
Research Article
TakeoverQuality: Assessing the Effects of TimeBudget andTraffic
Density with the Help of a Trajectory-Planning Method

Fabian Doubek,1,2 Erik Loosveld,1,2 Riender Happee,1 and Joost de Winter 1

1Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
2Department of UI/UX—Display and Interaction, Dr. Ing. H. C. F. Porsche AG, Stuttgart, Germany

Correspondence should be addressed to Joost de Winter; j.c.f.dewinter@tudelft.nl

Received 27 January 2020; Accepted 23 May 2020; Published 1 July 2020

Academic Editor: Hocine Imine

Copyright © 2020 FabianDoubek et al.,is is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In highly automated driving, the driver can engage in a nondriving task but sometimes has to take over control. We argue that
current takeover quality measures, such as the maximum longitudinal acceleration, are insufficient because they ignore the criticality
of the scenario. ,is paper proposes a novel method of quantifying how well the driver executed an automation-to-manual takeover
by comparing human behaviour to optimised behaviour as computed using a trajectory planner. A human-in-the-loop study was
carried out in a high-fidelity 6-DOF driving simulator with 25 participants. ,e takeover required a lane change to avoid roadworks
on the ego-lane while taking other traffic into consideration. Each participant encountered six different takeover scenarios, with a
different time budget (5 s, 7 s, or 20 s) and traffic density level (low or medium). Results showed that drivers exhibited a considerably
higher longitudinal and lateral acceleration than the optimised behaviour, especially in the short time budget scenarios. In scenarios
of medium traffic density, the trajectory planner showed a moderate deceleration to let a vehicle in the left lane pass; many
participants, on the other hand, did not decelerate before making a lane change, resulting in a dangerous emergency brake of the left-
lane vehicle. In conclusion, our results illustrate the value of assessing human takeover behaviour relative to optimised behaviour.
Using the trajectory planner, we showed that human drivers are unable to behave optimally in urgent scenarios and that, in some
conditions, a medium deceleration, as opposed to a maximal or minimal deceleration, is optimal.

1. Introduction

Over the past decades, improvements in sensor technology,
artificial intelligence, and control systems have led to an
increase in vehicle automation. Adaptive cruise control
(ACC), a technology that was introduced in the 1990s, has
the potential to increase driver comfort by automating the
longitudinal control task [1–4]. ,e recent arrival of assis-
tance systems that can perform lateral control has led to a
situation where the driver is provided with the option to
detach him- or herself from the control loop of the vehicle
[5, 6]. However, in current and near-future levels of auto-
mation (SAE levels 2/3), the human still has the role of a
fallback agent because automated driving systems have
limitations regarding their operational design domain and
the handling of unforeseen road situations [7, 8].

It has been shown that being out of the loop can lead to a
degradation of situation awareness, mental underload,

complacency, andmental overload if the automation reaches
a system boundary and the operator has to take back control
(e.g., [9]). ,e fact that the drivers of automated vehicles are
susceptible to such detrimental effects, but have to take over
control when needed, has sparked a wealth of research on
automation-to-driver takeovers. In particular, an important
topic concerns the quantification of how well the human
driver takes over from the automated driving system.

A variety of takeover quality measures have been pro-
posed in the literature (see [10]; for a review). Radlmayr et al.
[11] used the maximum longitudinal acceleration as a
takeover quality measure, whereas Zeeb et al. [12] used the
maximum lateral acceleration and centerline deviation. In
many other studies, takeover quality is quantified using the
minimum time to collision (MTTC) [13–16].

,e interpretation of these measures has been hampered
by the fact that different scenarios impose different demands
on the driver. Zhang et al. [17] surveyed 129 takeover studies
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and found that the time budget and the traffic density are
among the most frequently used independent variables.
Scenarios can differ from nonurgent, without an imme-
diate need to take over on an empty road [18–20], to highly
urgent, where the time budget to collision is 5 s or less or
where multiple vehicles drive in the vicinity [21–23].
Urgent scenarios will generally result in “poor” scores on
takeover quality measures, such as a low MTTC [24, 25]
and high accelerations [26]. Gold et al. [27] stated that,
with shorter time budgets, driver reactions are “worse in
quality” (p. 1938). ,e problem with this interpretation of
Gold et al. is that, in urgent scenarios, high vehicle ac-
celeration may be desirable or even necessary to avoid an
accident and thus reflect “good” rather than “poor”
driving behaviour. In summary, the type of scenario is
expected to have a large influence on takeover quality
measures, but the literature tends to ignore this fact in the
interpretation of takeover quality. Takeover quality
measures may be uninterpretable if not compared to an
optimal reference behaviour.

,is study aimed at assessing the merits of using a novel
scenario-specific approach for defining takeover quality. We
assessed the effects of time budget and traffic density on not
only “traditional” takeover scores (e.g., maximal accelera-
tions) but also in relation to the scores obtained from a
trajectory planner. More specifically, we took scenario
criticality into account by comparing the scores on the
measures to a scenario-specific optimised behaviour, ob-
tained via a trajectory planner developed at Volkswagen
Group Research, Wolfsburg.

A human-in-the-loop driving simulator study was car-
ried out using different driving scenarios. ,e independent
variables of this study were the time budget and traffic
density, as these two variables have been shown to strongly
affect takeover quality in previous studies using traditional
quality measures [11, 28, 29]. We used 5, 7, and 20 s time
budgets. A time budget of 5 s is critical, and a 7 s time budget
is the minimum for a safe takeover after being engaged in a
secondary task [27, 30, 31]. ,e 20 s scenarios were included
to investigate human takeover behaviour in a case where
there is little urgency and the human is free to decide when
and how to act.

2. Method

2.1. Participants. ,irty-one Porsche AG employees were
recruited to participate in this study. ,ey were required to
have a valid driver’s license, as well as normal or corrected-
to-normal vision. A total of 6 participants had to be ex-
cluded due to incomplete data recordings. ,erefore, the
analysis was performed on data from 25 participants, of
which 13 were female and 12 were male.,ere were 11, 9, 3,
and 1 participants in the 21–30, 31–40, 41–50, and 51–60
age categories, respectively. Two participants indicated
having participated in a simulator study regarding auto-
mated driving before. ,e research was approved by the
Human Subjects Research Ethics Committee of the TU
Delft, and all participants provided written informed
consent.

2.2. Apparatus. A hexapod driving simulator at the Porsche
Research and Development Facility in Weissach, Germany,
was used [32–34]. ,e hexapod was fitted with a fully
functional mock-up of a Porsche Macan. ,e vehicle dy-
namics software was based on an all-electric Porsche Taycan.
,e 6-DOF moving base platform (eMove eM6-640-1800)
has an actuator stroke of 640mm. ,e motion cueing was
according to a classical washout algorithm. ,e visualised
field of view was 180 deg, achieved by projectors displaying
3840× 2160 pixels on all three sides, as well as the ceiling.
,e side mirrors were not physically present but integrated
into the simulation. ,e visualization was refreshed at a
frequency of 60Hz.,e simulator during one of the takeover
scenarios is shown in Figure 1. During the experiment,
participants wore Dikablis eye-tracking glasses [35].

2.3. Road Environment. ,e automated vehicle drove at
130 km/hr on a simulated two-lane motorway. ,e width of
all vehicles, including the ego-vehicle, was 1.78m. ,e lane
widths were 3.88m. During the approximately 30min drive,
six takeover scenarios occurred. ,ese takeovers were
triggered by roadworks on the right lane. ,e roadworks
were 361m long. All takeovers took place on a straight
stretch of road. ,ere was no hard shoulder on the right.

2.4. Human-Machine Interface. ,e automation could be
activated using a button on the steering wheel. Upon acti-
vation, a message was shown on the instrument cluster,
indicating that the driver was allowed to take the hands off
the steering wheel. Activation was confirmed by the grey
steering wheel icon (automation available) turning green
(automation active) (see Figure 2).

,e participants performed an audiovisual nondriving
task in the form of watching a comedy television series (see
also [36]). ,e video automatically started playing on the
10.9-inch centre-display when the automated driving
function was enabled.

In each takeover scenario, the participants received a
one-stage auditory signal with a fundamental tone of 300Hz
and peaks at 342.5Hz, 432.5Hz, 666.7Hz, and 866.7Hz as
well as a visual warning on the instrument cluster. ,e
steering wheel icon switched to red along with two hands
holding it, as shown in Figure 2. Additionally, the centre-
display turned black and stated: “Limited functionality while
driving manually.”

2.5. Independent Variables. A 3× 2 within-subject design
was used, with time budget (3 levels) and traffic density (2
levels) as independent variables. Six takeover scenarios
occurred per participant, comprised of each combination of
time budget and traffic density, as shown in Table 1.

,e traffic density levels were “low” and “medium,” as
defined in the literature as 5 and 10 vehicles per km, re-
spectively [37]. For the medium traffic density scenarios, a
left-lane overtaking vehicle, which was driving at a constant
speed of 140 km/hr, drove directly behind the ego-vehicle at
the time of the takeover request, making an immediate lane
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change unsafe. In the low traffic density condition, an im-
mediate lane change was possible and safe due to the absence
of nearby vehicles at the time of the takeover request.

Figure 3 shows the scenario layout for Scenario 1. Similar
figures for Scenarios 2–6 are provided in the Supplementary
Materials (Figures S1–S5).

,e order in which the 6 scenarios appeared was
counterbalanced using a Latin-square method. ,e auto-
mated driving time in between takeovers varied between 3
and 5.5min, to counteract expectations. ,e total driving
distance was 60.4 km, with a portion of automated driving
availability of 50.1 km (23.1min) per participant.

2.6. Dependent Variables. We computed a variety of take-
over measures that have been used in the literature before
(e.g., [19, 38, 39]), as shown in Table 2. Four subjective
dependent variables were included as well, based on Radl-
mayr et al. [10]. After each takeover, participants were asked
to rate the scenario, on a 7-point scale rating for criticality
(very noncritical-very critical), complexity (very uncom-
plicated-very complicated), discomfort (very comfortable-
very uncomfortable), and subjective time budget (more than
enough-way too little). Note that these are translations from
German; the entire study was conducted in the German
language. ,e effects of time budget and traffic density were

assessed using a two-way repeated-measures analysis of
variance (ANOVA).

2.7. Procedure. ,e participants were scheduled into one-
hour time slots. After welcoming the participant and
thanking him or her for participating, the participant was
asked to read an information form. ,is form explained the
capabilities of the highly automated driving system, icons on
the dashboard, how to activate the automated driving sys-
tem, the availability of the nondriving task (television series),
the takeover requests, and the four questions that had to be
completed on the tablet. ,e participant was informed that
the automation cannot cope with every situation and that
their priority should be safety and adherence to the traffic
rules. Next, the participant signed a consent form, completed
a demographics questionnaire, and was asked to take a seat
inside the driving simulator.

While the simulator was still stationary, the experi-
menter in the passenger seat explained how to activate the
automated driving function and how the subjective ratings
should be completed on a tablet. Next, the eye-tracking
glasses were handed over to the participant and calibrated
using DLab behavioural research software (version 3.5). A
safety briefing followed. ,e participant fastened the seat-
belt, was informed that opening the car door would stop the
dynamic simulator immediately, and was informed that
radio communication would always be possible if necessary.
A 5min test drive followed during which the participant got
used to the manual controls, automation, display icons,
performing the nondriving task, and completing the ques-
tionnaires on the tablet. After the test drive, the assistant
exited the simulator. Once the moving base platform was
reactivated, the main study began.

At the start of the drive, participants engaged the au-
tomated driving function while driving in the right lane.

Figure 1:,e hexapod simulator during a takeover scenario.,e participant has regained manual control andmade a lane change to the left
lane. Roadworks can be seen behind the wall in the right lane.

(a) (b) (c)

Figure 2: Automated driving function icons: (a) available, (b) active, and (c) takeover.

Table 1: Scenario composition of the conditions time budget and
traffic density.

Scenario Time budget (s) Traffic density (vehicles/km)
1 5 10 (medium)
2 5 5 (low)
3 7 10 (medium)
4 7 5 (low)
5 20 10 (medium)
6 20 5 (low)
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,ere was no speed requirement for activation, although it
was advised to activate the automated driving function when
driving approximately 130 km/hr, as this was the automated
driving system’s target speed. ,e automated driving
function would accelerate or decelerate to the target speed of
130 km/hr. If the automated driving function was engaged, a
video automatically started playing on the centre-display.
,e participant’s gaze was recorded using the eye-tracking
cameras. In case the gaze was frequently directed at the road
instead of the centre-display, the intercom was used to
remind the participant to trust the automated driving system
and attend to the video.

Once the automated driving function prompted a
takeover request, the driver was required to regain manual
control while taking into account any potential left-lane
overtaking vehicles. After passing the roadworks, the par-
ticipant returned to the right lane and reengaged the au-
tomated driving system. While the car was driving
automatically, the participant completed the subjective
rating of the previous takeover scenario. From the simulator
control room, it was checked whether the form was received
properly. If this was not the case, the participant was asked
through the intercom to resubmit the rating form.

Once finished with the rating, the participant continued
watching the video displayed on the centre-screen. ,is

order of events was repeated for a total of six times (Table 1).
After the sixth takeover scenario, the intercom was used to
ask the participant to bring the car to a standstill. ,e
moving base platform was lowered, and the participant
exited the simulator. A postdrive questionnaire with regard
to simulator fidelity was filled out. In this questionnaire, the
participant also had the opportunity to give open feedback
regarding the study. ,e participant was offered something
to drink as well as a sweet. Once all potential questions from
the participant regarding the study had been answered, the
participant was once again thanked.

2.8. Trajectory Planner. A trajectory planner was used to
generate reference trajectories for the six scenarios. ,e
look-ahead time of the trajectory planner was changed to
correspond with the time budget of each scenario. ,is
created an identical urgency level for the participants in the
driving simulator study.

,e trajectory planner relied on local motion planning
and used a linear reward function that maximised route
progress, comfort, and safety. More specifically, the trajectory
planner maximised progress to the destination (i.e., the end of
the roadworks) and distance to objects, while minimizing
acceleration, jerk, wheel angle, and wheel angle changes.

72m

722m 361m

Other Other Other

Other Other Ego

Take-over 
request

181m

Other97m

130km/h
5s

140km/h

1083m

Other

Figure 3: Road layout for Scenario 1 (time budget� 5 s traffic density�medium).

Table 2: Overview of the dependent variables.

Measure Description Units

Minimum time to collision

Minimum time to collision (MTTC) with the roadworks. TTC is defined as the distance
to the roadworks divided by current vehicle speed. ,e minimum TTC represents the
lowest TTC, determined while the vehicle was driving in the right lane (lateral position

<1.94m)

s

Maximum acceleration (lateral
and longitudinal)

Maximum acceleration (determined between the takeover request and the end of the
roadworks) m/s2

Lane change duration

Lane change duration is defined as the time to change to the adjacent lane. Recording
started at the point in time where the distance from the initial lane centerline was larger
than 0.75m and ended at the first point in time where the absolute lateral position was

within 0.75m from the centerline of the target lane [40]

s

Subjective responses A subjective assessment of the executed takeover rating regarding criticality,
discomfort, complexity, and time budget

Scale from 0
to 6

Hands-on-wheel time
,e time between the takeover request and the first point in time that the steering wheel
velocity exceeded 0.6 deg/s. ,is threshold was the minimum that could be detected

relative to the sensor noise
s

Eyes-on-road time ,e time between the takeover request and the first gaze on the road ahead s
Eyes-in-side-mirror time ,e time between the takeover request and the first gaze in the left side mirror s
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,e trajectory planner performs an exhaustive forward
search of actions. Accordingly, for every cycle of a model
predictive control (MPC), the algorithm yielded a large set of
driving policies, which implicitly includedmultiple behaviours,
e.g., lane following, lane changes, swerving, and emergency
stops.,e final selected driving strategy had the highest reward
value while satisfying model-based constraints.

,e reward function has an impact on the driving style.
,e weights used in the reward function were determined by
Volkswagen Group Research using a process similar to
backtracking, where vehicles were driven manually, and for
each time step and corresponding state within the world, the
“human” weights were computed. More information about
the trajectory planner is provided by Rosbach et al. [41].

,e trajectory planner and the human-in-the-loop
simulator used the same files describing the simulation
environment (openDRIVE extensions .XODR and .XML,
built using VIRES Virtual Test Drive (VTD) 2.1 software
[42]), including the same simulated vehicles.

,e trajectory planner assumed a simple kinematic bi-
cycle model.,e vehicle parameters of the trajectory planner
were those of a 2012-model Volkswagen Golf. Because the
optimised reference trajectory was well within the limits of
vehicle dynamics, this deviation from the vehicle model used
in the driving simulator (Porsche Taycan) was thought to be
unimportant for the goals of the present study.

3. Results

For Scenario 2 (time budget� 5 s and traffic density� low),
driving data were missing for two participants due to a data-
logging error. Figure 4 shows all 25 participants’ trajectories
for all six scenarios. Additionally, it shows the optimised
trajectory as driven by the trajectory planner.

In Scenario 1 (time budget� 5 s and traffic densi-
ty�medium), two participants crashed with the roadworks,
and three participants crossed the road boundaries. In
Scenario 2 (time budget� 5 s and traffic density� low), zero
participants crashed with the roadworks, and three partic-
ipants crossed the road boundaries. No crashes or road
departures occurred in the 7 s and 20 s time budget
scenarios.

Figure 5 provides information about the speed pattern
during the takeover manoeuvre. In Scenarios 1 and 3 (time
budget� 5 or 7 s and traffic density�medium), the planner
decelerated to let the fast vehicle on the left lane pass before
initiating the lane change. Most participants did the same,
although somewhat later. A small number of participants
brought their vehicle to a full stop in Scenarios 1–3. Figure 5
further shows that a small number of participants in the
medium-density scenarios sped up, presumably in an at-
tempt to change lanes before the arrival of the fast-driving
vehicle in the left lane.

3.1. Minimum Time to Collision (MTTC). ,e participant’s
MTTC values for each scenario are shown in Figure 6, along
with the values corresponding to the trajectory planner. In
Scenarios 1 and 2, the MTTC was often smaller than 1 s,

indicating a highly critical interaction (cf. [43–45]). In the
noncritical scenarios (5 and 6), the MTTC showed large
individual differences. ,e trajectory planner changed lane
relatively late, resulting in an MTTC value that was lower
than the MTTC value of most of the participants. According
to a two-way repeated-measures ANOVA, the effects of
traffic density and time budget on MTTC were statistically
significant (Table 3). ,e means, standard deviations, and
pairwise comparisons per dependent variable are provided
in the Supplementary Materials (Tables S1–S53).

3.2. Acceleration Measures. ,e results for the four accel-
eration measures are shown in Figure 7. Participants showed
similar levels of maximum leftward and rightward lateral
accelerations, a symmetric pattern that is characteristic of a
normal lane change. ,e trajectory planner drove consid-
erably more smoothly in lateral and longitudinal directions
as compared to the participants. However, for the 5 s and 7 s
time budget scenarios with medium traffic density (Sce-
narios 1 and 3), the trajectory planner’s and participants’
decelerations were relatively similar. ,is similarity can be
explained by the fact that the trajectory planner slowed down
to let the approaching vehicle in the left lane pass, as did
most of the participants. For Scenario 5 (time budget� 20 s
and traffic density�medium), the trajectory planner did not
decelerate to let the left-lane vehicle pass, as there was
enough time to wait until the left-lane vehicle had passed.
Some human drivers, on the other hand, did decelerate for
the left-lane vehicle, or they accelerated (see Figure 5) and
subsequently had to brake for a leading vehicle.

,e two-way repeated-measures ANOVA (Table 3)
showed that the effect of traffic density was statistically
significant for decelerations and accelerations. ,e effect of
time budget was most pronounced for lateral accelerations;
that is, participants steered more abruptly when the time
budget was shorter.

3.3. Lane Change Duration. Figure 8 shows the lane change
duration for the participants and the trajectory planner. In
the 5 s and 7 s scenarios, participants generally changed lanes
faster than the trajectory planner. For the 20 s scenarios, the
average participant lane change durations were similar to the
trajectory planner.,e effect of traffic density on lane change
duration was not significant, but the effect of time budget
was significant (Table 3).

3.4. Minimum or Maximum Scores Are Not Optimal: Illus-
trating the Value of the Trajectory Planner. Figure 9 shows
the participants’ MTTC versus their maximum deceleration
in Scenario 3 (time budget� 7 s and traffic density�me-
dium). It can be seen that participants who showed a low
maximum deceleration (which may normally be regarded as
high takeover quality) and made an early lane change (in-
dicated by high MTTC values) ended up in a highly dan-
gerous situation, as the overtaking vehicle in the left lane had
to initiate an emergency stop.,e trajectory planner showed
an optimised deceleration of around 4m/s2, just sufficient to
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let the vehicle in the left lane pass. ,ese findings indicate
that a low maximum deceleration and high MTTC are
undesirable in this scenario.

3.5. Subjective Ratings. ,e questionnaire results are shown
in Figure 10. Generally, the experimental manipulations
had the desired effect, with the urgent scenarios (time
budget � 5 s) with medium traffic density being perceived as

most critical, uncomfortable, and complex. ,e nonurgent
scenario (time budget� 20 s) with low traffic density, on the
other hand, was regarded as least critical, most comfortable,
and least complex. ,e effects of traffic density and time
budget were significant for all four questions (Table 3).

3.6. Driver Response Times. Results showed that humans
needed about 0.9 s for attending to the road, about 2.5 s to
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attend to the rear-view mirror, and about 2 s to grab/touch
the steering wheel (Figure 11).,e trajectory planner, on the
other hand, was not susceptible to these delays in human
information processing. Table 3 shows that the effects of time
budget and traffic density were not significant for the eyes-
on-road time. ,is finding is sensible because only after the
driver attends to the road, he or she can assess the time
budget and traffic density. ,ere was a significant effect of
time budget on eyes-in-side-mirror times and hands-on-
wheel times; participants took somewhat more time when
the time budget was higher.

4. Discussion

In this study, we assessed human takeover quality for dif-
ferent time budgets and traffic density levels and compared
the results to an optimised behaviour obtained via a

trajectory planner. ,e acceleration measures showed that
the trajectory planner drove extremely smoothly as com-
pared to the human participants. ,e participants showed
especially large lateral accelerations in the more time-critical
scenarios, which may have been because participants were
startled by the upcoming roadworks. ,e trajectory planner
“knew” everything from the moment of the takeover request
onward, whereas humans needed time to assess the situa-
tion, as indicated by the fact that the average eyes-on-road
time was about 0.9 s. Another reason for the high acceler-
ations is that participants may not have noticed these high
accelerations due to the inherent physical limitations of the
motion-base simulator [46, 47]. Several participants stated
after the experiment that the simulator motion did not feel
realistic. In the 20 s time budget scenarios, on the other hand,
participants’ median lane change durations were close to the
lane change durations of the optimised trajectory. In
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Table 3: Results of repeated-measures ANOVAs for the dependent variables.

Effect of traffic density Effect of time budget Time budget× traffic density
interaction

F (1, 24) p η2p F (2, 48) p η2p F (2, 48)a p η2p
Minimum time to collision 12.4 0.002 0.34 356.3 <0.001 0.94 2.3 0.112 0.09
Max. rightward acceleration 2.3 0.141 0.09 27.0 <0.001 0.53 0.7 0.526 0.03
Max. leftward acceleration 0.2 0.690 0.01 40.0 <0.001 0.62 0.5 0.586 0.02
Max. longitudinal deceleration 23.6 <0.001 0.49 5.4 0.008 0.18 1.9 0.158 0.08
Max. longitudinal acceleration 17.8 <0.001 0.42 6.5 0.003 0.21 1.9 0.169 0.07
Lane change duration 0.3 0.595 0.01 28.9 <0.001 0.55 0.9 0.432 0.04
Subjective criticality 27.6 <0.001 0.53 91.3 <0.001 0.79 1.8 0.182 0.07
Subjective discomfort 53.2 <0.001 0.69 45.0 <0.001 0.65 2.0 0.142 0.08
Subjective complexity 22.5 <0.001 0.48 79.1 <0.001 0.77 0.9 0.415 0.04
Subjective time budget 20.3 <0.001 0.46 120.0 <0.001 0.83 0.8 0.456 0.03
Eyes-on-road time 1.6 0.220 0.06 1.1 0.354 0.04 0.2 0.808 0.01
Eyes-in-side-mirror time 0.0 0.951 0.00 5.7 0.006 0.19 1.3 0.286 0.05
Hands-on-wheel time 0.4 0.541 0.02 9.7 <0.001 0.29 1.0 0.390 0.04
aF(2, 46) for the minimum time to collision, lane change duration, and acceleration/deceleration measures.
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summary, the results indicate that the differences between a
human takeover manoeuvre and that of the trajectory
planner are large in time-critical scenarios. ,at is, humans
seem unable to behave optimally when temporal demands
are high.

A driving simulator study by Petermeijer et al. [19, 36]
showed that drivers become quicker and more fluent in
taking over control with increasing takeover experience.
Payre et al. [48] recommended that drivers should be trained
in how to operate their automated driving system. Ac-
cordingly, it may be argued that it is unreasonable to
compare untrained drivers with the results of a path planner.

However, it is noted that the differences between human
behaviour and optimised behaviour were generally very
large (see, e.g., Figure 7). It is unlikely that more experi-
enced/trained drivers would perform on par with the tra-
jectory planner in the urgent scenarios.

,e 20 s time budgets were included to examine human
driving behaviour in nonurgent takeover scenarios in re-
lation to an optimised trajectory. ,e participants exhibited
large individual differences, which can be attributed to
personal preferences regarding when to make a lane change.
,ese findings are in line with ameta-analysis by Zhang et al.
[17] which concluded that participants do not take over
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control as quickly as possible, but may delay their steering or
braking response according to their discretion. ,e accel-
eration measures and lane change duration of the trajectory
planner in the 20 s condition were similar to those of the
more time-critical 5 and 7 s time budget scenarios. In other
words, the trajectory planner tended to finish the lane
change manoeuvre relatively quickly, rather than decrease
lateral accelerations with larger time budgets.

Figure 9 illustrates the fact that one should not rely on a
single measure (peak deceleration) as an index of takeover

quality. In the urgent scenarios of medium traffic density, the
trajectory planner gently decelerated and let the vehicle in
the left lane pass before executing a smooth lane change.
Here, the trajectory planner adopted a deceleration of 4m/s2,
which was sufficient to let the vehicle in the left lane pass
while retaining high comfort and forward progress. ,e
human participants, on the other hand, showed large in-
dividual differences. Some participants did not decelerate at
all and made an immediate lane change, as a result of which
the vehicle in the left lane had to initiate an emergency brake;
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other participants initiated an emergency deceleration
themselves in order to prevent colliding with the roadworks.
In summary, it was shown that a low deceleration and an
early lane change to avoid collision with the roadworks are
not desirable in this scenario. What is desirable is to brake
with an intermediate deceleration level, a type of behaviour
not identified using traditional takeover measures, but
captured by the trajectory planner.

,e optimised trajectory was computed offline. ,eo-
retically, this calculation could be performed in real time as
the trajectory planner at Volkswagen Group Research is
designed for real-time application as an integral part of an
automated driving system. We do not claim that the tra-
jectories generated by the trajectory planner are optimal.
Instead, the trajectories are optimised for a specific set of
variables, such as route progress, accelerations, and object
proximity. Somewhat different conclusions may be obtained
if selecting different weights for the trajectory planner. For
example, it would be possible to assign a lower weight to
acceleration and increase the weight for progress, leading the
algorithm to drive with a more aggressive driving style.

In conclusion, this study showed benefits of assessing
takeover quality in comparison with a reference behaviour.
Humans deviate substantially from optimised acceleration
values if the scenario is urgent. In other words, urgent
scenarios are dangerous not only because of the impending
collision (a physical factor) but also because humans have
difficulty behaving optimally in cases of time pressure (a
psychobehavioural factor). Additionally, we illustrated that
takeover measures should not be used in isolation. Maxi-
mizing driver comfort (i.e., minimizing the deceleration)
was found to be highly dangerous in scenarios of medium
traffic density. ,e comparison with the trajectory planner
showed that intermediate deceleration values are most
desirable.

Recently, frameworks have been proposed that combine
various measures into a single takeover quality score. ,e

Takeover Controllability Rating (TOC) quantifies takeover
quality through a coding sheet, which experts use to grade
human takeover behaviour by inspection of video footage
[49]. Similarly, the Takeover Performance Score (TOPS)
combines three variables related to vehicle guidance, mental
processing, and subjective rating. ,ese three variables can
be combined into a single quality score [10]. ,ese ap-
proaches represent an improvement to traditional methods,
but they rely on subjective judgments. ,e present trajec-
tory-planning approach can contribute to a more objective
quantification of takeover quality.
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