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Abstract. Damage identification of civil structures is of primary importance following 

extreme events such as earthquakes. Detection, location, and quantification of damage 

provide crucial information to assess the state of health of a structural system. Therefore, it is 

imperative to develop robust and accurate methods for this purpose. In this paper, an inverse 

method based on Bayesian inference is proposed to calibrate time-varying finite element (FE) 

models representing civil structures suffering damage when subjected to seismic excitations. 

In the two-step approach, the time-varying modal parameters of the structure are identified 

using recorded input-output seismic vibration data. Then, a linear FE model is developed and 

calibrated at different time instants of the earthquake by updating the elastic modulus of 

different elements. The model calibration is conducted by minimizing the misfit between the 

modal properties (i.e., natural frequencies and mode shapes) using a sequential Monte Carlo 

inference method. To validate the effectiveness of the approach, a shake table test is carried 

out on a two-story scaled steel structure with elastomeric bearings at the base, which 

concentrate the nonlinear behavior of the structure. The results confirmed the good 

performance of the method in detecting, locating, and assessing the nonlinear behavior in civil 

structures under seismic loading. 
 

1 INTRODUCTION 

Infrastructure impacts a nation's economy, competitiveness, and society’s well-being. Civil 

engineering structures must safeguard the lives of their occupants during operating loads and 

natural disasters such as earthquakes. In particular, accurate and timely identification of 

damage in civil structures is relevant to ensure structural safety and adequate performance 

after extreme events. The ability to detect, locate, and quantify damage in structures provides 

critical information for assessing their health condition and making decisions about the 

necessity of rehabilitation [1].  

Model updating methods provide tools to calibrate finite element (FE) models considering 

observed structural response or quantities derived therefrom [2], [3]. These methods typically 

utilize modal properties, such as natural frequencies and mode shapes, to assess structural 

damage [4], [5]. The objective of finite element model updating (FEMU) is to find the optimal 

values of a set of parameters that best represent the experimentally measured response [6]. 

Probabilistic FEMU has been shown to be a robust tool for calibrating structural properties 

under uncertainty [7], [8]. 
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During seismic events, structures can experience nonlinear response behavior, thus 

inducing variations in their modal properties due to changes in the effective stiffness and 

energy dissipation mechanisms [9], [10]. For this reason, using vibration data collected before 

and after a damage inducing event, as commonly done, seems not adequate for comprehensive 

damage identification. When updating linear FE models, the elastic modulus of structural 

components is often defined as calibration parameters. This allows to capture and quantify the 

impact of the effective stiffness reduction caused by localized structural damage [6]. 

However, it is important to track the variations of these parameter values during the seismic 

events since they are commonly partially recovered after the earthquake [11].   

When updating numerical models, there are different sources of uncertainties that should 

be accounted for. Model parameter uncertainty is directly tackled in the calibration process. 

Modeling errors and measurement noise can be properly incorporated in some cases. Current 

FEMU techniques can be categorized as probabilistic and deterministic approaches. The 

former allows to account for uncertainties related to modeling errors and measurement noise. 

Bayesian methods provide a rigorous approach for probabilistic FEMU by estimating joint 

probability distribution of the modeling parameters being calibrated [4], [12]. Markov Chain 

Monte Carlo (MCMC) methods are a valuable tool employed to generate series of samples 

that allow to estimate posterior probability density functions (PDFs). Significant 

advancements have been made in the literature concerning the contributions of MCMC 

algorithms to Bayesian FEMU [7].  

This research proposes a two-step Bayesian inference approach to calibrate FE models for 

civil structures subjected to seismic forces. The process begins with the identification of time-

varying modal parameters of the structure using input-output seismic acceleration data. 

Subsequently, a linear FE model is calibrated by updating elastic modulus values at various 

time intervals during the earthquake. Sensitivity analysis is conducted to identify the most 

influential parameters on the model's responses, and model calibration is achieved using the 

sequential Monte Carlo inference method. A shake table experimental test is conducted on a 

two-story scaled steel structure with elastomeric base isolators, which exhibit nonlinear 

behavior during the seismic excitation, to validate the proposed approach.  

2 SPATIO-TEMPORAL DAMAGE IDENTIFICATION THOUGH BAYESIAN 

CALIBRATION OF TIME-VARYING FINITE ELEMENT MODELS  

This study introduces a methodology for spatio-temporal damage identification through 

Bayesian calibration of time-varying FE models. The approach is based on using time-varying 

dynamic properties to calibrate FE models. Dynamic properties during the earthquake are first 

estimated using the deterministic-stochastic subspace identification (DSI) method applied to 

short-time windows of input-output seismic vibration data. Then, the identified time-varying 

modal parameters are used to update a linear FE model using a Bayesian approach (Figure 1). 

A scaled structure with elastomers subjected to seismic excitation on a shaking table is 

presented as a case study.  

An initial linear FE model, defined by the modeling parameter vector θinitial, is first 

calibrated using the modal parameters identified from the first time-window of the earthquake 

data. Since a Bayesian approach is used for updating, joint posterior PDF for the updating 

parameters is obtained. For the following updating steps, information from the previous 
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updating step is used to define the prior distribution, and the likelihood function is defined 

based on the error between the modal parameters identified from the vibration data and their 

counterparts derived from the FE model. Posterior PDFs are then obtained for all the updating 

steps. Figure 1 summarizes the proposed approach. 

 
Figure 1: Proposed methodology 

2.1 Linear time-variant modal identification 

The DSI method [13] is employed to identify the modal parameters of the structure during 

an earthquake by using a short-time moving window approach [14]. The process estimates 

instantaneous modal properties using input-output acceleration data divided into short time 

windows to capture dynamic variation during the seismic event. The DSI method aims to 

determine system order (n) and matrices (𝐀𝐝, 𝐁𝐝, 𝐂𝐝, 𝐃𝐝, 𝐐, 𝐑, and 𝐒) using s input 

measurements (𝑢0, 𝑢1, … , 𝑢𝑠−1) and output measurements (𝑦0, 𝑦1, … , 𝑦𝑠−1). Modal properties 

are established by obtaining the eigenvalues and eigenvectors of matrices 𝐀𝐝 and 𝐂𝐝 as 

expressed below:   

𝑓𝑟 =
√𝜆𝑟𝜆𝑟

∗

2𝜋
   r=1, …, n/2  

(1) 

𝜉𝑟 =
−𝑅𝑒(𝜆𝑟)

|𝜆𝑟|
   r=1, …, n/2 (2) 

ф𝑟 = 𝐂𝐝𝚿 = [ф1, … , ф𝑛/2  ]    (3) 

Where 𝑓𝑟 represents the modal frequencies, 𝜉𝑟 and 𝜙𝑟 denote the modal damping ratio and 

mode shape, respectively, 𝜆𝑟  are the eigenvalues of the continuous-time state matrix  

𝐀𝐜 (with 𝐀𝐝 = 𝑒𝐀𝐜 ∆𝑡), Ψ refers to the  eigenvectors of 𝐀𝐜. 
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The minimum window length (smin) defined in Eq. (4) with 50% overlapping is used for 

linear-time varying system identification based on seismic input-output data [14]. In Eq. 4, m 

is the number of inputs, l is the number of outputs, and i is the number of block rows of the 

Hankel matrices. Stabilization diagrams are utilized to differentiate between physical and 

spurious modes within each short-window data set [15].  

𝑠𝑚í𝑛 =  2𝑖(𝑚 + 𝑙 + 1)  (4) 

2.2 Description of test structure and instrumentation  

The case study is a two-story steel structure with elastomeric supports at the base. The 

structure has one bay in each direction, with plan dimensions of 0.30 m in longitudinal and 

transversal directions. The height of the columns was 0.34 m (see Figure 2b), and the 

elastomers had a height of 0.04 m. The total weight of the structure was approximately 0.135 

kN. The floor system consisted of 5 mm thick steel plates at each level. Every story is 

supported by four columns with a cross-section of 0.03m×0.003m, connected to a steel joint.  

Elastomers with cross-section of 0.03m×0.03m were positioned at the base of the specimen. 

Instrumentation for the test consisted of three accelerometers placed at the center of each floor 

and one at the base, as depicted as Figure 2b. The accelerometer model used was Endevco 

44A16 with a full-scale range of ±50 g. The data acquisition system (DAQ) was a Quantum 

CX22-B from HBM. The data was sampled at 300 Hz. 

  
Figure 2: Test structure: (a) General view of the structure; (b) front view (units: m); (c) lateral view of the model  

2.3 Global sensitivity analysis  

Global sensitivity analysis (GSA) simplifies the selection of the most influential 

parameters for creating a validated surrogate model that effectively captures the system's 

variability without requiring all the original parameters. The analysis helps to understand how 

“input” parameters introduce variations in “output” results and assesses interactions among 

parameters when determining their impact on the model's response. GSA provides indices to 

measure effects of individual parameters and also interacting effects between different model 

parameters. A calculation of Sobol's indices based on Polynomial Chaos Expansion (PCE) 

[16] was performed using MATLAB library UQlab. The GSA model uses nine parameters, a 
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confidence level of 99%, and a tolerance level of 10% of the Monte Carlo error of the 

variability distribution. To achieve this objective, the model is executed 3000 times, and a 

surrogate third order PCE model is constructed to capture the model responses. 

2.4 Bayesian finite element model updating 

In the context of probabilistic model updating, the Bayesian approach effectively integrates 

prior beliefs and observed data to reduce parameter uncertainty. The Bayes theorem (Eq. 5) is 

employed to calculate the posterior probability distribution, denoted as 𝑝(𝛉|𝐝), which 

represents the updated parameters (𝛉) based on recorded data or information derived 

therefrom (d). The normalization constant (c), called evidence, ensures that the posterior PDF 

integrates to one. Additionally, the likelihood function 𝑝(𝐝|𝛉) quantifies the probability of 

observing the recorded data (d) given the parameters (𝜽), essentially assessing how well the 

model, with the current parameter values, explains the observed data. Lastly, the prior PDF 

𝑝(𝛉) reflects the initial understanding of the updating parameters. 

𝑝(𝛉|𝐝) = 𝑐𝑝(𝐝|𝛉)𝑝(𝛉) 
(5) (9) 

In this study, prior PDFs are modeled as lognormal distributions, assuming mutually 

independent parameters. Model calibration minimizes the discrepancy between model-

predicted and experimental dynamic properties by estimating an optimal configuration of 

model parameters using an error function under the assumption of zero-mean Gaussian 

distributions.  

𝑒𝜆𝑖 =
�̃�𝑖 − 𝜆(𝛉)

�̃�𝑖

  (6) 

𝒆𝚽𝑖 =
�̃�𝑖

‖�̃�𝑖‖
− 𝑎𝑖

𝚪𝚽𝑖(𝛉)

‖𝚪𝚽𝑖(𝛉)‖
 (7) 

Where 𝑒𝜆𝑖 is the eigenfrequency error; �̃�𝑖 = (2𝜋𝑓𝑖)
2 is the square of the experimental natural 

frequency; 𝜆(𝛉) is the squared natural frequency of the model considering the parameters θ; 

𝒆𝚽𝑖 is the mode shape error; �̃�𝑖 is the mode shape vector of the 𝑖𝑡ℎ mode extracted 

experimentally; and 𝚽𝑖(𝛉) is the mode shape vector of the model considering the parameters 

θ of the 𝑖𝑡ℎ mode. Finally, Γ serves as a mapping matrix that establishes a correspondence 

between the model modal coordinates and the sensor positions used to extract modal 

properties from experimental data, and 𝑎𝑖 is defined as follow: 

𝑎𝑖 =
�̃�𝑖  𝚪 𝚽𝑖(𝛉)

‖�̃�𝑖‖ ‖𝚪𝚽𝑖(𝛉)‖
 (8) 

The posterior PDF based on the selected likelihood function (error functions) and prior 

PDF, can be formulated as shown below:  

𝑝(𝛉|𝐝) ∝ 𝑒𝑥𝑝 (−
1

2
𝐽(𝛉, 𝐝)) (9) 

where J(θ,d) is:  

𝐽(𝛉, 𝐝) = ∑
(𝑒𝜆𝑖

)
2

𝜎𝜆𝑖

2

𝑚

𝑖=1

+ ∑
𝒆𝜱𝑖

𝑇 ∙ 𝒆𝜱𝑖

𝜎𝛷𝑖

2

𝑚

𝑖=1

 (10) 
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Where, m denotes the number of modes considered, 𝜎𝜆𝑖
 is the standard deviation of the 𝑖𝑡ℎ 

frequency and σΦi
 is the standard deviation of the shape modes component for the 𝑖𝑡ℎ mode. 

The joint posterior distribution is estimated using the simulation method of MCMC, which is 

a numerical approach for estimating the posterior distribution of updating parameters.  

3 RESULTS 

3.1 System identification results and earthquake excitation 

The north-south component of the “El Centro” motion, that occurred on May 18, 1940, 

with a magnitude (Mw) of 6.9, served as the input for the test. To perform the DSI, 

acceleration records in the direction of excitation are used. The input signal is defined as the 

acceleration applied by the shaking table and the output signals are the three signals recorded 

on upper floors. The number of rows of the Hankel matrices (i) is selected equal to 50 and 

meet the procedure presented in [18]. According to Eq. 4, 𝑠𝑚í𝑛 is (2×50(1+3+1)) = 500, and 

the sampling frequency is 300 Hz. Then, the minimum window length is equal to (500/300) = 

1.70 s. A 50% overlap is used for all windows, except the first one, resulting in the estimation 

of instantaneous modal parameters every 0.85 s. The “instantaneous” natural frequencies of 

the first three longitudinal modes and the recorded time history of input acceleration from the 

shake table are presented in Figure 3. As the amplitude of the input motion increases during 

the strong-motion phase, the system's frequencies decrease significantly. However, by the end 

of the test, the frequencies recover, returning to values similar to those identified at the 

beginning of the test. The frequencies of the structure at the beginning of the test are: f1=3.48 

Hz for the first mode, f2=13.11 Hz for the second mode, and f3=19.98 Hz for the third mode. 

The maximum reduction in frequency during the test are 35.41%, 14.71%, and 13.80% for the 

first, second, and third modes, respectively.  

 
Figure 3: Temporal variation of the identified natural frequencies of the first three longitudinal modes 
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3.2 Linear FE model and sensitivity analysis 

A 2D linear FE model is employed, with three degrees of freedom at each node. The 

masses are lumped at the nodes. The elastomeric bearing elastic modulus is referred as 𝐸𝑒𝑖, 

while the Young´s modulus of steel columns and steel slabs are denoted as 𝐸𝑐𝑖 and 𝐸𝑏𝑖, 

respectively. The slabs are modeled as beams with a width equal to half the plate width. Each 

component in the linear FE model is discretized into five elements. The FE model is 

illustrated in the Figure 2c. 

GSA is conducted on the linear FE model to identify the most influential parameters in the 

modal parameters. The elasticity modulus of the nine elements of the structures was sampled, 

employing a lognormal distribution with a mean of 1.17 MPa with a standard deviation of 

0.30 MPa for the elastomers, while for elements of structural steel, the mean of the lognormal 

distribution is set to 200 GPa and the standard deviation to 20 GPa. The total Sobol indices 𝑆𝑇 

obtained for each parameter for the first three natural frequencies and mode shapes are 

presented in Figure 4. The parameter of the elastomeric elements (Ee) are the most influential 

in the model's variability for all three frequencies modes, obtaining 𝑆𝑇 values close to 0.50; 

0.32; and 0.50. On the other hand, slabs parameters (𝐸𝑏1, 𝐸𝑏2, and 𝐸𝑏3) have minor influence 

on the natural frequencies of the model. Finally, for the next steps, the following five out of 

the nine parameters were selected for estimation: 𝐸𝑒1=𝐸𝑒2, 𝐸𝑐1, 𝐸𝑐2, 𝐸𝑐3, and 𝐸𝑐4. The values 

of Ee1 and Ee2 are assumed equals to reduce computational time and because the same 

material was used for both bearings. 

 
Figure 4: Total Sobol’s indices for the first three frequencies and mode shapes of the linear FE model 

3.3 Model Updating Results 

The elastomeric and steel material's modulus of elasticity of the five specifically chosen 

components of the linear FE model are used as parameters to be calibrated. For model 

updating, these parameters are normalized as the ratio between the updated elasticity modulus 

and the corresponding initial value: 

𝜃𝑖 =
𝐸𝑖

𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝐸𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

  with 𝑖 = 1, … ,5 (11) 
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Model calibration is conducted every 0.85 s according to the DSI results. The prior PDFs 

are considered as lognormal distributions, mean values of 𝐸𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 were taken equal to 1.17 

MPa for elastomeric and 200 GPa for the steel material. The standard deviation of updating 

parameters is set at 25% for elastomeric material and 10% for steel. MCMC simulation 

method is employed with a total of 2200 samples and 4 chains, which meets the requirements 

outlined in [17]. The initial calibration results for the first updating step are as follows: 1.04 

MPa for elastomeric, 198.80 GPa for both columns of the first floor, and 202.40 and 202.20 

GPa for the columns of the second floor. The evolution of the marginal posterior PDF at the 

beginning of the test is presented in Figure 5, for the first three processed time windows (1.70, 

2.55, 3.40 s). In this figure, one element from each floor is represented, i.e., 𝐸𝑒1, 𝐸𝑐1, and 

𝐸𝑒𝑐3.  

 
Figure 5: Evolution of the marginal posterior PDF for the time 1.70 to 3.40 s.  

 

 
Figure 6: Sample of parameter posteriors estimation result at t=1.70 s.  
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In Figure 6, the sample posteriors (marginal and bivariate) at updating time t=1.7 s are 

presented. At the upper diagonal, scatter plots of pairs of variables' distributions are displayed, 

where darker regions indicate a higher concentration of samples. Along the diagonal, 

histograms of the marginal posteriors are shown, also a log-normal distribution fit is 

presented. Additionally, the mean values are highlighted in yellow. Below the diagonal, 

contour plots and Pearson's correlation coefficients (ρ) are illustrating the degree of linear 

correlation between each pair of parameters. Strong correlations are found among columns on 

the same floor, with coefficients of -0.95 for first-floor columns and -0.98 for second floor 

columns. No other significant correlations are observed between modeling parameters. 

The variations of the elastic modulus of the elements along the seismic excitation are 

presented in Figure 7. It is noted that the modulus of elasticity Ee1-2 in the elastomeric material 

undergoes significant changes due to its nonlinear behavior during the test. Conversely, the 

steel columns exhibit lower variations in their elastic modulus values that remain close to the 

initial value, potentially attributed to the flexibility of the connections. These changes are 

influenced by the increment of the amplitude of the input acceleration. As the accelerations 

decrease towards the end of the seismic test, the elastic modulus tends to recover, approaching 

their initial values. This pattern suggests a close correlation between earthquake intensity and 

the changes in modal parameters. The 5th and 95th percentile limits are presented alongside 

the mean values, where very low estimation uncertainty is observed in the elastic modulus of 

elastomeric bearings. 

 
Figure 7: Variation of the parameters during the shaking table test 

To analyze the effect of propagating the parameter estimation uncertainties in the modal 

parameters of the model, 1000 responses were simulated at each step time using the posterior 
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PDFs of the parameters 𝛉𝑢𝑝𝑑𝑎𝑡𝑒𝑑. This was performed to compare the natural frequencies and 

mode shapes of the model against the experimental data. Figure 8 shows identified natural 

frequencies with their model-predicted counterparts (𝜇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) computed based on updated 

parameters (𝛉𝑢𝑝𝑑𝑎𝑡𝑒𝑑) at each updating time step. Additionally, the 5th and 95th percentiles are 

presented. The results obtained for 𝜇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 are used to compare the updated natural 

frequencies of the model with the experimentally identified. The average global error for all 

the updating steps is 1.98%, 0.33%, and 2.19% for the first, second, and third natural 

frequencies, respectively. The Modal Assurance Criterion (MAC) is employed to compare the 

identified and model mode shapes. The estimated mode shapes are considered as the mean of 

the thousand samples generated from the updated linear FE model. The MAC values are very 

close to 1.0, suggesting that the mode shapes predicted by the linear FE model are consistent 

with their identified counterparts. 

 
Figure 8: Uncertainly propagation in the frequencies of the structure during the test 

 

4 CONCLUSIONS  

The Bayesian calibration of time-varying FEM for spatio-temporal damage identification is 

a robust method for assessing structural integrity during seismic events. It employs short-time 

windows of dynamic data for FEM updates, facilitating damage detection and localization. 

Global sensitivity analysis identifies influential parameters, focusing on those impacting the 

model's response. Bayesian calibration with lognormal prior PDFs assesses uncertainties and 

identifies nonlinear behavior locations. This methodology effectively captures dynamic 

property changes during seismic events, including frequency and mode shape variations. It 

successfully identifies the first three frequencies and vibration modes using short time 
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windowing. Bayesian updates align responses closely with experimental data. Non-linear 

behavior in elastomers was consistently detected throughout the test, indicating potential for 

real-time structural health monitoring. Average global errors were 1.98% for the first 

frequency, 0.33% for the second, and 2.19% for the third. Mode shape comparisons using 

MAC showed consistent results between experimental and predicted mode shapes. 
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