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Abstract. The problem of finding the natural frequencies of thin-walled 
underground oil pipelines is solved, based on the application of a semi-
momentless theory of cylindrical shells of medium bending, in which 
bending moments in the longitudinal direction are not taken into account in 
view of their smallness compared with moments acting in the transverse 
direction. The solution to this approach is a fourth-order homogeneous 
differential equation satisfying the boundary conditions of articulation at 

each end. This equation includes the parameters of the length, internal 
pressure, thinness of the pipeline, as well as the values of the coefficient of 
elastic resistance of the soil, the attached mass of the soil and the attached 
mass of the flowing oil. Based on the data obtained by the derived 
formulas, the frequency characteristics of large-diameter thin-walled 
underground oil pipelines are determined depending on the length of the 
element, as well as on the soil conditions. It has been established that the 
minimum frequencies are realized for shell modes of vibration with a 
length parameter of the pipeline section (the ratio of the length of the 

section to the radius) not exceeding 13. A formula is derived that allows 
one to determine the boundary between the use of the rod and shell theory 
for calculating pipelines for dynamic effects. Using the dynamic stability 
criterion, in which the frequency of natural oscillations vanishes, 
expressions are derived that allow one to determine the external critical 
pressure on the wall of the pipeline, which takes into account the length of 
the pipeline, as well as the number of half waves in the transverse and 
longitudinal directions, in which the pipeline goes into emergency 

condition. 

1 Introduction 

During operation, large-diameter trunk pipelines undergo various kinds of dynamic 
influences. Such an effect can be caused by seismic vibrations, or, for example, periodic 

vibrations caused by a passing train near a linear object from impacts of wheels against rail 

junctions. 

The task of ensuring the reliability of the pipeline under dynamic conditions is to 

exclude resonance, that is, it is necessary to know the frequency of natural vibrations and 
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forced vibrations of the system. Work on determining the dynamic characteristics of 

pipelines is reflected in the writings [1 ─ 13]. Most of the above works [1 ─ 7] are based on 

the rod theory, which does not take into account the deformation of the cross section of the 

pipe. Pipes with a diameter of more than 1000 mm, which are used in the construction of 

modern oil pipelines, are difficult to characterize as a rod; therefore, it is not advisable to 

calculate these pipelines using methods based on the rod theory. 

The foundations of the linear theory of small vibrations of thin-walled shells were laid 

by A. Lyav, however, the equations he derived did not get practical application, since they 
were too complicated, so a number of assumptions were introduced to simplify. The theory 

of closed cylindrical shells is suitable for practical use, from the variants of which the most 

complete theory of V. Flyge can be singled out, in which the equations of rotation inertia 

are neglected for the equations proposed by A. Lyav. For a closed cylindrical shell with 

articulations at ends, a solution is proposed for a system of three homogeneous differential 

equations of motion in displacements. This system of equations is solved using Fourier 

series, and the result is a cubic equation with respect to the square of the frequency of free 

vibrations: 

α3 ω6 + α2 ω4 + α1 ω2 + α0 =0      (1) 

The solution also did not receive wide application because of complexity, therefore, for 

simplicity, from the equation of W. Fluge, the terms containing small factors with squares 

of the ratios of the shell thickness h to the radius of the middle surface R were discarded. 

Based on such simplifications by Kh.M. Mushtari, V.Z. Vlasov, as well as L.Kh. Donnel 

[14] a practically applicable equation of motion for a closed cylindrical shell is obtained, 

which is widely used at present. 

This article raises the question of a new approach to the dynamic calculation of large-
diameter thin-walled underground oil pipelines, which is based on the semi-momentless 

theory of medium-bend shells. In this theory, bending moments in the longitudinal direction 

are neglected in view of their smallness in comparison with the moments acting in the 

transverse direction. The solution to this approach is a fourth-order homogeneous 

differential equation satisfying the boundary conditions of articulation at each end. 

2 Statement of the problem 

The design scheme (Fig. 1) is a closed cylindrical shell of length L, wall thickness h, and 
radius R, the internal working pressure p0 acts on the shell wall, the external soil pressure 

qsl = Hγ, the reaction of elastic pressure response q0, as well as the action of flowing fluid 

velocity V and longitudinal compressive force F. 

To take into account the hydrostatic pressure ql created by the flowing oil stream at a 

velocity V, the solution obtained by M.A. Ilgamov, A.S. Volmir is used: 

4 4
2 2

0 2 2 2 2

R w w
q ( R V );
l mn Eh t

 
   

        (2) 

where ρ0 is the density of the liquid; 

0

0 0

m
mn

m

I ( )

I ( )


 

  is a parameter depending on the 

wave numbers in the circumferential and longitudinal directions (m, n) and is determined 

by the ratio of the Bessel function to its derivative depending on 
0

n R

L


 

, V is the fluid 

flow velocity, the product 0 mn   is the added mass of the fluid. 
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Fig. 1. The design scheme of the pipeline 

To solve the problem of frequency characteristics of an large-diameter underground 

thin-walled oil pipeline, the force equation obtained in [8, 9] is used: 
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,    (3) 

the effect of a stationary fluid flow on the pipeline wall is taken into account in the 

normal component of the inertia forces X3: 
2 4 4

2 2

3 0 02 2 2 2 2mn

w R w w
X Rh ( R V ) p

t Eh t

  
       

      

1 22 2H( cos cos ) Rw,      
      (4) 

Solving equation (3) using the assumptions of the semi-momentless theory of 

cylindrical shells after conversion, we obtain the differential equation of motion of the oil 

pipeline in displacements: 
3 3 2 2 2 3 2 2

2 2 2
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         
      

      
3 2 2

2 2 2
1 1 23 2 2

2 cos 2cos2 sin 2 sin2R H ( ) R H( )
     

           
  

2 3 3 3

2 2
1 2 2 2 2
cos 4 cos2

R u v w
R H( ) ( )

E t t t

     
          

       
4 4
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0mn
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( R V ) ,

Eh t

 
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              (5) 

where u, v, w are the components of the displacements of the middle surface of the 

shell, referred to the radius R, ϑ2 is the angle of rotation, p0 is the internal pressure in the 

pipe, ρ is the lateral pressure coefficient of the soil, H is the thickness of the crimped layer, 

γ is the volumetric weight of the soil, E is modulus of elasticity of the pipe material, R is 

0
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radius the middle surface, 
212(1 )

h
h

R






 is the parameter of the relative thickness of 

the shell, μbj is the added mass of soil per unit length of the pipeline, κ is the coefficient of 
elastic resistance of the soil for the pipeline subjected to internal working pressure, 

presented in the form: 

0

0

;
(1 )

E

R






         (6) 

The resulting system of equations (4) contains four unknown functions of coordinates 

and time t: u, v, w and ϑ2. Based on the Fourier method (variable separation method), we 

represent a function w(ξ,,θ,t) satisfying the condition of articulated support of the ends of 

the pipeline and periodicity along the circumferential coordinate θ, in the form: 

φ( )sin(λ ξ)cos( θ),mn n

m n

w b t m 
     (7) 

where 

π
λ 1 2n

n R
,m,n , .....

L
 

 are the wave numbers in the circumferential and 

longitudinal directions. 

The remaining components of the displacements and the angle of rotation ϑ2 are 

determined from the relations of the semi-momentless theory of shells: 

2

λ
cos(λ ξ)cos( θ);n

mn n

m n

u b m
m

  
 

1
sin(λ ξ)sin( θ);mn n

m n

v b m
m

  
     (8) 

2

2

1
sin(λ ξ)sin( θ).mn n

m n

m
b m

m


   

 
Given that the free vibrations of the shell carry out movement according to a harmonic 

law, we have: 
2( ) sin ω ( ) sin ω ,mn mnt t , t t    

    (9) 

where ωmn is the first frequency of free bending vibrations in shape, m, n = 1, 2, 3 ... 

Substituting (7)–(9) into equation (5) and equating the coefficients for the same 

trigonometric functions cos(mθ) for m, n = 1, 2, 3 ..., we obtain an infinite system of 

homogeneous linear algebraic equations with respect to the unknown amplitude values bnm 

of the radial component moving w. The coefficients for the unknowns in these equations are 
denoted by αij: 

if m = 1 11 1 1 2 2 1 3 3 0;, , ,a b a b a b  
 

if m = 2 2 1 1 2 2 2 2 3 3 2 4 4 0;, , , ,a b a b a b a b   
                                     (10) 

if m = 3 31 1 3 2 2 3 3 3 3 4 4 5 5 5 0, , , , ,a b a b a b a b a b .    
 

The resulting system of linear homogeneous algebraic equations is written in the form: 

,0,22,,11,,,,11,,22,   nmmmnmmmnmmmnmmmnmmm bababababa
  (11) 

where m = 1, 2, 3 ...; m ± 1> 0; m ± 2> 0, and the coefficients αij are determined by the 
expression: 

𝑎𝑚,𝑚 = 𝐴𝑚,𝑛 − 𝐵𝑚,𝑛𝜔𝑚𝑛
2 ; 𝑎𝑚,𝑚±1 = −

𝑚5(𝑚 ± 2)

2
𝑞𝑠𝑙

∗ 𝛼1; 

𝑎𝑚,𝑚±2 = −
𝑚4[(𝑚 ± 2)2 − 1]

2
𝑞𝑠𝑙

∗ 𝛼2; 

 

  E3S Web of Conferences 164, 03024 (2020)

TPACEE-2019
 https://doi.org/10.1051/e3sconf /202016403024

4



𝐴𝑚,𝑛 = 𝜆𝑛
4 + 𝑚4(𝑚2 − 1)(𝑚2 − 1 + 𝑝∗ − 2𝑞𝑠𝑙

∗ ) + 𝜅∗𝑚4 − 𝜆𝑛
4 𝑚4𝑃 𝑛2⁄  

2 2 4 4 2 4

0

* *

m,n bj mnB Rh( h m m ) m R m ,      
  (12) 

where 𝑝∗ = 𝑝0
𝑅

𝐸ℎ∙ℎ𝑣
2 ; 𝜌∗ = 𝜌0

𝑅

𝐸ℎ∙ℎ𝑣
2 ; 𝜅∗ =

𝑅2𝜅

𝐸ℎ∙ℎ𝑣
2 ; 𝑞𝑠𝑙

∗ =
𝛾𝐻𝑅

𝐸ℎ∙ℎ𝑣
2 ; 𝜆𝑛 =

𝑛𝜋𝑅

𝐿√ℎ𝑣
; 

𝑃 =
𝐹

𝐹𝐸
;  where F is the longitudinal force; 𝐹𝐸 is Euler's force; 𝐼 = 𝜋𝑅3ℎ  is the moment 

of the section inertia. 

The coefficients of this system of equations (10) are dimensionless at an internal 

working pressure p0 in MPa, an elastic resistance coefficient κ in kN/m3, and a shell 

material density ρ0 in (kN ∙ s2)/m4. 

The task of determining the frequencies and forms of natural vibrations of an 

underground rectilinear thin-walled section of the pipeline is reduced to determining the 

eigenvalues of the matrix. To solve it, the determinant is given in matrix form (1): 

,0
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..............................

.....
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.....

.....
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444434241

334333231

224232221
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
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n
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n

n

ddddd

ddddd

ddddd

ddddd

ddddd

    (13) 

where 

, , 1 , 2 2

, , 1 , 2

, , ,

; ; ;
m m m m m m

m m m m m m

m n m n m n

a a a
d d d

B B B
  

  

 (ωmn is the 

frequency of free vibrations (Hz)). The coefficients An,m, Bn,m, αn,m+1, αn,m+2 are determined 

by formulas (12). 

It was established in [15] that the side coefficients of the determinant (13) have little 
effect on the frequency characteristics of the pipeline, the discrepancy in the frequencies of 

free vibrations is not more than 1%. Due to small discrepancies in the results, to simplify 

the calculation, we neglect the coefficients , 1 , 2,m m m md d  in the future, taking them 

equal to zero. For a simplified diagonal determinant, the characteristic equation takes the 

form: 
2 2 2

1,1 1, 1 2,1 1, 2 , ,( ) ( )...( ) 0n n n n m n m n mnA B A B A B      
   (14) 

the roots of this equation are the squares of the frequencies of the natural vibrations of the 

cylindrical shell 

,2

,

m n

mn

m n

A

B
 

       (15) 

where Am,n and Bm,n are defined (12). 

Substituting in (15) instead of Am,n, Bm,n expressions from (12) we obtain the formula in 

general form for determining the frequency of natural oscillations: 

𝜔𝑚𝑛 = √
𝜆𝑛

4 + 𝑚4(𝑚2 − 1)(𝑚2 − 1 + 𝑝∗ − 2𝑞𝑠𝑙
∗ ) + 𝜅∗𝑚4 − 𝜆𝑛

4 𝑚4𝑃 𝑛2⁄

𝜌∗𝑅ℎ(𝜆2ℎ𝑣 + 𝑚2 + 𝑚4) + 𝜇𝑏𝑗𝑚4 + 𝜌0Φ𝑚𝑛𝑅2𝑚4
         (16) 

To obtain an expression for determining the frequency of natural vibrations with a non-

deformable contour (rod theory), in (16) we substitute m=1, n=1. The expression takes the 

form: 
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4 * 4

11 * 2 2

0( 2)

n n

bj mn

P

Rh h R

  


   

 


   
      (17) 

To obtain an expression for determining the frequency of natural vibrations, taking into 

account the deformation of the cross section (shell theory), we substitute m=2, n=1 in (16). 

The expression takes the form: 

𝜔21 = √
𝜆𝑛

4 + 48(3 + 𝑝∗ − 2𝑞𝑠𝑙
∗ ) + 16𝜅∗ − 16𝜆𝑛

4 𝑃

𝜌∗𝑅ℎ(𝜆2ℎ𝑣 + 20) + 16(𝜇𝑏𝑗 + 𝜌0Φ𝑚𝑛𝑅2
                           (18) 

Further, using the dynamic stability criterion, for which the frequency of free vibrations 

vanishes, from expression (16), given that the denominator is not equal to zero, we obtain: 

𝜆𝑛
4 + 𝑚4(𝑚2 − 1)(𝑚2 − 1 + 𝑝∗ − 2𝑞𝑠𝑙

∗ ) + 𝜅∗𝑚4 − 𝜆𝑛
4 𝑚4𝑃 𝑛2⁄ = 0         (19) 

dividing each term of expression (19) by 
4 2( 1)m m 

 we express the quantity: 

2𝑞𝑠𝑙
∗ = 𝑚2 − 1 + 𝑝∗ +

𝜅∗

(𝑚2 − 1)
+

𝜆𝑛
4

𝑚4(𝑚2 − 1)
−

𝜆𝑛
4 𝑃

𝑛2(𝑚2 − 1)
                (20) 

and substituting 𝜆𝑛 =
𝑛𝜋𝑅

𝐿√ℎ𝑣
; 𝑝∗ = 𝑝0

𝑅

𝐸ℎ∙ℎ𝑣
2 ; 𝜅∗ =

𝑅2𝜅

𝐸ℎ∙ℎ𝑣
2 ;  𝑞𝑠𝑙

∗ =
𝛾𝐻𝑅

𝐸ℎ∙ℎ𝑣
2 ;  𝑛 = 1,  we have: 

4 4 4 4 4 4

4 2 4 2
2

02 2 2 2 4 2 2
2 ( 1) ,

( 1) ( 1) ( 1)

n R n R
P

L h L hR R R R
H m p

Ehh Ehh m Ehh m m m

 

  

 


      

  
  (21) 

After mathematical transformations, we obtain the formula for determining the critical 

external pressure Pcr = 2γH on the oil pipeline: 
2 4 3

03 2 4 2 4

( 1) 1
;

1 ( 1)
cr

m D R R Eh
P p P

R m L m m

   
     

   
   (22) 

where 

3

212(1 )

Eh
D




  is the cylindrical stiffness of the pipe; p0 is the internal working 

pressure; m, κ, R, L, E, P is the same as in expression (12). 
At zero internal working pressure, for infinitely long sections of the pipeline (L → ∞), 

expression (22) acquires the critical external pressure formula obtained by E. L. Nikolai for 

a ring in an elastic medium that resists wall displacements: 
2

3 2

( 1)
;

1
cr

m D R
P

R m


 


     (23) 

If the possibility of longitudinal deformations of the pipe is excluded, then the factor (1-
ν2), where ν is the Poisson's ratio of the pipe material, should be entered in the denominator 

of the first term of formula (21). Formula (23) for m=2 with κ=0 turns into the well-known 

formula of M. Levy: 

3

3
;cr

D
P

R
        (24) 

These facts allow us to conclude that the approach to determining the critical external 

pressure is correct. 

The resulting expression (22) is the most complete for determining the critical external 

pressure on the walls of the pipeline laid in the ground and allows you to take into account 

the geometric characteristics of the cross section, the coefficient of elastic resistance of the 

soil, the value of the longitudinal compressive force, the internal working pressure, as well 

as the length of the pipeline section. 
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3 Analysis of the data 

Using formula (16), we analyze the influence of the length parameter of the considered 

section l*=L/R on the frequency of free vibrations of the underground oil pipeline in 

various soil conditions (the elastic resistance coefficient of the soil is taken to be 

successively equal to κ = 0.05·107 N/m3, κ = 0.8·107 N/m3, κ = 1.2·107 N/m3). We take the 

value of the internal working pressure equal to p0 = 1.8 (MPa), the fluid flow velocity V = 

3.0 m/s, the depth of the pipeline H=2m, the value of the longitudinal compressive force 

parameter we take P=0 and P=0.2. The data obtained are shown in Table 1 and 2. 

Table 1. Frequency of natural vibrations of oil pipelines with a laying depth of H = 2.0m, wall 
thickness h= R /40 in the absence of longitudinal force 

Freque

ncy 

Hz 

κ =0.05·107 N/m3; p0=0 (mPa); 

V=3.0 m/s 

κ =0.05·107 N/m3; p0=1.8 (mPa); 

V=3.0 m/s 

L/R L/R 

10 15 20 30 40 10 15 20 30 40 

ω1.1 44.68 19.83 11.19 5.08 3.03 44.54 19.83 11.19 5.08 3.02 

ω2.1 20.86 15.09 14.03 13.62 13.54 28.39 24.93 24.30 24.06 24.02 

ω3.1 41.35 40.42 40.31 40.27 40.26 54.28 53.82 53.73 53.69 53.68 

 
κ =0.8·107 N/m3; p0=0 (mPa); 

V=3.0 m/s 

κ =0.8·107 N/m3; p0=1.8 (mPa); 

V=3.0 m/s 

ω1.1 44.78 20.35 12.09 6.84 5.49 44.78 20.35 12.10 6.84 5.49 

ω2.1 21.23 16.33 15.35 14.97 14.91 29.06 25.70 25.08 24.85 24.81 

ω3.1 41.57 40.99 40.89 40.84 40.83 54.71 54.25 54.16 54.12 54.11 

 
κ =0.8·107 N/m3; p0=0 (mPa); 

V=3.0 m/s 

κ =1.2·107 N/m3; p0=1.8 (mPa); 

V=3.0 m/s 

ω1.1 44.90 20.63 12.55 7.62 6.43 44.90 20.63 12.55 7.62 6.43 

ω2.1 21.71 16.95 16.01 15.65 15.59 29.42 26.10 25.49 25.26 25.22 

ω3.1 41.87 41.30 41.19 41.15 41.14 54.94 54.48 54.39 54.35 54.34 

 

Table 2. Frequency of natural vibrations of oil pipelines with a laying depth of H=2.0m, wall 
thickness h= R /40, and longitudinal force parameter P=0.2 

Freque

ncy 

Hz 

κ =0.05·107 N/m3; p0=0 (mPa); 

V=3.0 m/s 

κ =0.05·107 N/m3; p0=1.8 (mPa); 

V=3.0 m/s 

L/R L/R 

10 15 20 30 40 10 15 20 30 40 

ω1.1 39.84 17.74 10.03 4.58 2.75 39.84 17.74 10.03 4.58 2.75 

ω2.1 - 9.13 12.29 13.28 13.44 8.56 21.84 23.34 23.87 23.96 

ω3.1 28.27 38.21 39.63 40.13 40.22 45.43 52.18 53.21 53.59 53.64 

 
κ =0.8·107 N/m3; p0=0 (mPa); 

V=3.0 m/s 

κ =0.8·107 N/m3; p0=1.8 (mPa); 

V=3.0 m/s 

ω1.1 40.10 18.33 11.02 6.48 5.34 40.10 18.33 11.02 6.48 5.34 

ω2.1 - 11.05 13.78 14.67 14.81 10.59 22.71 24.15 24.67 24.75 

ω3.1 29.08 38.82 40.21 40.71 40.79 45.95 53.62 53.65 54.02 54.08 

 
κ =0.8·107 N/m3; p0=0 (mPa); 

V=3.0 m/s 

κ =1.2·107 N/m3; p0=1.8 (mPa); 

V=3.0 m/s 

ω1.1 40.24 18.63 11.52 7.29 6.30 40.24 18.63 11.52 7.29 6.30 

ω2.1 - 11.95 14.52 15.36 15.49 11.52 23.16 24.58 25.08 25.17 

ω3.1 29.51 39.14 40.52 41.02 41.10 46.22 52.86 53.88 54.25 54.31 
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Fig. 2. Graphs of the dependence of the frequency of free vibrations for m=1 (red) and m=2  (blue) on 
the length parameter of the pipeline section for pressureless pipes (a) in the absence of longitudinal 
force; b) the longitudinal force parameter is 0.2) 

 

Fig. 3. Graphs of the dependence of the frequency of free vibrations for m=1 (red) and m=2 (blue) on 
the length parameter of the pipeline section at internal pressure p0=1.8  MPa (a) in the absence of 
longitudinal force; b) the longitudinal force parameter is 0.2) 

Based on the data presented in Tables 1 and 2, as well as in Figure 1, we can draw the 

following conclusions: 

1. The minimum frequencies for the value of the pipeline length parameter of less than 

13.1 were obtained for m=2, n=1, which corresponds to shell modes of vibration, for L/R 
greater than 13.1, the frequency of free vibrations is realized according to the rod theory 

(m=2, n=1); 

2. In the absence of longitudinal compressive force with increasing length of the 

pipeline section, the frequency ω11 and ω21 decreases, and for pipelines under the influence 

of the longitudinal compressive force, the frequencies ω21 (corresponding to shell modes) 

increase, as can be seen in the graphs (Fig. 1); 
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3. The frequency of free vibrations obtained according to the rod theory ω11 decreases 

sharply with increasing length parameter, for example, from the data in Table 1 for 

l*=L/R=10 for κ =1.2·107 N/m3 ω11=44.9 Hz, and for l*=L/R=60 ω11=5.92 Hz. The 

decrease in frequency occurs 7.5 times. 

4. The longitudinal force parameter significantly affects the frequencies of free 

vibrations for the length of the pipeline section less than L = 13.5 R. When the length of the 

section decreases, the frequency of free vibrations drops sharply. 

5. From the analysis of the graphs shown in Figure 1, it can be seen that for some values 
of the parameter l*=L/R, the minimum frequencies for the rod and shell theory coincide, 

ω11 = ω21. Based on this fact, we can conclude that the parameter l* sets the criterion for the 

applicability of the shell and rod theory. Equating expressions (17) and (18) with each other 

and using mathematical transformations, we obtain the expression of the critical parameter 

of the pipeline length l*: 

𝑙∗ =
𝐿

𝑅
=

𝜋

√ℎ𝑣

√
𝜌∗𝑅ℎ(18 + 12𝑃) + 15𝜇𝑏𝑗

12𝜅∗𝜌∗𝑅ℎ + 48(3 + 𝜌∗ − 2𝑞𝑠𝑙
∗ 𝑅ℎ + 𝜇𝑏𝑗

∗ )

4

                    (25) 

in the absence of internal working pressure and longitudinal compressive force, 
expression (26) takes the form: 

𝑙∗ =
𝐿

𝑅
=

𝜋

√ℎ𝑣

√
18𝜌∗𝑅ℎ + 15𝜇𝑏𝑗

12𝜅∗𝜌∗𝑅ℎ + 48(3 − 2𝑞𝑠𝑙
∗ 𝑅ℎ + 𝜇𝑏𝑗

∗ )

4

                    (26) 

 

Analyzing expressions (25) and (26), we can draw the following conclusions: 

a) the internal working pressure has a significant effect on the value of l*. With 

increasing parameter p*, the length parameter l*= L/R decreases, because the internal 
working pressure prevents the deformation of the cross section of the pipeline, bringing the 

design scheme closer to a rod with an undeformable cross-section contour (see Fig. 1, 2). 

This is confirmed by the calculated data of Tables 1 and 2, for example, for the coefficient 

of elastic resistance of the soil κ = 0.8·107 N/m3, for the length of the section L = 10 R in 

the absence of internal pressure, the frequency of free vibrations is ω21=21.23 Hz, and at 

pressure p0=1.8 mPa ω21=29.06 Hz (see Table 1). 

b) as the elastic rebound parameter κ* increases, the length l* decreases, for example, 

p0=0 and P = 0.2 for κ=0.05·107(N/m3) l* = L/R = 13.1, and for κ=1.2·107(N/m3) ceteris 
paribus length parameter l* = L/R = 12.93 (see Fig. 1); 

c) for l ≤ l*, frequencies should be determined according to (18), for l ≥ l* the 

frequencies are determined according to (17) that is, according to the rod theory for a non-

deformable cross-section contour; 

d) with increasing depth of the pipeline and soil pressure q*sl, the value of the length 

parameter l* increases, that is, the applicability boundary shifts toward the theory of shells; 

e) with an increase in the added mass of soil, the length l* decreases; 

f) the longitudinal compressive force parameter P has little effect on the length l* since 
it reduces the frequencies of free vibrations not only for m=2, n=1 (according to the theory 

of shells [1-10]), but also for m=1, n=1 (according to the theory of rods [11, 12]). 
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