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Abstract. Sensitivity analysis is considered a fundamental tool in aerospace engineering, allow-
ing to evaluate the impact of parameters variations, and optimize the aerodynamic and struc-
tural design. There has been much effort in the development of both theoretical and numerical
frameworks for sensitivity calculations through adjoint solutions. Regarding the implementation
of these analyses into agile and versatile numerical tools, the use of scalable and transferable
libraries has become of particular importance.

In this work, FEniCS is used to calculate the sensitivity of aerodynamic observables in dif-
ferent flow condition. A comparison with different theoretical and benchmark cases is used
to validate the methodology before applying it to further and more complex configurations,
expanding the scope of the analyses to unsteady flows.

1 Introduction

Flow control and optimization are one of the main fields in aerospace design. The use of
the adjoint method for optimization theory has a long history[1]. The first time in history that
adjoint equations were used for design was in 1970 by Pironneaupironneau1974optimum, but it
was not until 1988, with the help of Jameson[2, 3], that the first applications were made in the
field of computational fluid dynamics, CFD. From this point on, CFD codes for optimization
began to be developed, such as Huffman [4], Elliot[5].For where an exhaustive review of these
early algorithms is made, see Newman[6], , and for a first look to this field, see Giles[7].

There are many geometry optimisation methods for different parameters. On the one hand,
some of them are based on the discrete adjoint, i.e. first discretize and then compute the adjoint
problem, see Nielsen [8] or Chen[9], but most of them on the discrete method, This way, it is
much easier to formulate, but it is necessary to differentiate matrices, which implies modifying
the geometry a priori, as well as losing importance on the physics of the problem. These methods
are very used in the stationary case, but with great limitations in non-stationary fluids as you
need to compute the derivative and for that you need to modify the mesh at each step.
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In this work, we seek to obtain a formula of drag sensitivity by change on geometry, based on
the continuous adjoint method, that gives us an expression from which we can extract physical
information as a function of the adjoint and original variables for both stationary and non-
stationary flows from the original mesh (see Section sec:TheoreticalFrame.

Once this formula has been found, the implications for both steady state and non-steady state
have been studied in Section sec:Methodology. In the latter case, the effects of a deformation
obtained by the mean of the sensitivity and of a deformation in each time step have been studied
as a first approximation to discover the power of this expression (see Section sec:Sensitivity.

2 Theoretical Framework

To approach optimisation we have two types of problems, unconstrained and constrained.
On the one hand, the goal of an unconstrained optimization problem is to find the state of the
system, q, that minimizes or maximizes a scalar of the system, the cost function , J . We assume
that J belongs C∞ class, with a particular value of q that cancels the gradient, dJ /dq . In
most cases, this cancelation is impossible, and we can only act on a set of control parameters,
g. On the other hand, the goal of constrained optimization is to minimize or maximize the cost
function, J , by acting on g, where q and g are subjected to F(q,g) = 0.

Many of the cost functionals encountered in the literature do not depend on the control
variables [10]; this can lead to unbounded controls parameters. There are two different ways to
compute this:

1. Constrain the size of the admissible controls,

||g|| ≤ κ, (1)

where κ is a physical parameter.

2. Penalize the objective functional: the goal is to minimize, for some defined norm and
constants,

J (q,g) = E(q) + α||g||β, (2)

where E(q) is a given functional.

In addition, we have to make a distinction between stationary and non-stationary problems,
since the parameter to optimize do not have to depend on time, we have to integrate with respect
to it and add another constraint that imposes the initial conditions.

2.1 Steady case

To calculate the sensitivity (the gradient) of the cost function, we introduce the Lagrangian
functional as:

L(q,g, λ) = J − λ · F(q,g), (3)

where λ is the adjoint variable. A variation of the Lagrangian follows the expression:

δL =
∂L
∂q

δq+
∂L
∂g

δg +
∂L
∂λ

δλ (4)
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The extreme condition are enforced on, since the Langrangian reaches an extremum if δL = 0
for all variations, therefore the following conditions on the derivatives are imposed:

∂L
∂q

= 0,

∂L
∂g

= 0,

∂L
∂λ

= 0.

(5)

Developing these derivatives from Equation (3), we obtain the following expressions:

∇qL :=
∂L
∂q

=
∂F

∂q

T

λ− ∂J
∂q

= 0, (6)

∇gL :=
∂L
∂g

=
∂F

∂g
λ− ∂J

∂g
= 0, (7)

∇λL :=
∂L
∂λ

= −F = 0. (8)

The equation (6) is the adjoint equation, the equation (7) the optimization equation over g
and the equation (8) is the state equation.

2.2 Unsteady case

Unlike the steady case, in the unsteady case the state equation depends on time,

F(q(t),g, t) =
dq

dt
−N(q,g, t) = 0 (9)

with a initial condition F0(q,g, t0) = q(0)− q0 = 0.
The Lagrangian can be defined as

L = J −
∫ T

t0

(λ · F)dt− µ · F0. (10)

The optimization system is derived by setting to zero the variation of the Lagrangian with
respect to all variables, like the steady case, recovering the optimization system.

3 Description of the problem

To validate the methodology, we consider a two-dimensional circular cylinder immersed in
an incompressible laminar flow. The physical domain is Ω{(x, y)| x ∈ [−40D, 50D], y ∈
[−40D, 40D]}/Γ where D is the diameter of the cylinder set to one and Γ denotes the sur-
face of the cylinder defined by the following expression Γ = {(x, y)|x2 + y2 < D2}. The fluid
density, ρ, and the kinematic viscosity, ν, are assumed constant; therefore, the non-dimensional
parameter for this problem is the Reynolds number, Re = u∞D

ν , where u∞ is the free-stream
velocity. The evolution of the fluid is ensured by the steady Navier-Stokes equations,

∂u

∂t
+ u · ∇u−∇ · σ(p,u) = f, ∇ · u = 0, in Ω, (11)
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with boundary conditions u = g on Γ, u = (1, 0) at the inflow and walls , pn − 1
Re∇u =

0, at the outflow , where n the normal vector on the surface, and σ is the stress tensor, defined
as

σ(p,u) = −pId+
1

Re
(∇u+∇Tu). (12)

Combining the Equation (10) and Equation (11), we obtain the Lagrangian of our problem to
calculate the drag sensitivity is defined as

L = D − 1

T

∫ T

0

∫
Ω
u† · (∂u

∂t
+ u · ∇u−∇ · σ(p,u)− f)dΩdt− 1

T

∫ T

0

∫
Ω
p†∇ · udΩdt (13)

where D = 2
T

∫ T
0

∫
Γ σ(u, p)n · exdΓdt is the mean drag force.

3.1 Mesh validation

The mesh composed of triangular elements is generated using FEniCS with two refine-
ments, first over {(x, y)| x ∈ [−9D, 24D], y ∈ [−9D, 9D]} and the second over {(x, y)| x ∈
[−3D, 12D], y ∈ [−3D, 3D]}.

The first step is to ensure the independence of the solution from the mesh. For this pur-
pose, different fundamental quantities of two-dimensional flow over a circular cylinder have been
compared with reference data for steady [11, 12] and unsteady [13] flow.

First, for steady flow at Re = 40, the computed quantities are the drag coefficient and the
bubble separation point measured on the cylinder surface. The comparison of the variation of
the drag with the number of elements we and for separation angle of the bubble, see

ΩΩimmediateñe:db@cref
ΩΩimmediateñe:db@cref

Drag coefficient Bubble separation (º)
Reference 1.5187 53.50

Present 1.516 53.52

Table 1: Comparation of drag coefficient and bubble separation point at Re = 40.

On the other hand, in the non-stationary regime, Re = 100 we have calculated both the
Strouhal number and the mean drag. For the Strouhal number, St = fD

U∞
, a point of the wake

has been selected, in particular the point (x, y) = (6, 0) of the mesh, and the variation of the
vertical velocity has been studied. For the mean drag when we obtain the St. The results are
shown in Table 2.

Strouhal number Mean drag coefficient

Reference [13] 0.166 1.336

Present 0.1636 1.334

Table 2: Comparison of the Strouhal number and mean drag at Re = 100
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lx ly nΓ n

[−40, 50] [−40, 40] 1280 11700

Table 3: Details of the computational mesh in the analysis

3.2 Validation of calculation of sensitivitiesin several cases

Now, we validate the implementation on FEniCS in two cases, in both steady and non-steady
state regimes.

3.2.1 Drag sensitivity by a external force in Steady case

We know ∇fD = u†, see Wang et al.[14], with its respective equation for u†. For this
validation, we impose the next conditions: We set Re = 20, the external force f = 0 and the
boundary condition around the cylinder g = 0. In Figure 1, we can see the comparison of the
gradient of the drag obtained by Wang et al.[14] with present work. The magnitude of the field
tells us which zones are most efficient at modifying the drag.

Figure 1: Comparison of the sensitivity to perturbations in the external force. Same scale has
been used in both images.

3.3 Unsteady flow

For the unsteady analysis, we need to store each time step of the unsteady flow solution
to solve the adjoint equations backward in time. We impose a Reynolds number of Re = 100.
This flow regime, the wake presents a Von-Kármán vortex shedding, and solve the Navier-Stokes
equations for (u, p), storing the solution for every steps. In these simulations, we used a time
step of ∆t = 0.016s to solve Navier-Stokes equations, we use the Chorin’s method[15]. Once
all the solutions of the temporary window have been stored, 145 seconds, solving the adjoint
equations with the same time step backward in time.

We have analyzed the physics of the problem starting from having a developed wake and after
reaching periodical convergence conditions, when we have a dominant frequency in the wake.
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In the following sections, we have calculated the sensitivity of drag in different situations and
compared with the literature to validate our methodology.

3.3.1 Drag sensitivity by a perturbation on the boundary condition around the
cylinder

In this section, we have calculated the sensitivity by a perturbation on the boundary condition
and compared the results with Meliga et al.[13]. We look for the gradient of

D =
2

T

∫ T

0

∫
Γ
{σ(p,u)n · ex}dΓdt. (14)

For this problem, we set the external force f = 0 and the boundary condition around the
cylinder g = 0. Applying these conditions, we get a expression to the sensitivity of the drag
force to a perturbation of the boundary condition around the cylinder [13],

∇gD = σ(−p†,u†)n. (15)

In ?? and Figure 2, we observe the evolution of the sensitivity around a period of the vortex.
The first snapshot describes a suction distribution over the upper half of the cylinder surface,
together with a blowing of lesser magnitude over the lower half. The third snapshot unveils the
same pattern of substantial suction and lesser blowing, only both halves of the cylinder surface
exchange roles because the phase is shifted by half a shedding period. The transition from one
pattern to the other is accompanied by a distortion of the blowing velocity at the rear surface,
found to be stronger on the half of the cylinder at which suction is applied, and by an almost
constant blowing on the front surface.

Figure 2: Temporal evolution of a period sensitivity at Re = 100. Results of [13]
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3.3.2 Drag sensitivity by a external force

In this case, we have calculated sensitivity by a external force and compared the results
obtained with Wang et al.[14]. For the sensitivity by a external force, we use the equation

∇fD = u† (16)

set the external force f = 0 and the boundary condition around the cylinder g = 0. Figure 3
illustrates the evolution of the adjoint field, colored by the magnitude of the adjoint velocity.
We show three time snapshots covering about half of a period and the comparison with Wang et
al. Observe how the sensitivity is changing from the upper to the lower of the cylinder every half
period of the vortex, in addition to a second zone that is generated approximately one diameter
away from the cylinder and that is approaching it.

Figure 3: Comparison of the sensitivity to perturbations in the external force at Re = 100.

4 Sensitivity of frag force by shape change

The objective is to obtain an analytical formula that gives us the sensitivity to changes in
geometry from which we can obtain an interpretation of the physics of the problem.

Once we have managed to calculate the sensitivity to changes in the boundary condition, we
can use it to calculate the sensitivity to changes in geometry, need the following theorem, See
Gunzburger[10] or Sokolowski[16]:
Let Γ0 the initial boundary, (u, p) the solution of Navier-Stokes equations, and Γ′ a perturbation
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on the boundary. The perturbation flow, (u′, p′) induced by the variation of the boundary
satisfies the linearized Navier- Stokes’s equations with the following boundary condition on the
cylinder:

u′ = −∂u

∂n
(v · n) (17)

where v is defined by Γ0−Γ′. That is, at first order, we have an identification of a perturbation
in the geometry with one in the initial conditions.

If we apply this result to the sensitivity to boundary conditions, we can obtain the following
expression for sensitivity to changes in geometry,

∇ΓD = ⟨σ(−p†,u†)n,−∂u

∂n
⟩n (18)

This equation is derived assuming that the boundary condition is now g = 0, since we focus
only on changes to the geometry of the immersed body.

Looking at the above equation, we see that the sensitivity to changes in geometry is nothing
more than the projection of the sensitivity to perturbation at the boundary condition on the
cylinder onto the normal derivative of the velocity on the surface ∇ΓD = ⟨∇gD,−∂u

∂n⟩n.

4.1 Steady flow

In this flow regime,we set the Reynolds number to 40, the external force f = 0 and the
boundary condition around the cylinder g = 0. In Figure 4 we have a representation of the drag
sensitivity around the cylinder. How the sensitivity gives us information on where and in which
direction the deformations affect drag the most. If we induce a variation where we move each
point in the direction of the sensitivity at that point, we obtain a new shape, see Figure 5.

Figure 4: Steady Sensitivity by
geometry changes

Figure 5: Mesh deformed by 5%
of the magnitude of sensitivity

Table 5 shows data on various deformations and respective drag reductions.
Figure 6 shows the flow using both the original and deformed geometries. In addition, we

observe a small decrease in the size of the recirculation bubble.

4.2 Unsteady flow

This section includes the non-stationary case at Re = 100 with f = 0, and g = 0. Two
different simulation are done with different deformation obtained through Equation (18). First,
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Deformation(%) Drag reduction (%)

1 2.3

2 3.6

5 7.2

Table 4: Drag reduction as a function of the percentage of the magnitude of the sensitivity.

Figure 6: Horizontal velocity in the original geometry and in the deformed geometry (5%).

by taking the time average of all the deformations, 1
T

∫ T
0 ∇gDdt, and second by deforming at

each time step according to the equation and study the effect of each of them on the drag
behaviour.

4.2.1 Mean deformation

First we will focus on studying the physics of flow using the mean deformation, as depicted
in Figure 7, for 0.5, 1 and 2%∇ΓD.. The function that governs the deformation is the time
average of the sensitivity. In addition to a reduction of the mean drag, but also, as we increase
the deformation, we obtain a reduction of the oscillation amplitude of the drag. Table 5 shows
how the mean drag decreases as a function of the deformation. Figure 8 we can see the
behaviour of the drag for different deformations, depending on the percentage that we impose

Figure 7: Mean deformation function
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Carlos J. Ruiz, M. Chávez-Modena, A. Mart́ınez-Cava Aguilar and E. Valero

on the sensitivity.

Figure 8: Evolution of drag by several mean deformations

Deformation(%) Drag reduction (%)

0.5 7,2

1 9.5

2 14

Table 5: Mean drag reduction as a function of the percentage of the magnitude of the mean
sensitivity

4.2.2 Instantaneous deformation

For this analysis, we deform the mesh at each time step by obeying the time-dependent
sensitivity. We can see the behaviour of the function in Figure 9. The images correspond to 4
equispaced snapshots of the period of the function where the magnitude indicates how efficient
it is to deform in that direction.

Figure 9: Results:Temporal evolution of a period sensitivity.

Using an instantaneous deformation, Figure 10 shows that for a deformation of 0.2% both
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the drag and the oscillation amplitude decrease very little, but when we increase the percentage
more, although the drag decreases, the oscillation amplitude increases.

Figure 10: Evolution of drag by several instantaneous deformations

5 Conclusions

Thanks to the bijection between a perturbation in the shape and in the boundary condition
on the cylinder, we have found a physical expression of the sensitivity to changes in the geometry
and its relation to the sensitivity to a perturbation in the boundary condition. In the stationary
case, we can see that with small deformations we have obtained a substantial reduction of the
drag coefficient, as well as a reduction of the size of the recirculation bubble.

Within the analysis of the non-stationary fluid, we have observed that the application of the
mean deformation is more efficient than applying a specific deformation at each time step.

Our next objectives are focused on improving the results obtained using instantaneous de-
formation with different approaches to pursue industrial applications such as morphing wings.
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