BDDC-Newton-Raphson and nonlinear BDDC are
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less efficient (i.e., slower) in Table 2 than in Table 1 for all subdomain grids and local
problem sizes tested. There are still several worth-mentioning observations that can be
extracted from the results in Table 2. First, for a fixed subdomain grid, the higher the lo-
cal problem size (i.e., the higher the local mesh resolution), the less ”#NL iters.“, for both
PCG-BDDC-Newton-Raphson and nonlinear BDDC. For example, for 8× 6 subdomains
and PCG-BDDC-Newton-Raphson, ”#NL iters.“ drops from 461 to 231 when H

h
is scaled

from 10 to 40, resp., and from 71 to 50 for nonlinear BDDC. Second, for a fixed subdomain
grid, and ”small“ H

h
, nonlinear BDDC significantly cut downs ”#NL iters.“ compared to

PCG-BDDC-Newton-Raphson up-to an extent that the extra computation cost spent by
nonlinear BDDC in the iterative solution of the nonlinear local-to-subdomain problems
pays off this reduction in the outer Newton-Raphson iterations. Indeed, e.g., in Table 2,
nonlinear BDDC is faster than PCG-BDDC-Newton-Raphson with H

h
= 10 for all sub-

domain grids considered in the study. Third, for a fixed subdomain grid, ”#NL iters.“
drops down faster with H

h
for PCG-BDDC-Newton-Raphson, up-to an extent that, for

the largest three subdomain grids, PCG-BDDC-Newton-Raphson ends up being faster
than nonlinear BDDC with H

h
. Finally, if the trend observed in Table 2 is maintained

with larger scales up-to an extent that PCG-BDDC-Newton-Raphson (resp., nonlinear
BDDC) converges with (5) in a ”close enough“ number of iterations to those with (4),
then it might be possible that the approximate Jacobian computation leads to a more
efficient (faster) overall nonlinear iteration scheme.

PCG-BDDC-Newton-Raphson Nonlinear BDDC

subdomain grid H
h #NL #PCG iters. T #NL #PCG iters. T

(Px × Py) iters. (min-max) (secs.) iters. (min-max) (secs.)

8× 6

10 461 4-7 2.92 71 7-8 1.02
20 454 5-8 8.28 60 7-8 2.92
30 347 5-8 13.2 54 7-9 5.71
40 231 5-9 16.3 50 7-9 9.43

16× 12

10 454 4-7 5.20 84 6-10 1.68
20 231 4-8 5.40 66 7-9 3.53
30 112 5-9 4.94 56 8-9 6.20
40 66 5-9 4.92 59 8-9 9.65

24× 18

10 347 4-7 6.56 97 6-12 2.66
20 112 4-8 3.56 69 7-11 4.33
30 53 4-8 2.69 54 8-10 6.63
40 31 5-9 2.50 44 8-10 9.07

32× 24

10 231 4-7 6.94 108 6-13 4.23
20 66 4-8 2.92 66 7-12 4.95
30 31 4-8 2.00 47 8-11 6.44
40 18 4-9 1.64 37 8-11 8.34

Table 2: 2D p = 3-Laplacian problem results on the MN-IV supercomputer. The Jacobian
of the linearized residual was computed as (5).

4.3 Low-frequency electromagnetic response of High Tempera-
ture Superconductors

Next, we study the scalability of the algorithm with a practical application, the modelling
of HTS. The problem consists in the magnetization of a superconducting cube completely
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surrounded by a dielectric material (see Fig. 2a), subjected to an external AC magnetic
field. The formulation

∇× (α∇× u) + βu = f in Ω, (6)

n× (u× n) = 0 on ∂Ω, (7)

where α ≥ 0, β > 0 are the resistivity and the magnetic permeability of the materials,
respectively, n is a unit normal to the boundary and ∇× is the 3D curl operator (see
[18]), arises in the time-domain quasi-static approximation of the Maxwell’s equations for
solving the magnetic field, see [20] for details. Furthermore, the standard Backward Euler
method is used to perform time integration over a time interval [0, T ], so let us define a
time partition {0 = t0, t1, . . . , tN = T} into N time elements. Then, the form Eq. (6)
can be used to compute the magnetic field for a particular time tn, provided the solution
on the previous time un−1. The coefficient β is affected by the current time step size
∆t = (tn − tn−1) as β = µ0

∆t
, where µ0 = 4π · 10−7 is the magnetic permeability of the

vacuum. While the dielectric material is modelled with a constant value for α = 10−3,
the superconducting material behaviour is modelled with the stiff nonlinear dependence

of the resistivity α with the solution as α = α0

(
‖∇×u‖
Jc

)m
, with m = 100, Jc = 10−8 and

α0 = 10−12. The equivalence with Eq. (6) is completed by considering the source term
f = βun−1 and the strong imposition of an external magnetic field un × n = un0 over
the whole boundary. For the time step tn, the weak form of the nonlinear problem reads:
find un ∈ Xh such that

(α(un)∇× un,∇× v) + β(un,v) = β(un−1,v) ∀v ∈ Xh. (8)

In order to derive the linearized form with Newton’s method we consider the current
approximation un,k and a (small) correction δun,k for the iterate k such that un,k+1 =
un,k + δun,k. We plug the expression in Eq. (8), consider a first order Taylor expansion
of α(un,k+1) around un,k and neglect the quadratic terms with respect to δun,k, which
yields the linearized problem: find δun,k ∈ Xh such that

J (un,k, δun,k,v) = −R(un−1,k,un,k,v) ∀v ∈ Xh, (9)

where

J (un,k, δun,k,v) = (α(un,k)∇× δun,k,∇× v) + β(δun,k,v)+ (10a)

+ (α′(un,k)δun,k∇× un,k,∇× v),

R(un−1,k,un,k,v) = −β(un−1,v) + β(un,k,v) + (α(un,k)∇× un,k,∇× v). (10b)

Therefore, the rPB-BDDC preconditioner is applied to the linearized problem Eq. (9)
at every nonlinear iteration of every time step. We will focus on the performance of the
linear solver, and the reader is directed to [20] for a detailed exposition of the composition
of the used transient nonlinear solver.

The problem is solved in Ω = [0, 40]3 mm3, composed by an outer dielectric Ωair

material which includes a concentric superconducting cube Ωhts of size 10 mm such that
Ω = Ωhts ∪ Ωair, see Fig. 2a. There is no source term and Dirichlet-type boundary
conditions are imposed over the entire boundary as the time-dependent magnetic field
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P # Average iters. Average size(Ac) size(Ac) ratio
49 16.8 196.7 1.31c0

385 18.9 2424.5 2.02c0

1297 21.7 7728.7 1.91c0

Table 3: Average metrics for the simulation of the time interval T = [0, 5] ms. c0 denotes
the number of coarse DOFs of the original, geometrical partition.

uext = B0

µ0
[0, 0, sin(2πωt)], where B0 = 200 mT and ω = 50 Hz. We solve the problem in

the time interval [0, 5] ms, which corresponds to a quarter of a full cycle in the applied
uext. Initial conditions are simply u0 = 0. The partition Θr

pb is obtained in all simulations
for r = 102 (see [2] for details). The nonlinear scheme is stopped when the L2-norm of
the nonlinear residual (Eq. (10b)) is below 10−4, while the convergence criteria for the
rPB-BDDC preconditioned linear solver is the reduction of the initial L2-norm of the
residual of the linearized system by 10−8.

We first present weak scalability results for the first set-up and solve with the rPB-BDDC
preconditioner in Fig. 1, i.e., the first linearized problem (Eq. (9)) for the first time step.
We include results for H

h
= {10, 20, 30}. As expected, the method shows good weak scal-

ability properties in number of iterations (see Fig. 1a) and computing times (see Fig. 1b).
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Figure 1: Weak scalability for the first linear solver in the HTS problem with r = 102.

Next, we present average counters for the total number of linear solver applications
for the simulation of the whole time interval [0, 5] ms in Table 3, for a local problem
size of H/h = 10 and different partitions. The resulting aggregation of cells into subsets
based on their physical coefficient α (see [2]) for t = 4 ms is depicted in Fig. 2c. We can
identify two main regions in the distribution of α (see Fig. 2b): an inner region that is
still not magnetized (i.e., with null resistivity) and a surrounding region, separated by a
thin layer. Therefore, the selected value for r allows us to capture the behaviour of the
different regions in Ωhts. Out of the results in Tab. 3, the most salient property is the
(asymptotic) scalability in the average number of iterations. Besides, we show how the
coarse problem size for the presented cases is only (approximately) doubled regarding to
the size that would be obtained with the partition Θ instead of the Θpb.

A FEMPAR ’s tutorial program for p-Laplacian problem

In order to illustrate the usage of the nonlinear solvers implemented in this project task, we
developed a FEMPAR tutorial program for the p-Laplacian problem. This driver program
lets FEMPAR users to play around with several linear and nonlinear solvers and problem
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(a) Magnetic field strength in
the HTS device surrounded
by a dielectric box, for which
only the outline is depicted.
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(b) Distribution of α in the
HTS device.
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(c) Subsets arising by the
rPB-partition with r = 102 in
the HTS device.

Figure 2: Domain and HTS device for t = 4 ms.

and solver parameters through command-line parameter-value arguments. This driver
program, together with the nonlinear solvers implemented in this task, will be distributed
as part of the source code Git repository of FEMPAR in a forthcoming release. In Fig. 3
we illustrate an example command-line invocation to this tutorial program.

1 mpiexec --tag -output -np 5 par_test_p_laplacian \
2 --STRUCT_HEX_TRIANG_NUM_LEVELS 2 \
3 --STRUCT_HEX_TRIANG_NUM_DIMS 2 \
4 --STRUCT_HEX_TRIANG_NUM_CELLS_DIM 4 4 0 \
5 --STRUCT_HEX_TRIANG_NUM_PARTS_X_DIR 2 2 0 1 1 0 \
6 --STRUCT_HEX_TRIANG_DOMAIN_LIMITS 0.0 1.0 0.0 1.0 0.0 0.0 \
7 --FES_REF_FE_ORDERS 1 \
8 --ILS_RTOL 1.0e-06 \
9 --ILS_ATOL 1.0e-14 \

10 --ILS_TYPE CG \
11 --ILS_MAX_NUM_ITERATIONS 5000 \
12 --NLS_RTOL 1.0e-08 \
13 --NLS_ATOL 1.0e-14 \
14 --NLS_MAX_NUM_ITERATIONS 1000 \
15 --enable -nlic .true. \
16 --nlic -rtol 1.0e-02 \
17 --nlic -atol 1.0e-14 \
18 --nlic -max -num -iters 5 \
19 --p-lap -exp 3 \
20 --enable -full -jacobian .true. \
21 --write -solution .true.

Figure 3: Example of an invocation to the FEMPAR ’s tutorial program in charge of the
solution of the p-Laplacian benchmark problem.
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