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a b s t r a c t
We present a method to blend local maximum entropy (LME) meshfree approximants and isogeometric
analysis. The coupling strategy exploits the optimization program behind LME approximation, treats iso
geometric and LME basis functions on an equal footing in the reproducibility constraints, but views the
former as data in the constrained minimization. The resulting scheme exploits the best features and over
comes the main drawbacks of each of these approximants. Indeed, it preserves the high fidelity boundary
representation (exact CAD geometry) of isogeometric analysis, out of reach for bare meshfree methods,
and easily handles volume discretization and unstructured grids with possibly local refinement, while
maintaining the smoothness and non negativity of the basis functions. We implement the method with
B Splines in two dimensions, but the procedure carries over to higher spatial dimensions or to other non
negative approximants such as NURBS or subdivision schemes. The performance of the method is illus
trated with the heat equation, and linear and nonlinear elasticity. The ability of the proposed method to
impose directly essential boundary conditions in non convex domains, and to deal with unstructured
grids and local refinement in domains of complex geometry and topology is highlighted by the numerical
examples.
1. Introduction

Approximants selected by maximum entropy (max ent) are
non negative smooth meshfree approximation schemes, optimal
from an information theory viewpoint [1,2]. The non negativity
and first order reproducing conditions endow these approximants
with the structure of convex geometry [1], like linear finite ele
ment, natural neighbor method [3], subdivision approximants
[4], or B Spline and Non Uniform Rational B Splines (NURBS) basis
functions [5]. Max ent approximants have been extended to second
order [6,7], and to arbitrary order by dropping non negativity [8].

Local maximum entropy (LME) approximants allow us to flexi
bly control the support of the basis functions on unstructured grids
of points [1,9]. Their non negativity endow them with variation
diminishing properties, as well as with a weak Kronecker delta
property on the boundary of the convex hull of the set of nodes
[1], by which interior basis functions vanish at the boundary of
the convex hull, and basis functions vanish at any given face unless
the corresponding node belongs to that face of the boundary.
Thanks to this property, essential boundary conditions can be eas
ily imposed on polygonal convex domains, in contrast with other
meshfree methods [10]. Furthermore, the evaluation of the LME
basis functions is very efficient using duality methods [1]. The
main drawback of these approximants is given by the inherent lim
itation of meshfree methods to represent complex boundaries with
high fidelity. In such methods, the boundaries that can be repre
sented by a mere collection of points are polytopes, either the con
vex hull or more controllable domains given by alpha shapes [11].
Furthermore, the weak Kronecker delta property of LME approxi
mants does not hold in non convex parts of the domain [1].

Motivated by the recent impetus on isogeometric analysis
[5,12], which aims at integrating Computer Aided Design (CAD)
technologies, such as B Splines, NURBS or subdivision surfaces
[4], and engineering analysis, we propose here using such high
fidelity description of the boundary of the domain, while approx
imating the interior with max ent methods. Remarkably, the
limitations of LME approximants and of isogeometric analysis
are in some sense complementary, since the main drawback of
the latter is precisely the rigidity imposed by the NURBS frame
work on the volume meshing, which requires special techniques
to go beyond tensor product meshes and accommodate trimmed
surfaces, local refinement, or incongruent surface descriptions at
opposing faces. Some of these issues are partially addressed in
2D with T Spline technologies [13 17], hierarchical B Splines
[18] or trimming techniques [19], but largely open in 3D
[20,21]. Three dimensional subdivision schemes, producing
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Fig. 1. LME approximants enable a seamless and smooth transition from meshfree
to Delaunay affine basis functions. The transition is controlled by the non-
dimensional nodal parameters ca , which here take linearly varying values from
0:6 (left) to 6 (right).

Rosolen, A. and Arroyo, M.
smooth convex approximants from unstructured grids, are still
the topic of current research [22].

The goal of the proposed method is to unify in a common frame
work the geometric fidelity of isogeometric boundary representa
tions with the flexibility of meshfree approximants in the bulk of
the domain. Since both B Splines and LME approximants are con
vex schemes, we will show that they can be coupled through the
constraints in a max ent program. The resulting approximation
scheme automatically retains the non negativity and smoothness
of the B Spline and LME parents. Although max ent approximants
can be extended to higher order consistency, at the expense of a
more involved formulation [6,7], numerical experiments show that
first order consistent approximants perform very well, even in
high order partial differential equations. In [7], we showed that
first order LME approximants attain the same accuracy as 5th or
der B Splines for structural vibrations, and are comparable to sec
ond order max ent approximation schemes in a fourth order phase
field model [23], or in thin shell problems [24,25], where they also
compete with subdivision finite elements.

In the same spirit of the method presented here, the NURBS en
hanced finite element method (NEFEM) [26] adopts a NURBS
boundary representation, coupled to standard finite elements in
the interior of the domain. This approach exploits the high fidelity
geometry representation of isogeometric analysis, but does not in
sist in preserving the smoothness and positivity of the basis func
tions, placing more emphasis in the high order reproducibility
conditions. On the other hand, Moving Least Squares (MLS) mesh
free basis functions have been coupled with finite elements
through the consistency conditions [27].

The paper is organized as follows. Sections 2 and 3 provide the
main concepts about max ent approximations schemes and the iso
geometric representation of boundaries. In Section 4, we describe
the proposed blending strategy, and in Section 5 we report on illus
trative numerical examples. Finally, Section 6 collects the conclud
ing remarks.

2. Maximum entropy approximation schemes

In information theory and statistical inference, the principle of
max ent is a means to infer the probability distribution, which best
represents the current state of knowledge about a process, consis
tently with a priori information. This principle was adopted in [1,2]
to generate the least biased basis functions for nodal data approx
imation. The key in this information theoretical viewpoint is to
interpret the approximants as probability distributions. This inter
pretation follows from the partition of unity and the fact that we
require the approximants to be non negative.

More concretely, consider the approximation of a function in a
domain X � Rd as a linear combination of basis functions associ
ated with a set of nodes X fxaga 1;...;N � Rd,

uðxÞ � uhðxÞ
XN

a 1

paðxÞua:

Rather than defining explicitly the basis functions paðxÞ, we view
them as unknowns, which need to fulfill the partition of unityPN

a 1paðxÞ 1 and the first order consistency conditionPN
a 1paðxÞxa x. Additionally, we demand that paðxÞP 0. Compar

ing these conditions with the definition of the convex hull of the set
of nodes

convX x 2 Rdjx
XN

a 1

gaxa; with ga P 0;
XN

a 1

ga 1

( )
;

it follows that such an approximation scheme can only be defined in
domain satisfying X � convX.
2

If the node set is composed of more than dþ 1 affinely indepen
dent points, there exist infinitely many convex approximation
schemes, and the principle of max ent emerges as a selection prin
ciple. These basis functions can be computed by maximizing the
information entropy subject to the constraints given by the repro
ducibility conditions [1,2]. The max ent framework is quite flexible
and allows us to consider other related approaches. The LME
approximants [1] represent the optimal compromise (in the Pareto
sense) between two competing objectives: (i) maximum locality of
the basis functions and (ii) maximum information entropy of the
scheme.

The convex program defining the LME approximants is

ðLMEÞ For fixed x minimize
XN

a 1

bapa j x xaj2 þ
XN

a 1

pa ln pa;

subject to pa P 0; a 1; . . . ;N;XN

a 1

pa 1;
XN

a 1

paxa x;

where the non negative parameters ba weigh the relative impor
tance given to each objective in each nodal position [9].

The above program is convex, smooth and feasible for any spa
tial dimension d (as long as x 2 convX), and produces C1 meshfree
non negative functions paðxÞ [1]. Moreover, the constraints (con
sistency conditions) guarantee solutions that reproduce exactly af
fine functions (see [6,7,28,29] for higher order approaches).
Duality methods provide an efficient route to solving the optimiza
tion problem and computing almost explicitly paðxÞ at each evalu
ation point x. Defining the partition function

Zðx; kÞ
XN

b 1

exp bb j x xbj2 þ k � ðx xbÞ
h i

;

the LME basis functions can be computed as

paðxÞ
1

Z x; k�ðxÞð Þ exp ba j x xaj2 þ k�ðxÞ � ðx xaÞ
h i

;

where the Lagrange multiplier for the linear consistency condition
is the unique minimizer of a smooth convex unconstrained optimi
zation problem, minimizing ln Z, efficiently solved with Newton’s
method [1].

The parameters ba ca=h2
a , where ca is a dimensionless aspect

ratio parameter and ha the typical nodal spacing, allow us to control
the locality (the support size) of the basis functions [1,9]. The
approximants become sharper and narrower as the dimensionless
parameter ca increases, and for values close to 4 and above they
are nearly indistinguishable from the affine Delaunay basis
functions, as illustrated in Fig. 1 in 1D. As ca tends to infinity, it
has been mathematically shown that the affine functions supported
on the Delaunay triangulation of the node set are recovered [1]. In



Fig. 2. Illustration of LME basis functions in a two-dimensional domain (ca 1:6).
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Fig. 2 we illustrate the LME approximants in a two dimensional
domain for a parameter ca 1:6.

In Fig. 3 we illustrate a LME basis function corresponding to the
interior point of a non convex domain. The picture highlights the
limitations of LME approximants that we are addressing in this
work: (i) the inherent inability of meshfree methods to represent
complex boundaries with high fidelity and (ii) the loss of the weak
Kronecker delta property of LME approximants in non convex
parts of the domain.

3. Isogeometric boundary representation

We here provide the minimal concepts behind the B Spline ba
sis functions, curves, and surfaces, and outline the basic ideas of
isogeometric analysis (see [12,30] for a complete exposition). For
the sake of simplicity, we stick to B Splines, but the proposed cou
pling strategy is directly applicable to NURBS or subdivision
boundary representations.

A closed B Spline curve, or a set of B Spline curves defining a
globally closed curve, may serve as a boundary representation of
a two dimensional domain. In three dimensions, the boundary will
be generally represented in terms of a collection of patches. Let
X � Rd be the domain of interest, whose boundary is split into
B Spline patches @X [aCa. For d 2, each piece of the boundary
is described by a parameterized curve Ca : ½0;1�# Ca given by

CaðnÞ
X

i

Np
i ðnÞPi;

where Np
i ðnÞ denote the 1D B Spline basis functions of degree p

associated with a given knot span and Pi 2 R2 are the control points.
For d 3, each patch is parametrized by Sa : ½0;1� � ½0;1�# Ca gi
ven in terms of tensor product B Spline functions as

Saðn1; n2Þ
X

i

X
j

Np
i ðn1ÞMq

j ðn2ÞPi;j;
Fig. 3. LME approximants and other meshfree methods cannot represent complex bou
property of LME approximants, which facilitates imposing essential boundary condition
interior node does not vanish in part of the boundary.
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where the control points Pi;j are now points in three dimensions.
Different continuity may be required across patches, from simple
continuity of the surface [aCa (watertight condition) to higher
smoothness conditions. Here, we view the boundary representation
as given and assume it is well defined.

As a prelude to the coupling strategies between isogeometric
analysis and the LME approximation schemes, we introduce the
isogeometric domain description. B Spline approximants are de
fined in the parametric domain, while meshfree approximants
are naturally defined in physical space. The coupling strategies re
quire both sets of approximants to be on an equal footing. The iso
geometric mapping allows us to express the B Spline
approximants as functions in physical space.

To fix the ideas, consider a surface patch Ca � @X, and define
now an associated volume patch parameterization
Vaðn1; n2; n3Þ : ½0;1�3 # Xa � X given by

Vaðn1; n2; n3Þ
X

i

X
j

X
k

Np
i ðn1ÞMq

j ðn2ÞLr
kðn3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Np;q;r
i j;k
ðnÞ

Pi;j;k; ð1Þ

where the control points Pi;j;k need to satisfy Pi;j;1 Pi;j for the meth
od to be isogeometric, i.e. Vaðn1; n2;0Þ Saðn1; n2Þ. The approxi
mants of isogeometric analysis, viewed as function of physical
space, are simply

eNp;q;r
i;j;k ðxÞ Np;q;r

i;j;k V 1
a ðxÞ

� �
Np;q;r

i;j;k 	V
1

a ðxÞ:

For coupling with the LME basis functions, we will only need a thin
layer of isogeometric basis functions in the vicinity of the boundary,
say k 1; . . . ;m. For the blending method described here, a single
layer of basis functions (m 1) suffices. Let us denote the support
of the function

Pm
k 1Np;q;r

i;j;k ðnÞ by ½0; n��. Only a few layers of basis
functions and control points in the k direction are required in Eq.
(1) to define the isogeometric mapping involved in the definition

of eNp;q;r
i;j;k ðxÞ for k 1; . . . ;m. In other words, we are only interested

in the mapping Va in the domain ½0;1�2 � ½0; n��. It suffices to extend
the sum over k in Eq. (1) from 1 to n, where n is the smallest integer
such that

Pn
k 1Np;q;r

i;j;k ðnÞ 1 in ½0; n��. For example, for cubic B Splines
and one basis function in the k direction (m 1), the isogeometric

mapping that defines eNp;q;r
i;j;1 ðxÞ requires only 4 layers of control

points (n 4). See Fig. 4 for an illustration.
The proposed method only requires the volume isogeometric

description in a very thin layer adhered to the boundary of the do
main. Consequently, all the difficulties of isogeometric methods
associated with volume meshing for general CAD descriptions
(topological obstructions, incongruent surface patches, local
refinement), arising from the rigidity of the tensor product struc
ture, are not present here. It is however important to consistently
ndaries from a mere set of points (left). Furthermore, the weak Kronecker-delta
s, is lost at non-convex parts of the domain (right), where the basis function of an



Fig. 4. Two-dimensional example of the isogeometric boundary representation. Here, a periodic B-Spline curve (red line) is described by the control points depicted by red
squares. The control points involved in the volumetric isogeometric mapping defined in a narrow region next to the boundary are represented by the green squares, together
with the red squares. The blue curve represents Vaðn1; n

�Þ, i.e. the support of the layer of volumetric isogeometric B-Spline functions considered here, eN3;3
i;1 ðxÞ, lies between the

red and blue curves, Vað½0;1� � ½0; n��Þ. We denote and relabel these isogeometric basis functions as NaðxÞ for a 2 IBS . The only purpose of the control points in green is to
define the isogeometric mapping for NaðxÞ; a 2 IBS . (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
article.)
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define the volume extensions Va in such a way that the paramet
rizations of neighboring patches are conforming, which can be eas
ily accomplished by selecting appropriately the one dimensional
basis function along the k direction and the control points. For this
to be possible, mild restrictions on the order of the B Spline
descriptions in the different patches arise.

To couple them with the LME approximants, the basis functions

and associated control points, eNp;q;r
i;j;k ðxÞ and Pi;j;k for k 1; . . . ;m, are

relabeled as NaðxÞ and xa for a 2 IBS, where IBS denotes the set of
global indices labeling B Spline nodes. It is important to attach the
control points to these basis functions since they participate in the
first order consistency condition, which the isogeometric B Spline
basis functions trivially satisfyX

i

X
j

X
k

eNp;q;r
i;j;k ðxÞPi;j;k x:

In practice, the quadrature is performed in physical space, not in the
parametric space where the B Spline functions are immediately
evaluated. Therefore, the basis functions NaðxÞ for a 2 IBS need to
be evaluated at arbitrary points, which involves computing V 1

a ; gi
ven x, we seek n such that VaðnÞ x. In practice, this can be effi
ciently and robustly obtained by minimizing f ðnÞ j VaðnÞ xj2

with Newton’s method and line search, and providing good initial
guesses.

4. Blending through the constraints

We have explored three different strategies to blend LME
approximants and isogeometric analysis: (i) the partition of unity
method [31], (ii) the maximization of the relative entropy
[29,32], and (iii) the imposition of the reproducibility conditions
with a maximum entropy optimization program, and found that
(iii) is the simplest and most natural from a max ent viewpoint.
Consequently, henceforth we only focus in this strategy, and pro
vide a brief account of the other alternatives in Appendix A.

The key idea is to consider the B Spline basis functions NbðxÞ, for
b 2 IBS defined in a narrow region adhered to @X, as known prob
abilities (data) in the statistical inference optimization program.
The integration of this information through the constraints allows
us to reformulate the (LME) convex optimization problem pre
sented in Section 2 as
4

For fixed x minimize
X

a2IME

ma ln ma þ
X

a2IME

bama j x xaj2;

subject to ma P 0; a 2 IME;X
a2IME

ma þ
X

b2IBS

NbðxÞ 1;X
a2IME

maxa þ
X

b2IBS

NbðxÞxb x:

The minimizers of the above optimization program define the
blended isogeometric/max ent (IGA LME) approximants, maðxÞ.
Notice that the B Spline basis functions do not appear in the
objective function as they contribute a constant value, and that
the set of indices is split into disjoint sets such that
f1;2; . . . ;Ng IBS [IME.

The calculation of these new basis functions by duality methods
is straightforward, but it is very important to appropriately formu
late the constraints to obtain well behaved Lagrange multipliers.
Indeed, even for regular LME approximants the linear consistency
condition is rewritten as

P
apaðx xaÞ 0 using the partition of

unity condition, to obtain bounded multipliers in the interior of
the domain. Here, it proves sufficient to define

AðxÞ 1
X

b2IBS

NbðxÞ and YðxÞ
X

b2IBS

NbðxÞðx xbÞ;

to rewrite the first order consistency condition asX
a2IME

ma xa x
YðxÞ
AðxÞ

� �
0;

at the points where AðxÞ > 0. This leads to bounded Lagrange mul
tipliers, which are also well behaved at the boundary of the blend
ing region. Where this is not the case, the approximation is fully
given by the isogeometric scheme since these non negative func
tions add up to one.

The Lagrangian for the optimization program above is then

L ma; k0; kð Þ
X

a2IME

ma ln ma þ
X

a2IME

bama j x xaj2

þ k0

X
a2IME

ma AðxÞ
 !

þ k �
X

a2IME

ma xa x
YðxÞ
AðxÞ

� �
:

The stationarity conditions, together with the partition of unity con
straint, lead to
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maðxÞ
exp faðk�ðxÞ; xÞ½ �

Z k�ðxÞ; xð Þ ;

where

faðk; xÞ ba j x xaj2 þ k � x xa þ
YðxÞ
AðxÞ

� �
and the reduced partition function is given by

Z k; xð Þ 1
AðxÞ

X
a2IME

exp faðk; xÞ½ �:

The optimal Lagrange multiplier k�ðxÞ can be computed by maxi
mizing the reduced dual Lagrange function

k�ðxÞ arg max
k2Rd

AðxÞ ln Z k; xð Þ½ �:

The continuity of the resulting approximants is given by that of the
B Splines. The expressions for the spatial derivatives of the approx
imants are provided in Appendix B.

Fig. 5 shows the IGA LME approximation schemes for a
two dimensional domain described by a periodic B Spline curve
(red line). The support of the B Spline basis functions NaðxÞ for
a 2 IBS lies within the region between the red and the blue
lines. It can be observed that the basis functions of interior
nodes vanish in @X, even in non convex parts, as the layer
of isogeometric functions shield the IGA LME approximants
from the boundary. For the blending optimization program to
be feasible, the support of the isogeometric approximants
should be populated by max ent nodes. This condition is very
easy to satisfy in practice, e.g. by an offset of the boundary
control points.
Fig. 5. Basis functions obtained by blending isogeometric analysis and LME basis functio
panel) lies between @X (red line) and Vaðn1; n

�Þ (blue line). The boundary nodes xa for a 2
basis function is a fully LME basis function, the gray and brown are fully isogeometric
references to colour in this figure legend, the reader is referred to the web version of th
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5. Numerical examples

We illustrate next the ability of the proposed method to handle
local refinement, incongruent boundary representations, and to
impose directly essential boundary conditions in non convex do
mains, possibly with complex topology. For this, we consider first
the heat equation, and then linear and nonlinear elasticity. Before
presenting the numerical examples, we provide details on the
numerical implementation.

5.1. Implementation details

In all the examples presented here, we adopt an aspect ratio
parameter of c 1:6, which produces moderately spread basis
functions as illustrated in Fig. 2. We describe all the boundaries
with cubic B Splines, and offset a copy of the boundary control
points inwards to populate the blending region, as illustrated in
Fig. 5. The rest of the domain is then discretized with an unstruc
tured grid generated with standard tools allowing for local refine
ment [33 35].

The integration cells and quadrature points are illustrated in
Fig. 6 (right). The integration points for the interior cells are gener
ated with standard Gaussian quadrature rules in a background Del
aunay mesh supported on the nodes. On the other hand, for the
boundary cells, we use quadrature rules recently developed for
high order curved elements [36] and in NEFEM applications [26].
Subdivision of the boundaries cells into smaller cells is another op
tion, which is nevertheless computationally more expensive.

Circular parts of the boundary cannot be represented exactly by
B Splines. However, cubic B Splines provide an excellent approxi
mation with few control points, as explained in [37] and illustrated
ns. The support of the isogeometric basis functions (gray and brown in the bottom
IBS coincide with the red control points in Fig. 4. In the bottom panel, the dark green
basis functions, and the rest are blended basis functions. (For interpretation of the
is article.)
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Fig. 6. Accurate description of a circular boundary with cubic B-Splines and few control points (left), discretization of the domain with a coarse grid of control points (center),
and Gaussian and NEFEM quadrature rules for interior and boundary integration cells (right).
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in Fig. 6 (left). The key is to generate the coordinates of the NCP con
trol points representing the circle with the formula
Pi Rp cos ði 1Þh½ �;Rp sin ði 1Þh½ �

	 

i 1;...;NCP

, where Rp
3

2þcos hð ÞR;

R is the radius of the circle, h 2p
NCP p, and p 3 represents the order

of the B Splines. The parametric space is given by a periodic knot
vector of length Nkv NCP þ pþ 1 and defined as

kv 0 1
NCPþp

2
NCPþp . . . NCPþp 1

NCPþp 1
h i

, being the range of evaluation

bounded by the knots pþ 1 and NCP þ 1. We use this approxima
tion to represent the circular boundaries appearing in the exam
ples of this section.

5.2. The heat equation in complex domains

Fig. 7 shows solutions of the heat equation on a domain given
by a periodic B Spline boundary representation (that of Fig. 5),
illustrating the ability of the proposed method to impose essential
boundary conditions for non convex domains. In the left, we con
sider a source such that uðx; yÞ 2xy3 þ yx2 5x cosð16yÞþ
x5 cosð8xÞ is the exact solution, and prescribe the exact essential
boundary conditions. The numerical solution is highly accurate,
with a relative error of 0:0023 in the L2 norm. In the right, we illus
trate a solution with homogenous Dirichlet data for the source
sðx; yÞ 40x3 8y. These two examples show that the proposed
method allows us to impose directly essential boundary conditions
in the non convex parts of the domain, circumventing a shortcom
ing of LME approximation schemes [1] and meshfree methods in
general [10].
Fig. 7. Fulfillment of essential boundary conditions in a non-convex domain for heat co
Dirichlet data are analytically prescribed (left) and for an example where homogeneous
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Fig. 8 shows the numerical solution of the heat equation in a do
main with three holes, where the exterior and the interior bound
aries are represented with periodic B Spline curves. We impose
constant Dirichlet data in each disjoint part of the boundary and
a source. We insist that imposing Dirichlet boundary conditions
is trivial for the IGA LME scheme, since only isogeometric basis
functions are non zero at the boundary. This example illustrates
the flexibility of the proposed approach in dealing with multiple
boundary patches with different levels of refinement. A standard
isogeometric analysis of this problem would require significant
preprocessing, partitioning the domain into several two dimen
sional patches describing a logically tensor product structure, pos
sibly stitching these patches with specialized techniques to have a
globally smooth approximation, and refining some of the boundary
representations to have congruent boundary representations in a
given patch. An isogeometric analysis with local control of the
refinement level would in addition require using T Spline or hier
archical B Spline technologies. With the proposed method, no spe
cial treatment is needed to obtain a set of smooth non negative
approximants with local refinement.

5.3. Linear elasticity in a plate with a circular hole

We solve numerically the linear elasticity boundary problem of
an infinite plate with a hole subject to a far field uniaxial traction,
whose exact solution is known in closed form [38]. A square com
putational domain ½ 5;5� � ½ 5;5� with an interior circle of radius
R 1 is discretized with a uniform but unstructured distribution of
nduction problems. Numerical solutions for a case in which the non-homogeneous
essential boundary conditions are imposed (right).



Fig. 8. Locally refined grid of control points (left) and numerical solution (right) of a Poisson problem in a domain with three holes and prescribed constant Dirichlet data on
each of the disjoint sub-boundaries. The exterior and interior boundaries are described with B-Spline curves.
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Fig. 9. Discretization of the computational domain (left) and convergence of the L2-norm (right) for the problem of an infinite plate with a hole subject to a far-field uniaxial
traction.
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points, as illustrated in Fig. 9 (left) for a grid of 1;033 control
points. The problem is solved with Neumann boundary conditions
and the exact tractions. A Young’s modulus of E 1 and a Poisson’s
ratio of m 0:45 are used for the numerical calculations with linear
FEM, LME (c 1:6) and IGA LME approximants.

Fig. 9 (right) shows the convergence in the L2 norm as a func
tion of the nominal grid spacing estimated as h dof 1/2 for the
three numerical schemes, together with a guiding line with slope
2. The three methods converge with the optimal rate. While the
Table 1
Maximum and minimum stresses at the circumference of the hole computed with linea
stresses are also indicated.

h rmin

Exact FEM LME IGA-LM

0.4 �1.0 �0.7664 �0.8218 �1.072
0.2 �1.0 �0.9702 �0.9412 �1.029
0.1 �1.0 �1.0368 �0.9731 �1.011
0.05 �1.0 �1.0279 �0.9811 �1.001
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LME solution is significantly more accurate than linear finite ele
ments, as previously reported, the enhancement of IGA LME with
respect to LME approximants is mild but systematic.

The maximum and minimum stresses at the circumference of
the hole computed with the different approximation schemes con
sidered here for several levels of refinement are given in Table 1. The
stresses calculated with IGA LME approximants are much more
accurate than those computed with the other methods. Fig. 10 (left)
shows the tangential or hoop stress rhh at the circumference of the
r FEM, and LME (c 1:6) and IGA-LME (c 1:6) approximation schemes. The exact

rmax

E Exact FEM LME IGA-LME

2 3.0 2.9927 3.0776 3.0692
2 3.0 3.0987 3.0818 3.0176
1 3.0 3.0869 3.0134 3.0095
0 3.0 3.0843 3.0082 3.0007
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hole for the computational domain illustrated in Fig. 9 (left). The
smoothness of the stresses obtained with the LME and IGA LME
methods is noteworthy. The stress field around the hole calculated
with IGA LME approximants is illustrated in Fig. 10 (right).

5.4. Nonlinear elasticity

We now consider finite deformation elasticity, and adopt a
compressible neo Hookean material model with strain energy
density

WðFÞ 1
2

kln2ðJÞ þ 1
2
ltrðFT FÞ 3

2
l l lnðJÞ;

where F is the deformation gradient, J detðFÞ, and k and l are the
Lamé constants. In calculations these constants are set to
k=l 100, which corresponds to an initial Poisson’s ratio of
m 0:495.
Fig. 11. Locally refined grid of control points (top) and numerical solution (bottom)
boundaries and subject to prescribed compressive deformation (the nominal stretch rat
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We first analyze a nonlinearly elastic body with a non convex
domain clamped at the two interior boundaries, and progressively
reduce the distance between these two holes to compress the sam
ple, see Fig. 11. We describe the three boundaries with periodic B
Splines and discretize the domain with an unstructured and locally
refined grid of 3;105 control points, as illustrated in Fig. 11 (top).
We use the limited memory Broyden Fletcher Goldfarb Shanno
(L BFGS) algorithm to find the equilibrium solution for this nonlin
ear problem. Fig. 11 (bottom) shows the deformed configuration
for a nominal stretch ratio of 0:68, exhibiting very large deforma
tions and buckling. The color represents the trace of the stress
tensor. The flexibility of the proposed method to efficiently deal
with a complex domain, retaining the high fidelity boundary
representation, is noteworthy. The figure also suggests the applica
tion of the proposed method to problems involving contact, for
which a smooth boundary representation is essential to avoid
of a neo-Hookean hyperelastic non-convex domain clamped on the two interior
io is 0:68). The color represents the trace of the stress tensor.



Fig. 12. IGA-LME node distribution (left) and detail of the FEM mesh (right) for a hyperelastic plate perforated with 13 circular holes.
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spurious contact forces due to corners in a standard finite element
mesh. This is the topic of current research.

We now consider a perforated plate (see in Fig. 12) clamped on
two opposite sides, and subject to prescribed displacement. We
consider the plate under compression and stretching. The exterior
boundary and the 13 circular holes are described with periodic B
Splines. The radii of the small and large circles are Rs 0:4 and
Rl 1:05, and the lateral dimensions of the domain are 8 and 9.
We discretize the domain with the unstructured grid of 10;495
control points illustrated in Fig. 12 (left). Note that the local refine
ment is not needed to describe the geometry with high fidelity, but
rather to capture the localized features of the solution. A mesh of
113;616 nodes and 224;712 elements, shown in Fig. 12 (right), is
used for the linear finite element computations. We have checked
the convergence of the IGA LME solution by grid refinement,
obtaining nearly identical results.

We first upset the domain with a nominal stretch ratio of 0:86,
incrementally imposed in 28 steps. Fig. 13 shows the elastic energy
as a function of deformation, calculated here as ð‘ LÞ=L, where
L 8 and ‘ are the initial and final horizontal lengths of the plate.
The buckling events at 5%; 9% and 11% are apparent. In
Fig. 14, we illustrate the deformed configurations at the 3 post
Fig. 13. Elastic energy as a function of deformation for a hyperelastic perforated
plate subject to prescribed compressive deformations (the nominal stretch ratio is
0:86). Note the buckling events at deformations of �5%;�9% and �11%, and the
superior accuracy (measured as lower energy) of the IGA-LME approximants in
comparison with a linear FEM model with one order of magnitude more degrees of
freedom.
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buckling states and for the final equilibrium state. Note the ability
of the IGA LME method to capture large deformations and nonlin
earities. Note also the lower elastic energy (up to 9%), indicative of
a more accurate numerical solution, obtained with IGA LME as
compared with linear FEM with one order of magnitude more de
grees of freedom. The superior performance of the LME approxi
mants as compared to linear FEM in nearly incompressible
nonlinear elasticity was already noted in [1].

We obtain similar results in tension, where we consider a nom
inal stretch ratio of 1:75. Fig. 15 shows the elastic energy as func
tion of deformation, again exhibiting smaller buckling events.
Again, the IGA LME solution outperforms the FEM solution, involv
ing one order of magnitude more degrees of freedom. In Fig. 16, we
show the equilibrium configurations at deformations of 25%;50%

and 75%.

6. Discussion and concluding remarks

We have presented a method to produce smooth non negative
approximants that describe the geometry with high fidelity (exact
CAD representation) and easily handle unstructured and locally re
fined volume discretizations. Although we have exercised the
method in 2D here, it is readily applicable to higher dimensions.
The proposed approximation schemes blend local maximum entro
py approximants and isogeometric analysis through the reproduc
ibility constraints in a maximum entropy convex optimization
program. We have implemented the formulation with B Splines,
but the method directly carries over to other non negative approx
imants such as NURBS, or subdivision surfaces.

We have examined two other alternatives to blend maximum
entropy approximants and isogeometric analysis, which rely on
the partition of unity method, and on the maximization of the rel
ative entropy with specific prior functions and constraints. Such
approaches are more complex and impose stronger requirements
on the node distribution, as compared to the method based on
the reproducibility constraints.

The flexibility of the method for the volume discretization of
domains of complex topology with isogeometric boundary fidelity,
including incongruent B Spline patches and local refinement, is
noteworthy, as shown with the heat equation, and linear and non
linear elasticity problems. We have illustrated the ability of the
IGA LME approximants to impose directly essential boundary con
ditions in non convex domains.

The numerical examples presented here highlight the flexibil
ity of the method, but do not exhibit a large sensitivity on the
geometry representation. Other applications such as electromag



Fig. 14. Post-buckling and final deformed configurations for a hyperelastic perforated plate subject to prescribed compressive deformations of �5%;�9%;�11% and �14%.
The color represents the trace of the stress tensor.

Fig. 15. Energy as a function of deformation for a hyperelastic perforated plate subject to prescribed extensional deformations (the nominal stretch ratio is 1:75).

Fig. 16. Deformed configurations for a hyperelastic perforated plate subject to prescribed extensional deformations of 25%;50% and 75%. The color represents the trace of
the stress tensor.
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netic scattering, flows around airfoils and blunt bodies, nanopho
tonics, or contact problems, can further benefit from the proposed
method. The approximants can also be combined with a point set
manifold processing methodology [24] to describe the boundaries
of thin shells with high fidelity. On the other hand, the application
of the proposed method to industrial problems requires a system
atic treatment of bodies defined by multiple patches in 3D, and a
streamlined integration with commercial CAD systems, which do
not seem to present important obstacles. We finally note that, in
stead of considering a thin crust of isogeometric basis functions
adhered to the boundary, it is possible to exploit the proposed
10
blending method to resolve locally the topological difficulties of
an otherwise predominantly isogeometric approximation.
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legend, the reader is referred to the web version of this article.)
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Appendix A. Alternative methods to blend LME approximants
and B-Splines

We summarize in 1D the ideas behind two alternative strate
gies to blend LME approximants and B Splines: (i) the partition
of unity method, and (ii) the maximization of the relative entropy
with B Splines and Shepard approximants as prior basis functions.

A.1. Partition of unity method

The partition of unity (PU) is a classical technique to design con
forming spaces with specific properties [31]. This method enables
us to glue together convex LME approximants and B Splines, de
noted as paðxÞ and NaðxÞ respectively, through the equation

maðxÞ 1 qðxÞ½ �paðxÞ þ qðxÞNaðxÞ;

where maðxÞ represents the new IGA LME PU approximation
scheme, and qðxÞ 2 ½0;1� is the function of partition. By construc
tion, these approximants satisfy the conditions maðxÞP 0 andPN

a 1maðxÞ 1. The fulfillment of the first order reproducibility
condition

PN
a 1maðxÞxa x is straightforward for an order p P 1.

As the continuity of maðxÞ is determined by the order of the B
Splines (LME approximants are C1), the function qðxÞ has to be at
least as continuous as the B Spline interpolants.

In Fig. A.17 we illustrate first order consistent IGA LME PU
approximants for a one dimensional grid of points. The cubic B
Splines and the LME approximants (c 1:6) used for the calcula
tions are also depicted. The partition function is constructed by
summing the first four cubic B Spline basis functions. Note that
the new scheme is different to LME approximants only in the re
gion of influence of the partition function. While this approach is
very simple conceptually, the construction of the partition function
and the B Spline basis functions requires a larger structured grid of
points next to the boundary.

A.2. Relative entropy maximization

LME approximation schemes can be also derived from the
maximization of the relative entropy [29,32]. The formalism is
Fig. A.18. Relative entropy method: Cubic B-Splines (green line) and Shepard approxima
The control points are also illustrated. (For interpretation of the references to colour in
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based on the Kullback Leibler distance [39], or negative relative
entropy, between two discrete probability distributions M and R

DM=R

XN

a 1

ma ln
ma

ra
;

where M fmaga 1;...;N;R fraga 1;...;N are non negative numbers
satisfying

PN
a 1ma 1, and

PN
a 1ra 1. Notice that DM=R is not

strictly a distance since it is not symmetric in its arguments. None
theless, it is useful to think of as a measure of the ‘‘distance’’ be
tween two distributions, and it is often interpreted as the amount
of information needed to change the description of the system from
R to M. The probability distribution R is often referred to as prior. A
question in statistical inference is how to determine a new distribu
tion M as close as possible to some prior distribution R, but incorpo
rating additional information in the form of constraints. A relative
entropy maximization program provides a means to find such
distribution:

ðREÞ For fixed x minimize
XN

a 1

ma ln ma
raðxÞ ;

subject to ma P 0;
XN

a 1

ma 1;
XN

a 1

maxa x:

The solution of this problem can be written as
maðxÞ raðxÞ exp f �a ðxÞ

� �
=Zr xð Þ, where the relative partition function

is Zr xð Þ
PN

b 1rbðxÞ exp f �b ðxÞ
� �

, while f �a ðxÞ depends on the consis
tency conditions. Notice that the resulting distributions are the
product of the prior functions and a correction accounting for the
extra constraints. These distributions can be understood as basis
functions [1] and, for instance, LME approximation schemes are
recovered when Shepard approximants with Gaussian kernel are
used as prior probability distributions [32].

To blend max ent and B Splines, we consider B Splines and
Shepard basis functions with Gaussian kernel as prior information
in the relative entropy program. In Fig. A.18 we show the prior cu
bic B Splines (four control points nearest to the boundary), the
prior Shepard approximants (remaining points) for c 1:6, and
the resulting approximants, referred as IGA LME RE. Notice that
these new approximation schemes are as smooth as the priors,
and remain very close to the priors. If the priors satisfy the
constraints, e.g. in the region close to the boundary, the resulting
approximants coincide with the priors. For these reason, the IGA
LME RE approximants follow the B Splines in the vicinity of the
nts (red line) as prior information to select IGA-LME-RE basis functions (blue line).
this figure legend, the reader is referred to the web version of this article.)
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boundary, and mend the Shepard approximants to fulfill the
consistency conditions. The behavior in the blending region de
pends considerably on the parameter c. This strategy is computa
tionally much more expensive than the other two blending
approaches.

Appendix B. Spatial derivatives of the basis functions

We provide here details for the calculation of the first spatial
derivatives for the blended isogeometric/max ent approximation
schemes. We denote partial differentiation by @, spatial gradients
of scalar functions by r, and the matrix of partial derivatives for
vector valued functions by DyðxÞ. The symbol � is used to indicate
that a function is evaluated at the optimal Lagrange multiplier
k�ðxÞ, which introduces explicit and implicit dependences on x in
all functions with ⁄. Within the scope of this appendix, we use
m�a to denote what has been referred to as ma in the rest of the pa
per. No implied sum is assumed for repeated node indices.

As shown in Section 4, the optimal Lagrange multiplier k� min
imize the dual function g x; kð Þ AðxÞ ln Z x; kð Þ, that is,
k�ðxÞ arg mink2Rd g x; kð Þf g. We solve this nonlinear problem with
the Newton Raphson method, which requires the calculation of
the first and second derivatives of the objective function with re
spect to the Lagrange multiplier

rðx; kÞ gkðx; kÞ
X

a2IME

maðx; kÞ x xa þ
YðxÞ
AðxÞ

� �
;

Jðx; kÞ gkkðx; kÞ
X

a2IME

maðx; kÞ x xa þ
YðxÞ
AðxÞ

� �

 x xa þ

YðxÞ
AðxÞ

� �
1

AðxÞ rðx; kÞ 
 rðx; kÞ:

Hereafter, the dependence on the variables x and k will be dropped
in order to simplify the notation. By taking the spatial derivatives of
the expression m�a expðf �a Þ=Z� (see Section 4), it is readily verified
that

rm�a m�a rf �a
1
A

X
b2IME

m�brf �b rA

 !" #
; ðB:1Þ

where rA
P

b2IBS
rNb. Applying the chain rule to the equation

f �a ba j x xaj2 þ k� x xa þ Y
A


 �
, we have

rf �a 2baðx xaÞ þ Dk� x xa þ
Y
A

� �
þ k� þ D

Y
A

� �
k�;

where

D
Y
A

� �
1
A

DY
1

A2rA
 Y

1
A

X
b2IBS

rNb 
 ðx xbÞ þ
1 A

A
Id

1

A2rA
 Y

and Id represents the identity matrix. By replacing the expression of
rf �a in Eq. (B.1) and introducing

rb 2
X

a2IME

bam�aðx xaÞ;

we obtain

rm�a m�a 2baðx xaÞ þ Dk� x xa þ
Y
A

� �
þ 1

A
rb þrA

 �� �

:

The term Dk� is not explicitly available but, given that r� is identi
cally zero (first order reproducibility condition), the following con
dition is also satisfied
12
0 Dr� Jb þ AIdþ AD
Y
A

� �
þ Dk�J�;

where

Jb 2
X

a2IME

bam�aðx xaÞ 
 x xa þ
Y
A

� �
:

From the previous equations it follows that

Dk� Jb AId AD
Y
A

� �� �
ðJ�Þ 1

;

which leads to a close expression for the first spatial derivatives of
the basis functions

rm�a m�a 2baðx xaÞ þ Jb AId AD
Y
A

� �� �
ðJ�Þ 1 x xa þ

Y
A

� ��
þ1

A
rb þrA

 ��

:

Note that for the points where A 1, and consequently Y 0, we
recover the expression provided in [9], that is

rm�a m�a 2baðx xaÞ þ Jb Id

 �

ðJ�Þ 1 x xað Þ þ rb

h i
:
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