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[1] Power law tailing is often observed in the breakthrough curves (BTCs) of tracer tests.
Tailing is attributed to heterogeneity of aquifer properties and cannot be properly modeled
by means of the homogeneous advection-dispersion equation. Mass transfer models (e.g.,
continuous time random walk method, multirate mass transfer, or fractional-order
advection-dispersion equations) using memory have been widely applied for reproducing
observed tails. The relationship between memory parameters obtained from BTC fitting
and the parameters characterizing the heterogeneity of hydraulic properties is still
unclear. Here we investigate the conditions under which heterogeneity produces the
type of tailing observed in the field and how memory functions are influenced by
measurable heterogeneity parameters (e.g., variance, variogram, or integral scale of the
underlying transmissivity field). We find that the slope of a BTC in a log-log plot is mainly
influenced by the connectivity of the underlying permeability field but is insensitive to its
variance. The slope BTC reaches asymptotically 2 as connectivity increases. We conclude
that an appropriate choice of the memory function allows reproducing the spreading
caused by hydraulic heterogeneity but not necessarily the rate of mixing.
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1. Introduction

[2] Contaminant transport has been traditionally modeled
using the advection dispersion equation (ADE). Yet, trans-
port in natural aquifers usually displays anomalous (i.e.,
inconsistent with the ADE) behavior. Observed deviations
are numerous [Carrera, 1993]. They include scale de-
pendence of dispersivity [e.g., Lallemand-Barres and
Peaudecerf, 1978; Neuman, 1990], directional and time
dependence of apparent porosity [Sánchez-Vila and Carrera,
1997; Guimerà and Carrera, 2000] and tailing of break-
through curves [e.g., Valocchi, 1985; Freyberg, 1986; Cortis
and Berkowitz, 2004]. Stochastic hydrology has succeeded in
qualitatively explaining these deviations and in quantifying
the scale dependence of dispersivity [e.g., Dagan, 1989;
Gelhar, 1993]. In the process, tools have been developed to
predict the evolution of dispersivity with scale given a
stochastic description of variability of hydraulic conductivity
[Kitanidis, 1988; Dentz et al., 2000]. However, much less
efforts have been devoted to understanding the causes of
tailing [Haggerty et al., 2000; Shapiro, 2001; Cortis and
Berkowitz, 2004; Dentz et al., 2004].
[3] Tailing is defined as the markedly asymmetric shape

of breakthrough curves (BTCs), which cannot be repro-

duced by the homogeneous medium ADE. Field BTCs
typically display a sharp rising limb for the early arrival
but a slowly decaying limb at late time (Figure 1). More
important, the decay limb often displays a power law
behavior. That is, late-time concentrations decay as t�mBTC,
so that they plot as a straight line on a log-log scale [Farrell
and Reinhard, 1994; Hadermann and Heer, 1996; Werth et
al., 1997; Becker and Shapiro, 2000; Shapiro, 2001; Meigs
and Beauheim, 2001].
[4] A proper description of this ‘‘late time’’ behavior is

important not only for practical reasons (i.e., time for
cleanup below a threshold or reactive transport modeling),
but also because the apparent ubiquity of power law decay
suggests it must reflect something of a fundamental nature.
[5] Different mechanisms are known to cause tailing.

These include heterogeneity of permeability, diffusion or
chemical heterogeneity. Tailing was initially attributed to
matrix diffusion and/or sorption kinetics [Neretnieks et al.,
1982; Neretnieks and Rasmuson, 1984]. In fact, the 1.5 slope
usually observed in fractured media was soon attributed to
diffusion into rock matrix [Hadermann and Heer, 1996].
Actually, different slopes can be obtained by acknowledging
that low permeability blocks exhibit a distribution of sizes
and diffusion coefficients. As a result, the memory func-
tion of diffusion dominated mass transfer is predictable
[Rasmuson and Neretnieks, 1986; Zhang et al., 2007; Gouze
et al., 2008b]. However, here we concentrate on the role of
hydraulic heterogeneity. Heterogeneity of permeability
leads to conductive paths that carry most of the water and
arrive early (hence the sharp rising limb of BTCs) and less
conductive paths that trail behind and cause tailing. This is
referred to as ‘‘slow advection.’’
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[6] Becker and Shapiro [2000, 2003] performed field
tracer tests such that they could neglect other causes for
tailing. They found power law slopes mBTC = 2 caused by
slow advection. Di Donato et al. [2003] modeled slow
advection in a heterogeneous system using the streamline
method. They found a slope for 2.2. Zhang et al. [2007]
modeled a heterogeneous 3D sedimentary aquifers where
the dominant process in the low-conductive zones was
diffusion. They found a power law tail of about 2. Most
interestingly, Gouze et al. [2008a] and Shapiro et al. [2008]
found for field tracer tests slopes between 2 and 2.2 at
intermediate times and 1.5 at very late time.
[7] A number methods have been proposed to describe

tailing. Multirate mass transfer (MRMT) [Haggerty and
Gorelick, 1995; Wang et al., 2005] and memory functions
[Carrera et al., 1998], which are equivalent [Haggerty et
al., 2000], can be viewed as dividing the medium into
overlapping mobile and immobile continua (hence the
generic term multicontinuum models). Each immobile zone
exchanges solute mass with the mobile zone by linear mass
transfer (i.e., mass exchange is proportional to concentration
gradient). These models may be expressed as a function of
only the mobile concentration by introducing a memory
term into the ADE to account for mass transfer between
mobile and immobile zones. The name ‘‘memory’’ reflects
the fact that this term represents how current mobile con-
centrations are affected by past events. Multicontinuum
models have been successfully applied to interpret anoma-
lous transport [McKenna et al., 2001; Haggerty et al., 2004;
Zinn et al., 2004; Medina and Carrera, 1996; Sánchez-Vila
and Carrera, 2004; Zhang et al., 2007]. While these models
were originally developed to represent diffusion into immo-
bile regions, they can also be used to reproduce the effect of
slow advection.

[8] The most widely used method for representing tailing
is the continuous time random walk method (CTRW)
[Berkowitz and Scher, 1998; Dentz et al., 2004]. CTRW
can be viewed as a generalization of Random Walk methods
in that not only spatial displacements, but also time step
lengths are random variables [Berkowitz et al., 2006,
section 7.1]. The effective transport equation results from
ensemble averaging the transport of individual particles. As
it turns out, CTRW is broader in scope than multicontinuum
representations, which can be viewed as a particular case of
CTRW [Dentz and Berkowitz, 2003]. However, the most
commonly adopted form of CTRW is equivalent to the
memory function approach and the corresponding memory
functions can be derived from each other. CTRW has been
successful not only in reproducing field BTCs, but also in
reproducing appropriate scaling behavior. That is, CTRW
models calibrated against BTCs measured at one scale have
been successful in predicting BTCs at different scales
[Berkowitz and Scher, 1998; Kosakowski et al., 2001; Levy
et al., 2003; Cortis and Berkowitz, 2004; Le Borgne and
Gouze, 2008]. CTRW models have also accurately repro-
duced the outcome of pore network models, reproducing
the dependence of dispersion on molecular diffusion
[Bijeljic and Blunt, 2006].
[9] A further method to describe tailing are the fractional-

order advection-dispersion equations (fADE) [Benson et al.,
2000]. As with CTRW, the model is rather general, but can
also be characterized by a power law memory function
when only the time derivative term in the ADE is fractional.
Berkowitz et al. [2006] showed that, in such case, fADE can
be considered as a limiting case of CTRW.
[10] In summary, multicontinuum models, CTRW and

fADE, all sharing a time nonlocality, must be considered
as excellent representations of transport in natural media.
Moreover, they allow discriminating between mixing and
spreading. Mixing controls many chemical reactions [e.g.,
De Simoni et al., 2005, 2007; Cirpka and Valocchi, 2007].
Therefore, a proper representation of mixing is a prerequi-
site for proper reactive transport modeling. Yet, the ADE
(and all formulations that base dispersion solely on the
spreading of plumes) equate dispersion and mixing (thus
overestimating mixing and mixing-driven reactions). Non-
local in time formulations separate these two processes.
Therefore, they shed some hope on the possibility of
predicting reactive transport accurately.
[11] Despite the above nice properties, non local formula-

tions have been subject to criticism [Neuman and Tartakovsky,
2009]. All these formulations require specifying some
(arbitrary) memory function. At present, memory functions
are calibrated against tracer test data, without explicit
reference to heterogeneity. This is unsatisfactory both from
conceptual and practical viewpoints. Conceptually, it is
generally agreed that tailing can be caused by heterogeneity.
In fact, Berkowitz and Scher [1997, 1998] and Berkowitz et
al. [2008] suggest deriving the memory function from the
velocity pdf. However, Le Borgne et al. [2008a, 2008b]
point out that velocity correlation along a stream tube
(Lagrangian correlation) may be a key factor. Since there
is no way to obtain the full statistical characterization of the
velocity field, other than numerical simulation, it is clear
that no explicit link is available between memory function
parameters and measurable properties of the heterogeneity

Figure 1. Breakthrough curve of iodine measured at the El
Cabril site [Gaillard et al., 1990]. A power law tail is
observed with a slope of 2.0 (indicated as a gray line). The
power law behavior spans over 1.5 orders of magnitude
until the background concentration is reached. This curve
cannot be reproduced by using a homogeneous ADE. Mass
transfer models using a memory function can reproduce this
behavior. However, the causes of the tailing need to be
properly understood in order to use such memory function
for predictions under different flow conditions or transport
distances.
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in hydraulic conductivity. This casts a shadow of doubt on
the predictive capabilities of nonlocal formulations for
scales dramatically different than those for which they were
calibrated. There are also practical implications. Tracer tests
cannot be performed on the long scales often needed for
transport predictions. Certainly, using nonlocal formulations
for reactive transport requires ascertaining the conditions
under which they are valid. On the other hand, stochastic
approaches offer no clear alternative. In fact they are
criticized because, with rare exceptions [e.g., Di Donato
et al., 2003; Alcolea et al., 2008; Luo et al., 2008], they
usually fail to reproduce the kind of tailing observed in the
field.
[12] Accepting that spatial variability of hydraulic con-

ductivity is a frequent cause of tailing, the objective of this
paper is twofold. First, we explore some conditions under
which heterogeneity can explain the kind of tailing observed
in tracer tests, namely power law decay. Second, we
investigate the relationship between certain field properties
describing heterogeneity and the parameters describing the
memory function.

2. Background

[13] We conceptualize solute transport by assuming a
superposition of a (homogeneous) mobile zone and an
infinite number of immobile zones. Mass is exchanged
between the mobile and the immobile ones by diffusion-
like processes. This results in the following transport
equation:

fm

@c

@t
¼ r � ðDrcÞ � q � rc� G ð1Þ

where c is solute concentration in the mobile zone, D is
the dispersion tensor, fm is the mobile porosity and G is the
source/sink term controlling the mass transfer between the
mobile and a continuum of immobile zones. In the case of a
discrete description with a finite number of immobile zones
G can be expressed in terms of immobile concentrations
resulting in a system of n + 1 equations for n immobile
zones. Carrera et al. [1998] showed that G can be expressed
in terms of mobile concentration by using a convolution
product noted by (*) with a memory function g:

G ¼ fimg*
@c

@t
ð2Þ

gðtÞ ¼
XN
n¼1

anbne
�ant ð3Þ

XN
n¼1

bn ¼ 1 ð4Þ

where N is the number of immobile zones, an are first-
order rate coefficients and bn is the fraction of total
immobile porosity characterized by an (inverse of the
characteristic time of zone n). Note, that the memory
function (equation (3)) is slightly different to the one of

previous authors. The constant characteristic diffusion of
Carrera et al. [1998] is accounted for by an. Haggerty et
al. [2000] define their memory function in terms of the
full aquifer, while we prefer to define it in only in terms of
immobile zone parameters. Thus our memory function
does not depend on mobile porosity. By excluding the
immobile porosity our memory function does not depend
on the size of the immobile zone, but only on its geometry.
In Appendix A we show how equations (1)–(4) can be
easily implemented into a standard numerical code.
Throughout this paper, we will only refer to conservative
transport and 1D transport equation. This implies that we
could solve the transport equation in Laplace space and
then invert the solution. This would avoid discretization of
the memory function. However, our ultimate goal is to
apply these results on to reactive transport, which is
simpler in the discrete version of g (equation (3)).
[14] A memory function can be of irregular shape. But as

power law behavior in BTCs is observed frequently, we
use memory functions that display power law behavior.
Haggerty et al. [2000] related late time concentrations to the
memory function and found that a power law behavior in a
BTC is caused by a power law behavior of the memory
function. Similar findings are reported by Berkowitz and
Scher [1997, 1998] in the context of CTRW. Therefore, we
choose an and bn in equation (3) so as to ensure this power
law behavior (Figure 2). A truncated power law (TPL)
seems to represent best anomalous transport because it
allows an evolution to Fickian transport [Dentz et al.,
2004; Berkowitz and Scher, 2009].
[15] This reduces the number independent unknown

parameters describing a memory function to three: two
characteristic times, power law behavior initial (t1) and final
(t2) cutoff times and the power law slope mg (Figure 3).

3. Methodology

[16] We use a numerical approach based on synthetic
aquifer analysis to study the heterogeneous features that
control tailing. The methodology consists of 4 major steps:
(1) Generation of heterogeneous transmissivity fields,
(2) transport simulation on the heterogeneous fields using
the ADE at the local scale, (3) analysis of vertically
integrated BTCs at selected locations and derivation of a
representative memory function, and (4) simulation of
transport though a homogeneous medium with the above
memory function. All simulations are performed within a
domain of 1024 times 512 cells of unit size. Water flow is
steady state, prescribed by constant heads at the left and the
right boundaries and no-flow conditions on top and bottom,
resulting in mean uniform flow with a mean gradient of
0.0098.

3.1. Generation of Transmissivity Fields

[17] We generate 2D transmissivity fields with different
heterogeneity characteristics. First, we need varying hetero-
geneity scales, as we expect in nature, evolving over a range
of scales [Neuman, 1990]. We also need poorly connected
and well connected fields, that is where high transmissivity,
T zones extend over long distances. We analyze transport in
individual realizations of heterogeneous aquifers, as op-
posed to a Monte Carlo approach, because we are interested
in what happens in a given aquifer rather than in an
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ensemble. The realizations are generated with the Gaussian
Sequential Simulation Method [Gómez-Hernández and
Journel, 1993]. The method uses a single or a combination
of variograms, always exponential in this work, to generate
simulations conditioned to field data. We used five types of
heterogeneous lognormal transmissivity, lnT, fields
(Figure 2) with a default variance of 6.
[18] Type 1 fields are unconditioned multi-Gaussian

fields generated with a correlation length of 20, which is
small compared to the domain size (1024). The variance of
the lnT fields was set to 2 and 6. The resulting fields display
neither multiple scales nor preferential flow paths. There-
fore, no anomalous transport behavior is expected for long
travel distances, compared to the domain size.
[19] Type 2 fields are obtained with a nested variogram

consisting of two exponential variograms, one describing
small-scale heterogeneity with a correlation length between
8 and 128, and one with a large correlation length between
128 and 1024. The sill of the two different variograms are
varied between 1 and 5, but the total variance always adds
up to 6. The resulting fields display two distinct scales of
heterogeneity scales but no apparent preferential flow paths.
[20] Type 3 heterogeneous fields show an evolving range

of scales. We use a power law variogram:

gðsÞ ¼ C0s
2H ð5Þ

where s is distance, C0 is a constant and H is the Hurst
coefficient. The power law variogram can be seen as
an infinite series of nested variograms [Neuman and

Di Federico, 2003]. We generated fields with H values of
either 0.1, 0.25 or 0.4 and scale them for comparison with
the other fields to a variance of 6. Such a variogram was
postulated by Neuman [1990] to account for increasing
variance and correlation length of aquifers as their size
increases. Whether such a variogram would be still valid at
very large scales can be neither proven nor discarded. The

Figure 3. Representation of a memory function (black). It
can be viewed as the superposition of 10 individual memory
functions each corresponding to an immobile zone (gray)
(equation (3)). The memory function exhibits three
independent variables: characteristic time t1 when power
law decay starts, characteristic time t2 when power law
behavior ends, and the power law slope mg.

Figure 2. Five types of transmissivity fields used in this work. They show different ranges of scales and
different degrees of connectivity: (a) multi-Gaussian field with a single exponential variogram and a
small correlation length, (b) field comprising two nested variograms with different correlation lengths,
(c) power variograms representing a continuous distribution of heterogeneity scales, (d) similar to type 3
but conditioned to leave a preferential flow path (white and black crosses indicate conditioning point with
low and high T values, respectively), and (e) highly connected fields.
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fields display a continuous range of heterogeneity scales but
the existence of interconnected zones of high T depends on
the individual realization.
[21] Type 4 fields are a modification of type 3 fields,

where the simulations are now conditioned to 14 points to
ensure interconnected zones of high T (Figure 2). These
fields still display a continuous range of heterogeneity
scales, but also a well defined preferential flow path. Still,
the results may be affected by the conditioning process.
[22] The type 5 fields are built with the methodology of

Zinn and Harvey [2003] to ensure good connectivity. The
original multi-Gaussian fields display connectivity only for
intermediate T values. These are transformed to high T
values to enhance hydraulic connectivity. To ensure consis-
tency we use here an exponential variogram with correlation
lengths between 20 and 200.
[23] We quantify here connectivity using the indexes of

Knudby and Carrera [2005]:

CF ¼ Teq

TG
: ð6Þ

where Teq is the equivalent transmissivity (i.e., the
transmissivity of a homogeneous medium allowing the
same flux as the actual heterogeneous medium) and TG is
the geometric mean of point transmissivity values. CF is
considered a measure of connectivity because it reflects the
increase in flow caused by highly transmissive channels
transversing the domain. The transport connectivity index is
defined as

CT ¼ tpeakhom
tpeakhet

ð7Þ

where tpeakhet is the peak arrival time for transport across the
heterogeneous field and tpeakhom is the peak arrival time for
the equivalent homogeneous field. CT is considered a
connectivity measure because it reflects the early arrival
caused by channels. Cortis and Knudby [2006] use a CTRW
formulation for representing flow through heterogeneous
media. We expect their memory function to contain
information on connectivity, but it has not yet been
quantified as an index.
[24] Figure 2 displays an schematic plot comparing the

5 types of lnT fields in terms of regional connectivity and
scales of heterogeneity. This is a qualitative plot aimed at
indicating the features that are explored in each of the
realizations.

3.2. Fine-Scale Transport Simulations Within
the Heterogeneous Fields

[25] Fine-scale conservative transport simulations are
performed on the heterogeneous fields following the steady
state flow conditions described above. Transport is simu-
lated at the local scale with the ADE using the finite element
code FAITH [Sánchez-Vila et al., 1993]. Local dispersivities
are assumed to be 10 units in longitudinal and 1 unit in
transverse direction. To test the effect of local dispersivities,
these values are varied for one specific setup between 0.1
and 10. The porosity is set to 0.3 in all cases. The time step
starts with 100, increases up to 5000, and then remains
constant until the end of the simulation period. The simu-

lation is stopped when only 10�4% of the initial mass
remains in the domain. Breakthrough curves are measured
as integrated values at selected sections, perpendicular to
the mean flow and at several distances from the source.
[26] The above mentioned assumption (validity of the

ADE at the local scale) has been questioned by some
authors [e.g., Berkowitz et al., 2006]. To test this we add
some additional runs with a local-scale equation based on
the mass transfer scheme presented in Appendix A. We used
the same input value as before but add an additional
porosity of 0.05 be accessible to mass transfer. To keep
the analogy of intragranular diffusion we use mg = 0.5, the
value of matrix diffusion. We use different characteristic
diffusion times (t1/t2) to define three local memory func-
tions: 0.017/17, 0.017/1.7, and 0.17/17 for memory func-
tions 1, 2 and 3 respectively.
[27] Concentration is initially zero throughout the do-

main. Solute mass input into the system can be expressed
either as resident or as flux averaged. Most of the runs were
performed by imposing a flux dependent mass of 1 at the
left boundary. That is, mass inflow at every node is
proportional to the water inflow. The boundary condition
was applied during an initial time interval of 1000 which is
small compared to the characteristic transport times. After
this time interval, the boundary condition is changed to let
clean water enter the domain. To test the effect of using
initial resident concentration, one test case was performed
by evenly distributing the unit mass over the first column.
[28] Integrated breakthrough curves are sampled along

transects at several distances. To avoid boundary effects
these measurements are taken always at least 24 cells away
from the aquifer boundaries. The distinction between resi-
dent and flux concentrations [Kreft and Zuber, 1978; Zhang
et al., 2006] is relevant for our work. While resident
concentrations represent the mass within a certain domain
(e.g., numerical grid cell) at a certain time, flux concen-
trations provide the mass passing a cross section during a
time interval. Resident concentrations are relevant for
chemical reactions (i.e., reactive transport). Flux concen-
trations are the ones to be used when all mass flowing
across a boundary has to be taken into account, which is the
case in tracer tests. The relationship between both concen-
trations is based on the definition of flux concentration at
control plains as the vertically averaged solute flux compo-
nent along the mean flow direction normalized by the
vertically averaged fluid flux in mean flow direction:

cf ¼
R Ly

0
jxdyR Ly

0
qxdy

ð8Þ

jx ¼ qxcr � Dxx

@cr
@x

� Dxy

@cr
@y

ð9Þ

where cf is the flux concentration, cr is the resident
concentration, jx is the mass flux in mean flow direction,
qx is the fluid flux in mean flow direction, Dxx and Dxy are
the corresponding components of the dispersion tensor, and
Ly is the length of the cross section.
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3.3. Obtaining Memory Functions From Breakthrough
Curves

[29] Figure 3 shows the memory function defined in
equation (3) for 10 immobile zones (N = 10). Haggerty et
al. [2000] related the late time slope of BTCs (mBTC) with
the slope of memory functions depending on the initial
conditions, provided that the longest characteristic times of
the memory function are much longer than the advection
time. A BTC with initial concentration specified throughout
the mobile and immobile zones is linear on the memory
function, g. A BTC resulting from an initial mass pulse into
themobile zone is linear on the time derivative of the memory
function, @g/@t. For a tracer test BTC with the initial pulse
and detection mode cf, the relation between the slopesmg and
mBTC is mg = mBTC � 1. For example, mBTC for a matrix
diffusion tracer test is 1.5 and the slope of the corresponding
memory function, mg, is 0.5.
[30] We take advantage of the above properties to identify

the memory function from the BTC obtained from the
heterogeneous fields simulations. It should be noticed that
the objective here is just to fit the BTC, which could be
done by any conventional fitting procedure. In fact, we use
TRANSIN [Medina and Carrera, 1996], which is an
inverse problem code, for fitting runs, which should facil-
itate estimation. However, direct inversion of the memory
function shown in equation (3) is extremely ill posed (a
potentially large number of an and bn coefficients just to fit
the BTC tail). Therefore, g must be parameterized. As
mentioned in section 2, we have used a standard parame-
terization in terms of mg, t1 (time for which the slope mg

starts) and t2 (time for which power law behavior ends), as
shown in Figure 4. Time t2 represents the time for which the
immobile zone equilibrates with the mobile zone and
corresponds roughly with the time for which the BTC
departs from power law behavior and drops to zero expo-
nentially, hence the name cutoff time. Time t1 is the
characteristic time of the smallest heterogeneity scale en-

countered [Bijeljic and Blunt, 2006; Berkowitz et al., 2008].
For the case of slow advection, both characteristic times
scale with flow rate [Berkowitz et al., 2008] while the slope
remains constant. Additionally, if t1 is smaller than tpeak, t1
can be chosen larger and the contribution of the missed part
can be modeled using an upscaled dispersivity. TRANSIN
does not handle this parameterization. Moreover, we pre-
ferred a generic methodology which could be easily applied
with any code. Therefore, we use the following steps: First,
we fit an ADE to the first arrival and the peak of the BTC by
applying the same boundary conditions and using the Teq as
upscaled T (Tup). The fitting parameters are initial mass,
porosity and dispersivity. Second, overlaying the resulting
BTC (BTCADE) with the measured one, we define t1 as the
time when the two curves start departing from each other
(again, this is somewhat arbitrary, shorter times would work
as well). Second, a straight line is fitted starting at the point
where t1 crosses the original BTC, which renders the slope
mBTC. And third, t2 is read from the BTC. Sometimes, the
BTC does not display a well defined cutoff time t2. In such
cases, t2 is defined by extrapolating the power law behavior
until the full mass is recovered. Finally, the immobile
porosity controls the size (height) of the tail. Therefore,
some trial runs may be needed to obtain fim (this we did
automatically with TRANSIN). Ideally, fim should be equal
to the total minus the mobile porosity [Sánchez-Vila and
Carrera, 2004]. But t2 may have to be adjusted for this
condition to be met (increasing t2 lowers the tail). Once t1, t2
and mg are known, coefficients an and bn are adjusted as
explained below.

3.4. Modeling of BTCs Using the Memory Term

[31] As a last step we take the memory function derived
above and implement it in a homogeneous 1D mass transfer
model. Again, the finite element code TRANSIN [Medina
and Carrera, 1996] was used for solving the ADE with
general mass transfer (Appendix A). Dispersivity values and
mobile porosity are estimated from early time data. When
possible, dispersivity is set to its local value. The total
porosity is kept at its true value of 0.3, except for the cases
in which BTCs were obtained with a local mass transfer
scheme, when total porosity is 0.35. The immobile porosity
is calculated from the mobile one. N = 20 was found
sufficient in most cases. The an values are bounded by
(the inverse of) cutoff times, within which the power law
behavior takes place (a1 = t2

�1 and aN = t1
�1). If we chose

the rate coefficients, an, evenly distributed on a logarithmic
scale, the corresponding bN can be easily calculated using
the slope of the memory function and equation (1) together
with

bn* ¼ am�1
n ð10Þ

btot* ¼
X

bn* ð11Þ

bn ¼
bn*

btot*
ð12Þ

Figure 4. Derivation of the memory function of break-
through curves taken in a heterogeneous aquifer BTChet.
Early time data are fitted against the corresponding BTC
derived by means of the ADE (BTCADE); t1 is read directly
from the point where the two curves deviate. Starting from
t1 a straight line is fitted to the tail to get mBTC. Finally, the
cutoff t2 is taken as the point where the BTC starts to
decrease exponentially.
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where bn* and btot* are introduced to normalize bn. Note, that
bnfimn

= fimn
where fimn

is the corresponding immobile
porosity fraction characterized by an.

4. Results

[32] Plume snapshots (Figure 5) show that transport is
non-Fickian at this scale. Spatial distributions of solute mass
are highly asymmetric, with peak values trailing behind
early arrivals. It is clear that properly reproducing the
geometry of these plumes would require a thorough knowl-
edge of the medium, which is unrealistic. Instead, the main
features of this and other simulations are captured with a
homogeneous transport equation with mass transfer term,
which motivates the type of upscaling proposed here.

4.1. Effects of Mass Input and Detection Mode: Scaling

[33] Figure 6 shows eight BTCs investigating solute mass
input conditions and detection (sampling) mode. They are

all obtained with the same heterogeneous field (type 3 field
in Figure 3). This particular field displays a relatively
homogeneous right boundary, but a highly heterogeneous
left one. The homogeneous boundary is characterized by an
almost uniform distribution of velocities while the hetero-
geneous boundary displays a high-velocity variance along
the cross section (low values on top and high values on
bottom). Four tests are performed with flow from left to
right and four from right to left with all possible combina-
tions of detection mode (flux or resident concentration) and
input conditions (flux-averaged input pulse or fixed initial
concentration). In our numerical setup, the input conditions
are affected by the upstream boundary, while the detection
mode is influenced by the downstream boundary (where
measurements are taken). BTCs separate all tests into two
distinct groups. The individual behavior depends only on
the condition applied at the heterogeneous boundary. When
a heterogeneous boundary is used as inflow, the curves
corresponding to constant initial concentration display a
smaller slope than those of an input pulse proportional the
local velocity at each point. When the heterogeneous
boundary corresponds to the outflow, the same effect is
displayed for resident concentrations detection mode with
respect to flux concentration. The difference between the
slopes in the log-log plots from the two groups of curves is
0.9, which agrees quite well with a difference of 1.0 derived
analytically by Haggerty et al. [2000] for different initial
conditions. This result agrees also with Di Donato et al.
[2003] where they found a difference of 0.83. It is also

Figure 5. Snapshots of concentrations for a type 3 field at
three different time steps. The shape of the plume clearly
indicates non-Fickian behavior (marked asymmetry) that
cannot be described by an ADE-like equation with upscaled
parameters, whether constant or time-dependent. Actually,
two different preferential flow paths can be observed, where
the upper one is more conductive than the lower one.

Figure 6. Comparison of breakthrough curves for two
different initial conditions (uniform initial concentration or
flux-averaged mass inflow) and two detection modes
(resident or flux-averaged concentration). All eight tests
are performed in the type 3 field example of Figures 3 and
5, where the left boundary is highly heterogeneous and the
right boundary is relatively homogeneous. In four tests, the
solute moves from left to right, and in the remaining four, it
moves from right to left with all the possible combinations
of detection mode (flux or resident concentration) and initial
conditions (uniform or flux averaged). Test results do not
depend on the condition applied at the homogeneous
boundary, which consistently display a slope around 2.2.
The slope decreases by about 0.9 for the four cases where
either resident concentrations are measured or fixed
concentrations are applied at the heterogeneous boundary.
Notice that the effect of the two preferential flow paths of
Figure 5 is reflected as two, more or less smoothed, humps
in the BTC.
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worth pointing out that the peak would have been poorly
reproduced with a single ADE for the mobile zone. All
BTCs display two, more or less explicit, humps (arguably
corresponding to the two main flow paths that can be
discerned in Figure 5). Clearly, an accurate fit would require
the superposition of at least two homogeneous solutions
[Luo et al., 2008]. This implies that indeed, the BTC spread
is reflecting the variability in travel times of different stream
tubes (only to some extent, lateral mass transfer between
adjacent stream tubes smooths out part of the spread). It also
implies that, as opposed to memory functions representing
actual diffusion into mobile zones, the portion of memory
functions representing reversible slow advection [Gouze et
al., 2008a], must be scaled by advection.

4.2. Effects of Different Heterogeneous Fields

[34] We now compare BTCs corresponding to the simu-
lations performed in the different field types. BTCs of type
1 fields (multi-Gaussian) do not show anomalous features
(Figure 7a). Some tailing is observed, for a lnT variance of 6
there, but no power law slope is developed. These curves
could be well reproduced by the ADE with an upscaled
dispersivity. As our BTC samples about 50 correlation
lengths, we can consider transport here to be ergodic, so
that macrodispersive behavior is observed.

[35] The type 2 fields (nested variograms, BTCs not
shown) allow us to investigate the influence of two clearly
separate heterogeneity scales. The breakthrough curves
display anomalous (i.e., non ADE-like) behavior, some with
a clear tail. Still, the shape of the log-log scale tail is
irregular. This might be due to the fact that heterogeneity
only exists at two specific scales. In any case, no clear
connected paths are observed in these fields (Figure 3).
[36] Transport in type 3 fields (power law variogram) is

always anomalous. Whether strong tailing develops in a
given realization depends on how high T values align to
form a certain connected path, which in these realizations
happens randomly. The slopes of BTCs are smoother than
those obtained with type 2 fields and look similar to those
often found in field tests, such as that presented in Figure 1.
This supports the conjecture that aquifers are heterogeneous
over a range of scales [Neuman, 1990] and that the power
law tails result from this range of scales [Berkowitz and
Scher, 1997, 1998].
[37] The influence of the overall variance of transmissiv-

ity can be seen in Figure 7b. The slope is not sensitive to
variance of lnT, but both early arrival and cutoff times
change dramatically. As the variance decreases, early arrival
is delayed and late time cutoff, t2, is reduced. This is
consistent with the view of the memory function reflecting

Figure 7. Breakthrough curves for different types of heterogeneity. (a) Multi-Gaussian fields (type 1).
The curves do not show power law tail, and the curves can be reproduced using an ADE with upscaled
parameters. (b) A type 3 field with varying variance. When variance is decreased, we observe no change
of slope mBTC but a significant delay in first arrival and reduction of late time cutoff t2. (c) A type 3 field
with different values for the Hurst coefficients. It indicates that small-scale heterogeneity has little effect
on any of the parameters of g. (d) Type 3 field with BTC measured at uniformly increasing distances
between 100 and 1000. No change in mBTC is observed with increasing sampling volume.
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the spread of travel times. In fact, in the limiting case of
zero variance (homogeneous medium), t2 becomes so small
that a memory term is not needed. These results suggest that
t2 scales up with sy

2. That is, increasing variance with a
factor f implies increasing t2 by the same factor while
reducing immobile porosity.
[38] To assess the effect of Hurst coefficient, indepen-

dently of lnT variance, we changed H while total variance
and geometrical patterns (i.e., location of high and low T
regions) remained unchanged. This way, H reflects the
relative importance of small-scale variability. With increas-
ing Hurst coefficient (i.e., reduced small-scale variability)
we get a slightly delayed first arrival but also a slightly
delayed cutoff (Figure 7c). Again, the slope remains con-
stant independently of H. This indicates that small-scale
structures do not affect the large-scale slope, but only the
characteristic times. In any case, the dependence is weak,
which we find surprising.
[39] Transport in type 4 fields is always anomalous.

Because of the conditioning process, all fields exhibit a
preferential flow path that leads to a well defined power law
tail in the BTC (not shown). Results are similar to those of
type 3 curves. Figure 7d displays a series of BTCs taken at
varying distances from the source within the same field. Tail
slopes do not change with distance (or time). However, the
late time cutoff, t2, increases more or less linearly with
travel distance. This confirms the earlier assertion about the
scaling of t2 with advection.
[40] Type 5 fields allow us to investigate the influence of

connectivity. Recall that these fields are obtained by im-
posing connectivity on a multi-Gaussian field characterized
by a single correlation length. When the correlation length
of the original field is small, the modified field displays thin
high-conductivity channels within a matrix of small low-
conductivity blocks. Increasing the correlation length of the
original field leads to an enlargement of both channels and
low-conductivity zones, which causes an increase in con-
nectivity. Figure 8a shows that the slope decreases with
increasing correlation length of the original underlying
multi-Gaussian field. The slope appears to tend asymptot-
ically to a value of 2. The same can be said about the
dependence of the slope on connectivity indicators (equa-
tions (6) and (7)). A noisy, but well defined, relationship

exists between slope and flow connectivity (Figure 8b) or,
even better, transport connectivity (Figure 8c). For values
close to 1 (ADE limit), increasing connectivity indicators
causes a decrease in slope, until it reaches values close to 2.
From there, the slope remains constant despite of further
increases of connectivity.

4.3. Effects of the Local-Scale Equation

[41] In all the cases discussed up to here we assumed that
a local ADE exists. Subgrid heterogeneity is modeled by a
local-scale dispersivity. We discuss now the effect of local-
scale transport assumptions on large-scale BTCs. The effect
of local transverse dispersivity (aT) is displayed in
Figure 9a. Increasing aT, causes a small delay in first arrival
and a small reduction in cutoff time, t2, but has no impact
upon the slope of the BTC. Longitudinal dispersivity (aL,
not shown) has little effect on either the cutoff time or the
slope. Only the first arrival time is slightly delayed with
decreasing dispersivity. The explanation of this effect is
quite apparent form earlier discussions. Transverse disper-
sion tends to smooth away both from the leading (fast) and
the trailing (slow) flow tubes by transferring mass to
adjacent flow tubes. This is highlighted by the strong
dependence of resident concentrations (not shown) on
transverse dispersion. While this is consistent with long-
standing understanding [Taylor, 1953], it sets a warning on
the use of this formulation for reactive transport. Mixing is
greatly enhanced by transverse dispersion, yet the memory
function is only marginally affected.
[42] To investigate the influence of the ADE assumption

on the local-scale transport equation, we study now the effect
of using a local-scale equation with memory. Figure 9b
displays the behavior of the BTCs for different memory
functions. For characteristic times much smaller than the
observation time we find that BTC is virtually identical to
the one observed with the ADE, only delayed by the total
porosity, which was increased from 0.30 to 0.35. If we set
the characteristic times larger than the observation time, the
slope decreases. A memory function, with a t2 slightly
larger than peak arrival time, displays a slight decrease in
peak concentration and peak arrival time. This means that
portion of the local immobile porosity associated to fast
characteristic times can be described by the ADE, increas-

Figure 8. Slopes for different types of transmissivity fields versus (a) the correlation lengths of the
underlying multi-Gaussian field in type 5 fields (recall that increasing this correlation length results in
broader, better connected channels), (b) flow connectivity index, and (c) transport connectivity index.
They all show that the slope mBTC decreases (i.e., tailing becomes increasingly marked) as connectivity
increases. The slope appears to tend mBTC = 2 but does not decrease further.
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ing mobile porosity. If t2 is increased further, peak arrival
time is less increased, but and the slope decreases further. If
also t1 is increased by an order of magnitude and the effects
are increased slightly. Remember that the assumed slope of
the memory function mg = 0.5 leads to a stronger weighting
of large characteristic times (small an). Still, we find that the
addition of a local-scale equation with memory does not
make the slope smaller than 2, which would require a much
larger immobile porosity and a much larger t2.

4.4. Comparison With BTCs Using Mass Transfer

[43] Finally we use the memory function derived from the
above curves to reproduce the BTC with the homogeneous
one-dimensional mass transfer model of equations (1)–(4).
The only fitting parameters are dispersivity and mobile
porosity. They are fitted against early arrival and peak
times. Mobile porosity (0.075–0.16) is in all cases a
fraction of the original porosity (0.3). The resulting dis-
persivity ranges between 10.0 and 34.0, where 10.0 is the
local (longitudinal) dispersivity. The slope is fitted very well
(Figure 10) using an immobile porosity equal to the differ-
ence between total and mobile porosity (fim = 0.3 � fm).
We repeated the model with a lower value of t1 and we
reproduced the BTC identically, but with a smaller disper-
sivity and a smaller mobile porosity. This means that the
early time (high an terms) of our memory function cannot
be estimated simultaneously with porosity and dispersivity
from BTC data. This portion of the memory function
equilibrates fast with the mobile region while producing
some spreading. Hence, from a fitting point of view,
neglecting this portion (i.e., increasing t1) is virtually
identical to increasing mobile porosity and dispersivity.
This implies that t1 is arbitrary, but so are mobile porosity
and dispersivity. In fact, our formulation leads to a virtually
identical fit setting dispersivity to 10 (local value) and
mobile porosity equal to zero. It should be noticed that
the early portion of the memory function is likely controlled
by diffusion processes at the local (pore) scale, which have
not been addressed here. In fact, proper representation of
these processes requires pore-scale modeling [e.g., Bijeljic
and Blunt, 2006; Tartakovsky and Neuman, 2008]. The

point here is that they cannot be identified from a single,
large-scale, BTC.

5. Discussion and Conclusions

[44] BTCs obtained from detailed simulations of transport
through intermediate-scale highly heterogeneous media dis-
play the type of tailing often observed in field tracer tests.
Intermediate-scale heterogeneity means here transport
through distances comparable to, or smaller than, the largest
heterogeneity scale. That is, transport over media with
variability patterns (e.g., high-permeability channels) of size
comparable to, or larger than, the size of the transport
domain. Given the ubiquity of tailing at all scales, this
result suggests that stationary lnT fields are rare and lends
support to views of heterogeneity evolving over a range of
scales [Neuman, 1990].

Figure 9. BTCs investigating the local-scale equation. (a) Subgrid heterogeneity is modeled using
dispersivity (ADE). When the local transverse dispersivity is varied, the effect on the resulting BTCs is
minor. The longitudinal dispersivity was kept constant. (b) A nonlocal small-scale equation is used: a
mass transfer term is added with varying memory functions, which causes mBTC to decrease when a large
final cutoff time is used.

Figure 10. Fitted breakthrough curve using the memory
function derived from the heterogeneous small-scale
simulations. The only fitting parameters are dispersivity
and mobile porosity. As part of the heterogeneity can be
modeled either with the mobile zone dispersion or with the
memory function, more than one set of parameters fit the
original BTC. When t1 is chosen small, the mobile zone
dispersivity is equal to the local dispersivity of the original
heterogeneous field simulation.
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[45] The above kind of BTCs cannot be accurately mod-
eled with the ADE, because of their non-Fickian nature,
which can be well reproduced with nonlocal in time
formulations (MRMT, CTRW, fADE). All these formulations
require specifying a memory function, whose parameters
are linked to those that describe heterogeneity. We have
parameterized the memory function in terms of its slope in
log-log scale and early and late cutoff times, t1 and t2.
[46] The slope of the memory function depends most

markedly on connectivity indicators. Our simulations dis-
played no dependence of the slope on other parameters
frequently used in describing heterogeneity, such as vari-
ance, Hurst coefficient or correlation distance. Yet, it is clear
that they do affect BTC tailing (i.e., tailing disappears if the
variance tends to zero and connectivity would have in-
creased if we had used much larger correlation distances).
[47] The slope of the BTC is mildly reduced if nonlocal

formulations are adopted for small-scale transport. In fact, if
the cutoff time, t2, for the small-scale transport is much
larger than the travel time of the slow flow tubes, small-
scale transport will dominate transport over long distances.
The issue is nontrivial, nonlocality can be caused by
diffusive processes [e.g., Berkowitz et al., 2006], which is
predictable and would be naturally described by a memory
function at the local scale, and by slow advection which we
have extensively discussed here. The problem is that non-
locality caused by diffusion would be scale-independent,
while nonlocality caused by slow advection depends on
both, mean travel time and distance. Specifically, memory
function slope remains unchanged, but immobile porosity
and late-time cutoff depend on advection time. Tracer tests
are often performed under forced gradient conditions (i.e.,
velocities much larger than those occurring under natural
conditions). The memory function derived from such tracer
test should be scaled (i.e., t2 increased in the same propor-
tion than travel time [Berkowitz et al., 2006]) if caused by
slow advection, but not if caused by diffusion. Actually
since both effects probably overlay, we would have to split
the memory function into diffusion and a slow advection for
proper scaling.
[48] The minimum slope encountered in this study for all

the investigated fields is mBTC = 2, while smaller slopes are
sometimes observed in field tracer tests. The abundance of
slopes close to 2 suggests that we have reached a limit for
the type of fields investigated here. Further decrease in
slope may be caused by long diffusion times into immobile
regions, including heterogeneous diffusivity [Gouze et al.,
2008b], by three-dimensionality, especially with variable
tortuosity, or by chemical heterogeneity, particularly for
solutes that sorb into the least mobile region (e.g., clays).
[49] The scaling behavior of t2 (late-time cutoff) is quite

complex. Besides depending on advection time, t2 appears
to increase linearly with the variance of lnT. It is also
affected by local-scale transverse dispersion. This implies
that theoretical developments are needed before memory
functions derived from tracer tests can be safely used for
predicting long-term transport.
[50] A final note of caution must be added. The formu-

lations we tested here are nonlocal only in time. They work
very well, in the sense that they accurately reproduce BTCs.
This is a result of our model setup and the fact that we were
only trying to reproduce conservative transport BTCs. Had

we tried to simulate reactive transport or spatial distribu-
tions of concentrations, nonlocality in space may have been
needed. An indicator of this is provided by the small
dependence of BTCs on local transverse dispersion, which
controls mixing (and thus reactions). Therefore, we con-
clude that, while spreading can be well modeled with
appropriately scaled memory function, mixing may not.

Appendix A: Implementation of a Discrete Mass
Transfer Scheme

[51] We describe the implementation of our mass transfer
scheme into a standard transport code without solving
explicitly for each immobile zone. The exchange term is a
sum of exchange terms between the mobile zone and each
of the immobile zones fn:

G ¼
XN
n¼1

fn ðA1Þ

The exchange is described by

fn ¼ �finanðcin � cÞ ðA2Þ

where cin is the concentration in immobile zone n. Mass
balance in the nth immobile zone yields

dcin

dt
¼ anðcin � cÞ ðA3Þ

[52] The equation may be solved together with
equation (1) while treating cin as unknown. However,
numerical solution is greatly simplified by eliminating it,
much in the spirit of Carrera et al. [1998]. Assuming that
the time is discretized and that c varies linearly during the
time step (i.e., @c/@t remains constant), we get

cinðtÞ ¼ ck þ ðckin � ckÞeant þ @c

@t
t � 1

an

ð1� e�anDtÞ
� �

ðA4Þ

Substituting @c/@t by its time discretized approximation,
Dc/Dt, and using the resulting value for cin to eliminate it
from equation (A2), while evaluating fn at time qDt:

f kþq
n ¼ fin

Dc

Dt
ð1� e�anqDtÞ þ anfinðckin � ckÞe�anqDt ðA5Þ

[53] Notice that now fn (source/sink per unit aquifer
volume) is expressed in terms of only one unknown,
Dc/Dt. Therefore, adding fn to any numerical solver
requires two operations.
[54] 1. Add the coefficient of Dc/Dt, fin(1 � e�anqDt), to

the diagonal of the storage matrix for each immobile zone
and each node (typically multiplied by the aquifer volume
associated to the node, in finite element or finite difference
codes)
[55] 2. Add the remaining term, anfin(cin

k � ck)e�anqDt,
to the right hand side (sinks and sources) vector (also for
each immobile zone and node, and multiplied with the
associated volume, if needed).
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[56] We do not solve here explicitly for immobile con-
centrations. If needed, as for reactive transport simulations,
this can be easily done as an extra step using equation (A4)
after the system has been solved and Dc/Dt is known.
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