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Abstract 

Concepts and techniques from the field of Pammetrized Variational Principles (PVPs) are extended to Matrix 
Structural Analysis (MSA). Free parameters are used as weighting factors of governing discrete equations. Combining this 
idea with matrix manipulation techniques yields a continuous spectrum of supermatrix equations. Setting parameters to 
numerical values provides specific solution methods, some of which are well known whereas others are not. The approach 
is applied to the classical MSA of truss and framework structures as well as to displacement-connected FE models gen- 
erated by a parametrized mixed functional. The main advantage of this "top down" derivation of solution schemes is the 
unification of seemingly disjoint methods for instructional and classification purposes. In addition, the question of duality 
between range-space and null-space representations is clarified. 

1. Introduction 

Work in Parametrized Variational Principles or PVPs, as surveyed in a recent article [1], has 
assisted in the development of families of mixed and hybrid variational principles. The number of 
free parameters in a particular family depends on the structure of the generating functional and 
the selection of independently varied fields. To date, the most studied application is compressible 
linear hyperelasticity. For this application it has been shown [2, 3] that three free parameters are 
sufficient to generate all mixed and hybrid principles in which displacements are independently 
varied. Canonical principles, such as Total Potential Energy or Hu-Washizu's, are obtained by 
setting those three parameters to specific values. 

The original development of PVPs [4-6] was prompted by applications to the Finite Element 
Method (FEM). Development thrusts have so far focused on the element level, and include the 
formulation of high-performance elements, the derivation of element-level error indicators, and the 
construction of finite element templates [7]. The common ingredient among these applications is that 
PVPs allow the construction of element families. As in the case of functionals, element instances 
are obtained by setting parameters to specific values. 
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The present paper explores the application of parametrized formulations at the assembly level. 
That is, we consider the analytical representation of the assembled finite element equations in which 
parameters are still left free. Starting from this representation, and proceeding through a combination 
of matrix algebra and parameter selection we are able to generate all recognized methods of Matrix 
Structural Analysis (MSA), as well as others that are comparatively unknown. While for MSA the 
latter are often curiosities, they are shown for completeness and as potential source of instructional 
exercise material. For expediency, some nomenclature and techniques are borrowed without proof 
from the field of constrained quadratic optimization, a topic that can be formulated in one-to-one 
correspondence with MSA [8]. 

Several structural models can be treated by this methodology: 
(1) The classical Matrix Structural Analysis (MSA) of skeletal (truss and framework) structures. 
(2) Displacement-connected FEM models generated by mixed PVPs. 
(3) Displacement-stress-connected FEM models generated by mixed PVPs. 
(4) Individual elements and superelements constructed through hybrid PVP formulations. 
For space reasons this paper concentrates on the formulation of items (1) and (2), leaving the 

more complex (3) and (4) to be considered in future articles. 
The present study, being the first of its kind, should be regarded as exploratory. Thus duplications 

and possibly unproductive dead ends can be expected. Nevertheless it will be shown that the use 
of parameters illuminates common features of seemingly disparate methods. 

2. Classical matrix structural analysis 

The classical treatment of MSA deals with the numerical simulation, by matrix methods, of linear 
truss and framework structures modeled as assemblies of bar and beam elements. As further discussed 
in Section 4.1, the advent of this branch of Structural Mechanics can be traced back to the European 
aeronautical industry in the 1930s as a means to systematize repetitive, tabular computations of 
aircraft stress, vibration and flutter on desk calculators. It thus predates the development of the 
Finite Element Method (FEM), and of commercial digital computers, by over two decades. 

In engineering disciplines that cover structures, such as Aerospace, Civil and Mechanical, classical 
MSA is normally taught to US college undergraduates at the junior (third year) level. This instruc- 
tion provides a bridge to the use of FEM-based analysis in more advanced senior and graduate 
courses. The whole subject can be readily covered using basic energy methods such as the Principle 
of Virtual Work, and no proficiency in variational calculus is required or expected from the students. 
Proceeding in a similar vein, classical MSA is used here to gently introduce fundamental matrix- 
manipulation techniques as well as the use of free parameters in the role of equation-weighting 
factors, while avoiding the complications of the general FEM. Several features of the general case 
are studied in Section 3. 

2.1. State and data vectors 

Consider a linear-elastic truss or framework structure under conservative static loading. A discrete 
mathematical model is constructed as an assembly of bar and beam elements connected at 
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joints. Such elements are collectively called members. Discretization unknowns are collected in the 
following three state vectors that have direct physical significance: 

f Array of n/mechanical  internal forces (also called resultant forces or generalized stresses). 
These arc; obtained by integration of stresses over member cross sections. Internal forces 
are not continuous across elements, and indeed such continuity would make no sense at 
joints where several members meet. 

g Array of n:j = ny intemal deformations (also called generalized strains) dual to f .  
v Array containing n~, nodal displacement components. Nodes are placed at joints and some- 

times at intermediate member locations. 

Unless the contrary is stated, it is assumed that prescribed .zero displacements have been removed 
from ~. In particular, all rigid body motions of the structure are thereby explicitly precluded. For- 
mulations that incorporate this assumption are collectively identified in the sequel by the acronym 
EPD, which stands for Excluded Prescribed Displacements. Of course, should nonzero joint dis- 
placements be prescribed, EPD formulations cannot be used, and the generalization discussed in 
Section 2.4 is required. 

Full linear independence among the entries in f ,  g and v is assumed. As a result, if n / =  n,, the 
discrete structural model is called statically determinate or isostatic. If n c > n,, the model is called 
statically indeterminate or hyperstatic. The case n l < n,,, which identifies internal mechanisms 
(meaning that the structure is kinematically unstable), is not considered here. 

The problem data is collected in the following vectors: 

p Array of n,, mechanical nodal forces corresponding to the node displacements v. 
gO Array of % = n s initial deformations: value taken by g if all member forces f vanish. 

This is sometimes called the prestrain vector. 
f 0  Array of n,J = n.r initial forces: value taken by f if all member deformations g vanish. 

This is often called the prestress vector. 

Initial deformations and forces account for effects due to temperature changes, prestresses, lack 
of fit, or nonlinear behavior treated by pseudo-force methods. They are connected by the relations 
gO = _CfO and f o  __ _SgO, where C and S are the compliance and rigidity matrices, respectively, 
defined below. 

2.2. Range-space .form of  EPD equations 

The governing equations that link f ,  g and v to the problem data can be organized into three 
groups, which are labeled as {Kr}, {C} and {Er} for kinematic, constitutive and equilibrium equa- 
tions, respectively. (Subscript r stands for the qualifier "range" explained below.) The reciprocal 
forms (deformation-to-force and force-to-deformation) of the constitutive equations are labeled {C/} 
and {C,J}, respectively. Borrowing a term from linear algebra, the three groups will be collectively 
called the range-space form of the governing equations: 

{K,.}: g=Av,  
{ C } - { C r ,  C:j} : f = S g + f  °, g = C f  + g  °, (1) 

(E~}: ATf : p. 



48 CA. Felippa/ Finite Elements in Analysis and Design 21 (1995) 45- 74 

i J l  

nf =ng 

I I I I l l l l l l  I 
l l l l l I r l l  I 

m I I I I I I I I I  I 
I I i I I I I I I I I  i 
I [  . l l l l l l l l  

E I I I I I I I I I  

I I n I I I I I I I  
I I I ~  I I I I I I  
I I I I  N I l l l l  
I I I I I  i I I I I  
| I I I I l l l l l  
I I I l l l l  n I I  
I I I I ~ l l l i  I 
I I i r i , t l  m 

AT= I I I I I I I I  I e l  I I I I I I i 
i i i i i i i i i i  i i i I i i i  
i i i i i i i i i l i l l l l l  
I I I I l l l l l l , , ' m . ~ -  ~ I  
I I I I I I I  

h i )  ---~ i~ n~l 

I I I I I I I l l n  

[ ~  = A:"SA = K 

Fig. 1. Sparseness pattern of matrices S, A and K for a small regular 2D structure. Falk's representation of matrix products 
[9] is used in the above arrangement. 

The following matrices make their appearance in (1): 

A The n¢j × n~, connection matrix ,  which is also called geometric matrix, assembly 
matrix, topology matrix and deformation-displacement matrix in the literature. Since 
(in the EPD version) rigid body modes have been explicitly removed from v, 
A can be assumed to have fu l l  rank n,,. This matrix is square if the structure 
is statically determinate (n~j = n; = n,,) and rectangular (with more rows than 
columns) otherwise. 

A T The equilibrium matr ix  is the transpose of the connection matrix and has the same 
rank. 

S = C -] The nr × nr = n q × n,j rigidity matrix ,  which relates internal element forces to 
element deformations. This matrix is square, symmetric positive definite, diagonal 
or block-diagonal. Since it is positive definite it has full rank nr = nq. 

C = S- ]  The n~; × n:; _-_- nr × nr compliance matrix ,  which relates element deformations to 
internal element forces. Like its inverse, C is square, symmetric positive definite, 
diagonal or block diagonal. 

S and C are sometimes identified by the confusing names of  element-disassembled stiffness and 
flexibility matrices, respectively, in the old (pre-1970) MSA literature. 

Matrix and vector combinations that appear frequently in the sequel and thus deserve special 
identifiers are: 

K = ATSA,  F = K -1, pO = ATfO, p .  = p  _pO. (2) 

K is the structural stiffness matrix, which has order n, × n,, and full rank. Since S is symmetric, 
so is K. Its inverse F, which exists because of the foregoing rank assumptions on S and A, is the 
s tructural f lexibi l i ty  matrix. Vector p0 collects initial node forces. Finally, p* is called the effective 
force vector. 

Typically, matrices A, S and K are highly sparse. Their block sparsity patterns for a small regular 
structure with 10 unconstrained nodes and 17 elements are illustrated in Fig. 1. 
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In the sequel symbols I and 0 denote the identity and null matrix, respectively, of the appropriate 
order. 

The invariance c, ondition equating external and internal energies measured from the undeformed 
state (g = 0, v = 0) is 

½(p +p0)T v = ½(f + f 0 ) r g ,  (3) 

in which factor ½ is inconsequential. It may be verified that the set of governing equations (1) 
satisfies (3) identically. 

The discrete forms of the principles of Virtual Work pT6v = f T 6 g  and Complementary Virtual 
Work vT~p = g r r f  readily follow from (3) 

2.3. Null space form o f  EPD equations 

An alternative expression of the goveming EPD equations (1) called the null-space representation, 
relies on the a priori satisfaction of the equilibrium equations {Er}. The general solution of ATf  = p 
can be expressed as the sum of its particular and homogeneous components: 

f = Bop + B~y, (4) 

where B0 and Bt ,;atisfy 

Ams0 = = t ,  ATB. = 0, ST,4 = 0. (5) 

The following matrices and vectors appear in these expressions: 

Y 
B0 

An array of ny = nf  - nr force redundants, implicitly defined through (4). 
The nf x n~, loads-influence matrix. Because of the first of (5), B0 may be interpreted as 
a generalized inverse of A r. 

Bl The nf × ny self-strain matrix. B~ contains (as columns) a basis for the null space of A T 
if nf > n~,. The name "self-stress" used by some authors is incorrect, since B~f  ~ 0 if 
gO 5 0 .  

Conditions (5) are graphically illustrated in Fig. 2. If the structure is statically determinate, n~. = 

equations as 
{K,,} : [ soT1 .Tj,={;}. 

{ c }  - { c , , , C r } :  g = c f  + gO, 
{E,,} : f = Sop + S,y.  

f = S g + f  °. (6) 

nf, fly = O, B1 and y are void, and Bom = ,4  - l  . Fig. 2 illustrates the fact that although matrix A T is 
sparse, B0 and BI are generally full. This can be seen from the physical interpretation of (4): each 
column of B0 contains the internal forces generated by applying an individual nodal force component 
while holding y :: 0. The column is typically full because the effect of a single force usually 
propagates throughout the structure unless "blocked" through clever selection of redundants in y. 

Applying the energy invariance condition (3) it is easy to show that Big  = v and Big  = 0. The 
latter relation justifies the label "self-strain" attached to B1 (although "self-deformation" would be 
more precise in the MSA context). We can therefore display the null-space form of the governing 



50 C.A. FelippalFinite Elements in Analysis and Desion 21 (1995) 45 74 

?l v n y  ~ ?If  - -  rlv 

+ 

7 

nf 

.2 

o 

Fig. 2. Graphical representation of the constraint relations (5) using Falk's matrix product visualization. The fill patterns 
aim to convey the fact that while A is a highly sparse matrix (of. Fig. 1), Bo and Bj are generally full. Relative matrix 
dimensions are typical of  a two-dimensional structure. Matrix K would have the same dimensions as ! above. 

A general method to compute B0 and Bt given ,4 is discussed by Fletcher [10] in the context of 
constrained optimization by Lagrangian methods. If n>. -- nr - n,, > 0, augment A with an¢ × n>, 
matrix V such that the augmented square matrix has full rank. Then 

[Av}-' rA"l-':[Bo n,] <7) = [ B l  or [v,- i- j  

As illustrated in Fig. 3, a complete inversion of  the augmented matrix is not actually needed. 
Equation (7) makes clear that B0 and Bt are far from unique. A wide spectrum of null-space 

methods, surveyed in Fletcher's book, can be obtained depending on how V is chosen and the 
inverse (7) represented. As noted, in structural analysis A is highly sparse while B0 and BI are 
generally full. It is therefore important to chose V and an implicit (factored) representation of the 
inverse to conserve sparsity. 

2.4. Including prescribed nodal displacements 

In the foregoing subsections all prescribed nodal displacements and associate nodal (reaction) 
forces have been explicitly removed from v, p and A. This choice, labeled EPD, has exposition 
advantages because it leads to cleaner formulas. Furthermore, the order of systems to be submitted 
to the equation solvers is reduced, although this advantage becomes progressively insignificant as 
discrete models become large. 

Alternatively, one may retain prescribed node displacements in the discrete governing equations. 
This choice is labeled as IPD, which stands for lncluded Prescribed Displacements. In this case, 
arrays v and p are formally partitioned as 

{v0) {.0) 
v = , p = . ( 8 )  

v~ Pt 
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Fig. 3. Graphical representation of Fletcher's scheme (7) to construct B0 and BI by inverting a Vr-augmented A T. Note 
that completion of the inversion process below the n,.th row is not required. Consequently products VTBo and vTBI have 
been left undefined. 

Here array v~, of dimension nvl < n,., collects prescribed displacements whereas array P0 collects 
known nodal forces. The unknown displacement and force arrays are v 0 and pi,  respectively. The 
latter are called reaction forces. It should be stressed that in practical computer implementations an 
explicit partition of v and p as per (8) is rarely done as it entails expensive equation rearrangements, 
but it is convenient for matrix notation. 

The partition (8) induces the following decomposition of the kinematic and equilibrium equations: 

{,o} 
, f  = , (9) 

Pl 

where pa and Vo are unknown. Collecting these equations we can express the range-space IPD form 
as 

{ K , . }  • g = Aovo + Alvl. 

{ C } = { C r ,  C.q}" f = S g + f ° ,  g = C f  +gO, (lO) 

As for the null-space representation, the internal force decomposition (4) changes slightly to 

f = BoPo +B~y,  ( 1 1 )  

where Bo and B1 now satisfy 

AroBo=B~Ao=I,  ATo B, =0,  ATBo=O, ATB, = R .  (12) 
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Fig. 4. The A and B matrices when prescribed nodal displacements are included, ~ is formally partitioned as per (8) and 
constraints (12) are imposed. 

These constraints are illustrated in Fig. 4. Note that R could be chosen to be highly sparse (as in 
Fig. 4) but is otherwise arbitrary. Inserting (11) and (12) into the energy invariance equation (3) 
one finds the relations 

Big=Vo, B~g=lt=RVVl,  p, =Ry,  (13) 

in which the last one may be also obtained by premultiplying both sides of  (11) by A T, then using 
ATBo = 0 and A~f = p~. Note that y and h are energy conjugate because yVh = pTv~. Therefore, h 
may be visualized as "dislocations" or "gaps" that open up as a result of the individual action of 
the redundant forces. 

Combining the preceding relations, the null-space IPD form can be presented as 

{C} ---- {Cq, C l }  g = c f  +g°, 

{E,,}" f = SoPo +S,y.  

f = S g  + f 0 ,  (14) 

When are IPD forms preferable over EPD ones? Several scenarios may be mentioned: 
(1) There are nonzero prescribed nodal displacements, i.e. vl ~ 0. If so EPD forms are insufficient. 
(2) Recovery of  reaction node forces is of  interest. 
(3) Rearrangement of matrix equations to explicitly delete prescribed-displacement equations is in- 

convenient or costly. For example, if such matrices are in secondary (disk) storage, or piecewise 
distributed into local memories of a massively parallel computer. 

(4) Duality between range and null space formulations is to be exhibited, as discussed next. 
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Fig. 5. Graphical representation of the duality scheme (15) for IPD forms. Kinematic relations appear on the left and 
equilibrium relations on the right. Full (dashed) paths depict relations primarily used in the range-space (null-space) forms. 
The ~ correspondences of (15) result on "flipping" the diagram about the duality-reflector vertical line. 

2.5. Dua l i t y  

The duality between range-space and null-space representations of  governing equations has been 
the subject of  a large volume of  papers across many disciplines. In the present (MSA) context 
that property can be displayed by considering the IPD forms (10) and (14), and observing that the 
following formal substitutions convert one into the other: 

g +_~f, gO +_.f0, S ~ C, v0 ~--'P0, A0 ~ B0, -41 ~ B1, vl +--~y, Pl ~ h. (15) 

This scheme is diagrammed in Fig. 5. The correspondences r 1 ~ y and Pl +-~ h deserve some 
comment. For structural models in which y and ,at have the same dimension, it is possible to take 
Y - P l  (in physical terms, reaction forces are chosen as redundants), whereupon R = A~B~ = I 

and h -  v~. If so those two correspondences coalesce into one: Vl +--~Pl, and duality is perfect. But 
this is generally impossible for arbitrary structures in which n~,l is different from ny = n f  - n~. (cf. 
Fig. 4). 

Note that no two-way correspondence can be established between the EPD forms (1) and (6). 
Reason: there is no null-space counterpart of  the process of  removing columns of A and rows of  
A r to exclude prescribed nodal displacements. Thus questions such as "what is the dual of  the EPD 
stiffness equations (22) of  the Displacement Method?" make no sense. 

As a corollary of  the foregoing remark, there are no null-space forms of free-free structures or, 
in general, o f  insufficiently supported structures. 
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2.6. Parametr&ation of range-space EPD equatiom 

The range-space EPD equations (1) can be grouped to form the following parametrized superma- 
trix equation: 

E s2+s3,c s3, s2A l(s) { 
-s31 (sl + s3)S -slSA I g = 

-s2A v -slAVS (1 + s l  q-s2)KJ v 

- ( sz  + s3)g° ) 

- s3 f  0 I 
p -  (1 +s2)Arf ° 

(16) 

where s~, s2 and s 3 are free scalar parameters. In compact form: 

Y w = r, (17) 

in which w and r group left-hand and right-hand side vectors, respectively, of  (16) and the symmetric 
coefficient matrix Y has order nf + % + n,, = 2nf + n~,. It is shown below that Y has full rank if 

SIS 2 q- $2S 3 "q- $3S 1 ¢ O. 

The particular form (16) is suggested by the configuration of  FEM equations generated by the 
Parametrized Variational Principles (PVPs) mentioned in the Introduction. Within the context of  
classical MSA, however, no recourse to variational formulations need to be made. Indeed the three 
matrix equations in (16) can be directly constructed by residual-weighting techniques as follows: 

Sz(Cf - Av + gO) + s3(Cf - g + gO) = 0, or s2 {Cq*Kr} + s3 {C0}, 

s , S ( g - A v ) + s 3 ( S g - f  + f ° ) = O ,  or stS{Kr}+s3{Cr}, (18) 

s~AVS(Av_g) +szAT(SAv_ f  +fo)  + (ATSAv_p + Arf0 )  = 0, 

or s,ATS {K~} + s2A T {Cf.Kr} + {Er.Cr.K~ }. 

Here by symbol {Cf.K~} is meant a combination of  the constitutive equation f = S ( g - f )  and the 
kinematic equation g = Av, and likewise for the other compound symbols. The particular weighting 
arrangement (18) is chosen so that the coefficient matrix of  (16) is symmetric for any combination 
of  parameters. 

2. 7. Parametrized solution and specializations 

Under the assumptions stated below the inverse of  the coefficient matrix in (17) can be written 

qISQS - S q2SQ - I SAK -I ] 
Y-* = q 2 Q S  - l q 3 Q  AK -~ , (19) 

K-lAX S K-lAX K-I 

where Q = Qr = AK-IAT = AFA r, and 

s l + s3 s3 s2 + s3 
ql = 2 + , q2 = 2 + , q3 = 1 + . (20) 

SIS 2 --~ $2S 3 -~- $3S I SIS2 --~ S2S 3 -~ S3S 1 SiS2 -~ S2S 3 -~- $3S I 
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These coefficients exist if 

L[S2 + s3 -s3 -s2 ] 
Sdet=SlSz+S2S3+S3s l=det  | --s3 s l + s 3  --Sl ¢ 0 .  (21) 

--s2 --sj l + s l + s 2  

If sdet = 0 the coefficient matrix Y of  (16) is singular because it contains dependent equations. 
Linear independence can be recovered by dropping those equations, as done below. Special forms 
of  practical or historical interest may be precipitated by setting s~, s2 and s3 appropriately, as 
illustrated next. 

Setting s~ = s2 == s3 = 0 (salt = 0) yields the stiffness equation of  the Displacement Method: 

Kv  = p -  AVf  ° = p - p °  = p . .  (22) 

The Direct Stiffness Method (DSM) is a highly efficient implementation of the stiffness-matrix 
assembly on an element-by-element basis: 

K = E (~{e))T(A{e)) Ts{e)A{e)~{e):  E (~ge{e)) TK{e)Aa{~), (23) 
e e 

in which e is an element index, A {e), S {~) and K {~) are element-level counterparts of  A, S and 
K, respectively, and Ae ~) are element-to-global-freedom localization matrices with entries 0 or 1. 
Because of  sparsity exploitation, (23) is more efficient than the naive use of  the triple matrix product 
AVSA. The DSM ~is the assembly technique used by the overwhelming majority of  general-purpose 
finite element codes. 

Setting s~ = s3 = 0 and s2 = - 1  (sdet = 0) yields the Force-Displacement Method, sometimes 
called the Combined Method in the old (pre-1970) literature: 

Setting s2 = s3 = 0 and sl = - 1  (sdet = 0) yields the Deformation-Displacement Method: 

- S  A S  v 
o • 

Setting s~ = 0, s3 == -s2 = 1 (sdet = 1 ) yields the Force-Deformation-Displacement Method: 

- I  S = . (26) 

A r 0 P 

Equivalent forms of  (24) through (26) are obtained if the signs of  all si's are reversed. 
Use of  the explicit inverse (19) and right hand side of  (16) yields the general solution 

z = : ./Iv : A K - I p  * . (27) 

K-Ip*  K- Ip*  

As can be expected from the construction (18), this solution is independent of the free parameters. 
In fact, through cancellations, (27) is valid even if Sde, = 0, e.g. (22), (24) and (25). As discussed 
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in Section 3 such independence carries over to selected FEM formulations based on mixed PVPs, 
but not to the general case. 

The following sensitivities are important in some applications such as computer-based member 
optimization: 

Ov - K - '  = F, Ov _ Ov ~f  Of 
~p -- Of o - - A  T, - ATS, - -  = SAF,  - S Q S  - S. (28) ~gO ~p ~gO 

2.8. Parametrization o f  range-space IPD equations 

In accordance with (8) the stiffness matrix K partitions as 

[.00.0.] i.o S.o l 
K =  K,o K,, = [ArtSAo ATISAI " (29) 

The parametrized supermatrix equations (16) become 

(s2 + s3 )C -s31 -szAo -s2Ai 

- s 3 l  (Sl + s 3 ) S  -S lSAo - s i S A l  

--S21~ T --sIATo S SKKo0 SKKoI 

-s2A~ -s,A~S sxK, o sxK,, 
Vo P0 - (1 + s2)A~f  ° 

v, p, - (1 + s z )A~ f  ° 

(30) 

in which for compactness s~ = 1 + s, + s2. Upon transferring all known terms to the right hand 
side we obtain [ s2+s3 cs3, s2A0o]{ } ( s2+s3  0+s2Av } 

--S31 (S1 + s3)S -s1SAo 0 f - s 3 f  ° + s1SAlVl 

-szA~ - s , A g S  srKoo 0 Vo = p o - ( l  + s 2 ) A ~ f ° - s x K o ,  v, " 

--S2A T - -S l~TS SKKIo --1 Pl - (1  + s2)ATlf ° - SKKIIVl 

(31) 

Setting s, = s2 = $3 = 0 gives immediately the equation for Vo: 

Koovo -- Po - A ~ f  ° - /~Ol v, = P o  - -  A ~ ( f  ° + S A l l ~ l  ) = P3' (32) 

where p~ is an adjusted effective-nodal-force vector that accounts for the effect of  both prestress f o  
and prescribed displacements v,. Solving and backsubstituting yields the solution {  +s0 } 

= g = Aovo + Atvl  

Vo K~o'P3 " 

Vl V I 

(33) 

The unknown reaction forces may be recovered from the last matrix equation in (31) 

P, = KloVo + K,,v, + Arlf °. (34) 
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The interesting sensitivity derivatives are 

OVo O~o _ K~o~ Kot, OVo = K£~ A~S ' 
Opo -- K~l'  Ovl Og ° 

Of _ SAoKo_, ' Of SAoK~ol Kol ' Of = SQooS - S, 
Opo Ov--~ = Og ° 

(35) 

where Q00 = AoK~i'A~. 
Modification of  other well known solution methods, such as (24)-(26), to explicitly account 

for prescribed displacements can be obtained by appropriate choice of  parameters as previously 
illustrated. 

2.9. Symmetric null-space EPD forms 

Formal substitution of  (4) into (16), followed by premultiplication of the first matrix equation by 
Bl x to restore symmetry, yields the parametrized null-space system of order ( n f -  n,,)+ % +n,, = 2nf: 

-s3BI (sl + s3)S -s~SA g 

0 - s tATS  ( l + s t + s 2 ) K J  v 

-(s2 + s3)(F10P + B~g °) } 

: s3(Bop _ f o )  , 

(1 + s2)(p - ATf °) 

(36) 

where Fll : BTCBI  and FI0 = B~CBo. System (36) is singular because it contains redundant 
equations inasmuch as the equilibrium equations are now superflous. To trim it by elimination of  v, 
set s~ -- 0 and s2 ::  - 1  while keeping s = s3 as a free parameter: 

(s - 1 )F,, - s B ~  ( 1 B~,g °) 1 s( Bop ) " 
(37) 

This is now a one-parameter form of order ny + n,. that represents a weighted combination of  
kinematic and constitutive equations. Two important specializations are obtained for s = 0 and 
s : l :  

-F l l y  = Flop + B~g °, (38) 

0 
[ 0_B, ~ x t l { Y } = { B o p - f °  . (39) 

Eq. (38) is the venerable Redundant-Force Method, also referred to as the Flexibility Method or 
simply the Force Method in the MSA literature. (The last name may be open to question, as there 
are unsymmetric versions.) Eq. (39) is the Redundant-Force-Deformation Method. Elimination of  
g from the latter :yields (38). Using this as basis for solution gives for the contribution Bty of 
redundants to internal forces: 

Bly = - G (  CBop + gO), (40) 
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where G = B t F ~ B ~  is a symmetric n/  × n f  matrix, which is null if the structure is statically 
determinate. Backsubtitution into the governing equations yields 

g = C ( I  - GC)Bop  + ( !  - G)g  ° . (41) 

v B ~ C ( !  - G)CBop + BTo(! - O)g  °) 

The interesting sensitivity derivatives are 

Ov B ~ C ( I  - G)CBo,  Ov _ B ~ C ( I  - G),  Of _ ( I  - GC)Bo,  Of - G .  (42) 
: o g o  - - 

Comparing this to (28), we see that 

F = K -~ = B ~ C ( I  - G)CBo,  S A F  = ( I  - G)Bo, G = S -  S Q S ,  etc. (43) 

One speedup of  null-space methods that should not be overlooked accrues when only few of  the 
applied forces, say r~,,, in p are nonzero. If these are collected in ~, BoPo can be contracted to/~0/7, 
in which B0 has only h,, << n,~ columns; cf. Section 4,2. 

2.10. Symmetr i c  null-space I P D  fo rms  

The most expedient way to get parametrized symmetric null-space IPD forms is by substituting 
(4) into (31) and symmetrizing. An alternative derivation, however, is followed below to illustrate 
the application of  duality (which cannot be used for EPD forms). On making the formal substitutions 
(15) into (30) we obtain [ s2+s3 s s3, s2 o s2 ]{ l {  s2+s3 o I 

- -S31 (SI + s3)C - s l  CBo - s l  CBI f = - - s 3 g  0 

- s2B~ - s ~ B ~ C  SrFoo srro, Po Vo -- (1 + s2)B~g ° 

--$2 BT --sIBTC SFFIo SFFll y RTIJ1-(1 + s z ) B ~ g  ° 

(44) 

in which Se = 1 + s~ + s2 = sx, and the dual of  the stiffness partitions are the flexibilities 

Xoo ~ too = Bo~CBo, Xo, ~ to,  : Bo~CB,, X,o -~  r ,o  = B,~CBo, K,, ~ F, ,  = B~CB, .  (45)  

To get rid o f f ,  set st = 0, s3 = 0 and s: = - s :   sss o .o } 
sB-~ (1 - s ) F o o  (1 - s)Fol / -- V o - ( 1 - s ) B ~ g  ° . (46) 

L sB~ (1 - s)e,o (1 - s ) e , ,  ] Rv, - (1 - s )B~g ° 

This may be transformed through the use of the identity Vo = FooPo+Foty+Brog ° and rearrangement 
of unknowns, to get 

- s B i  s S  g = s(BoPo _ f o )  , (47) 

R 0 V I Pl 
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which is the IPD version of  the one-parameter form (37). Setting s = 0 gives immediately the 
Force-Redundant-Method equation 

- F l l y  = FloPo + B~g ° - RTvi (48) 

which is (38) corrected for the effect of  nonzero prescribed displacements through the "dislocation 
vector" term h = RTVl. State vectors f ,  g and v0 can now be computed through the governing 
equations, while the reaction force vector may be recovered as Pl = A~f  = Ry. 

Setting s = 1 in (47) gives the IPD version of  the Redundant-Force-Deformation Method (37). 

2.11. Unsymmetric forms 

Consider again the parametrized range-space EPD form (16). On scaling the three matrix equations 
by W r, W,J and W,,, respectively, we obtain 

s, sA]i } I ,S S3,W , } 
0 W~s I -s31 (Sl +s3)S  - s I S A  : --S3Wef 0 . 

o o w,, L - s 2 a  T -slATS sKK W , , ( p - ( l + s 2 ) a f  °) 

(49) 

This system is generally unsymmetric. One particularly useful choice for the scaling matrices is 
W r = B(, IV<, = B~C and IV,, = I. Because of  the orthogonality condition B-(A = 0 this produces 
two identically zero submatrices: 

g = s3BVg ° . 

sK K v p - ( 1 + s2)p° 

(S2 q- s3)B~C -s3B~ 

-s3nTc (s, + s3)nT 
-s2A T - s l A V S  

(50) 

Taking s~ = s3 = 0 and S 2 = - 1  all submatrices multiplying g and v vanish and (50) reduces to 

E 
Taking s2 = s3 = 0 and sl = - 1 all submatrices multiplying f and v vanish and (50) reduces to 

[ ° 

Eq. (51) and (5;2) are unsymmetric versions of  the Force Method and Deformation Method, 
respectively. These selectively mix equations from the range-space and null-space sets. For example 
(51) combines AT.#" = p ,  B [ g =  0 and g = C f  +gO. 

Setting s~ = s2 =: s3 = 0 recovers the standard Displacement Method (22) and thus yields nothing 
new. 

The IPD versions are found to be 

Ao r Po - ' , k A o s l g = { p o  A~fO } (53) 
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in which h = Rv~. These can be easily obtained as instances of the parametrized form 

i s2+s3  c o s2 T {i} 
-s~n~,c (s, + s~)n~ o - s , R  T g 

-s2A o -s,A s s Xoo s Xo, I oo 
-s:AT -sj,'lTS sKK~o sKK~l I ol 

( -(s2 +s3)B-fg ° ] 

= ~ s3Bfg ° 

/ P ° - ( 1  +sz)AVof ° " 

( 1,, - ~1 + s 2 ) A ~ , f  ° 

(54) 

Taking the duals of (53) yields 

I_AIs] {n~fo_~,, } 
J g =  00 ' B~ C f =  vo - B~g ° ' 

(55) 

which are not useful because of the presence of unknowns in the right-hand side. 
Symmetrization of any of these forms via premultiplication by the transpose of the coefficient 

matrix is not recommended because it squares the condition number and hinders sparsity. 

2.12. The debut o f  analysis methods 

The first applications of the matrix forms of the standard Force Method (38) and Displacement 
Method (22) cannot be pinned down with certainty, but are likely to have occurred in the 1930s 
as discussed in Section 4.1. The driving application in the period 1945-55 was to sweptback-wing 
aircraft analysis. The first joumal article on the Matrix Force Method for this application is by Levy 
[11], followed by publications of Rand [12], Langefors [13], Wehle and Lansing [14], and Argyris 
and Kelsey [15]. The automated selection of redundants in the Force Method (38) by Gauss-Jordan 
elimination was further developed by Denke [16] and Robinson [17]. This technique is well covered 
in Przemieniecki's book [18], which also contains an exhaustive pre-1966 bibliography. A subse- 
quent flurry of activity occurred in the 1980s, focused on the construction of maximally sparse Bt 
matrices [ 19-24]. 

Original publications of the Matrix Displacement Method for aircraft analysis are by Levy [25], 
Argyris and Kelsey [15] and Turner et al. [26]. The last paper marks also the start of the present 
Finite Element Method. The Direct Stiffness Method version (23) was further developed by Turner 
and coworkers at Boeing [27, 28] and by 1970 it had eclipsed the Force Method in general-purpose 
FEM programs. 

The combined Force-Displacement Method (24) was apparently first noted by Kosko [29,30]. 
It is unclear where the combined Deformation-Displacement Method (25) and Force-Deformation- 
Displacement Method (26) appeared originally in print. The Redundant-Force-Deformation Method 
(39) is mentioned in passing by Fraeijs de Veubeke [31]. 

Apparently, the first joumal publication that contains the unsymmetric form (51) in the struc- 
tural mechanics literature is by Patnaik and Dayaratnam [32]. A similar form, with minor matrix 
rearrangements, is attributed to Thierauf and Topcu [33] (a reference not seen by the author) by 
Kaneko and Plemmonds [21]. 

The parametrized forms presented here are new. 
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3.  d - C o n n e c t e d  m i x e d  finite e l e m e n t s  

Moving up to the next step in complexity, this Section considers the finite element model of  
a linear-elastic structure treated as a continuum. The elements are derived through a three-field 
parametrized mixed functional in which displacements, strains and stresses may be independently 
varied. Elements a~:e connected through common node displacements whereas strains and stresses are 
still interelement discontinuous. To simplify the exposition attention is restricted to compressible 
linear hyperelasticity without initial strains. A comparable treatment of  incompressible elasticity 
requires a six-parameter functional [34]. 

3.1. Governing equations 

Consider a body of  volume V referred to a rectangular Cartesian coordinate system {xi}, i = 1,2, 3. 
The body is bounded by the surface S of  external unit normal n _= {n~}. The surface is decomposed 
into S : S,, U S ,  Displacements t~ = {fii} are prescribed on S,, whereas surface tractions i = {Z~} are 
prescribed on St. Body forces b = {b~} are given in the volume V. 

The three unknown internal fields are: displacements u _= {u~}, strains e - {ei/} and stresses 
a - {0"(i}- The stress traction vector on S is a,, = t = {ti} = { tT j in j }  (summation convention 
implied). To facilitate the construction of  elasticity functionals in matrix form, stresses and strains 
are arranged in the usual 6-component vector forms 

o ' T ~  [0-11 0"22 0"33 0"12 0"23 0"31 ], 

e ~ = [eun e22 e33 2et2 2e23 2e31 ], 
(56) 

These fields are connected by the kinematic, constitutive and internal-equilibrium equations, which 
on ignoring initial strain effects are 

e = Du, ~r = Ee, DTtr + b = 0. (57) 

Here E is the 6 × 6 stress-strain matrix of  elastic moduli arranged in the usual manner, D is the 
6 × 3 symmetric-gradient operator and its transpose the 3 × 6 tensor-divergence operator: 

l )  T 

8/8xl 0 0 8/8x2 0 8/8x3 

0/8x2 0 8/8x~ 8/8x3 0 

0 8/8X 3 0 8/8X2 8/8Xl 

(58) 

The boundary conditions are 

u = ~ on 6~,, o,, = t = i on ~ .  ( 5 9 )  

3.2. The parametrized mixed functional 

The following material is extracted from Refs. [1-6] to which the reader is referred for a more 
detailed exposition. In variational methods of  approximation we do not work of  course with the 
exact fields that satisfy the governing equations (57) and (59) but with independent (primary, 
parent) fields, which are subject to variations, and dependent (derived, secondary, associated) fields, 
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which are not. The approximation is determined by taking variations with respect to the independent 
fields. 

An independently varied field will be  identified by a superposed tilde, for example Ii. A derived 
field is identified by writing the symbol of  its parent independent field as superscript. For example, 
the strain and stress fields derived from displacements are e ~ = Dti and o" = Ee ~ = ED~. Similarly, 
a e = E~ are strains derived from varied strains ~ while e" = E - I J  are strains derived from varied 
stresses J. An advantage of  this convention is that u, e and a may be reserved for the exact (or 
generic) fields. 

The Parametrized Variational Principle (PVP) that produces the elements considered here is 617 = 
0, where 17 is the functional 

17 = U - pc. (60) 

Here U is the generalized strain energy [2,3] that contains three free parameters s~, s2 and s3: 

{ f f } T [ ( s 2 W s 3 ) l - - s 3 1  --s21 l { e " }  
I jrf tre --s3l (sl + s 3 ) l  - s l l  ~ dV, (61) 

U(ti, 8 ,~) - -  ~ a u -s21 - s l l  (1 + s l  + s 2 ) l  e u 

where ! is the 6 x 6 identity matrix, and pc is the conventional potential of  external loads, which 
for zero initialstrains is 

pc(~,~,~)  = b r ~ d V  + a n (~ - ~i)dS + iT~i dS. (62) 

where a n " = (1 +sl +s2)a,"-s2~n" --Ssan.e Specific functionals result on setting sl, s2 and s3 to numerical 
values. For example, the Hu-Washizu functional is obtained by taking s~ = 0 and s3 = -s2 = 1. 

Functional (60) is of  mixed  type. Parametrized hybrid functionals of  displacement-connected and 
traction-connected types can be obtained by changing pc to potentials pa and pt, respectively. These 
hybrid versions, studied in the foregoing references, are not considered in the present work. 

3.3. Finite element equations 

In the next four subsections the "body of volume V and surface S" of Sections 3.1 and 3.2 
becomes either an individual f inite element or an arbitrary assembly o f  such elements. The trial 
assumptions on stresses, strains and displacements are 

J = N . f ,  ~ = N~g, ~ = N.y.  (63) 

Here f is an array of  nf  stress-amplitude parameters, g an array of n~j strain-amplitude parameters, 
and v is an array of  n,, node displacements, whereas N.,  Ne and N,, denote the corresponding arrays 
of shape functions. For simplicity it is assumed that Nuv can match exactly the displacement B.C.s 
on S. whereupon the second integral in (62) drops out. 

The derived fields are a ~ = EN~g, a" = Ee ~ = E D N . v  = EG.v,  e" = E - l a  : E - t N . f ,  and 
e" = D N . v  = G.v, with G. = DN. .  For future use it is convenient to express the displacement- 
derived strain interpolation as the multiplicative splitting [35] Gu = N~.A, or 

e u = Ne.g", gu = Av, (64) 
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where g" is an array of  length n,~,, that contains displacement-derived-strain amplitudes, (which could 
be appropriate nodal values) and matrix A is position independent. Matrix A serves a function similar 
to that discussed in Section 2. Inserting these assumptions into (60) and making H stationary with 
respect to f ,  g and v, the following FE equations are obtained: 

--S3 HT" (Sl + s 3 ) S  - s i S ~ A  = , (65) 

-s2ATH  --s,ATs, (1 + s, + s2)X 

where 

. . . .  Ne,,EN~,,dV , 

(66) 

= = NgN, , ,dV ,  S , , =  N.TEN~.dV, p =  
d St 

For this model class the compliance C and rigidity S are still element-block-diagonal square ma- 
trices. But they are not generally the inverse of  each other, and in fact may have different order. 
The range-space and null-space equations cannot be cleanly extracted from (65) using the weighted- 
residual expressions (18), a point further discussed in Section 4.3 in conjunction with the potential 
use of  the Force Method. 

We now study specializations that lead to definite conclusions as regards parameter dependence. 

3.4. I somixed  models 

Elements based on (64)-(66)  will be called isomixed if the three strain-stress approximation 
subspaces coincide, that is, 8 - a e - a u and ~ -- e" = g'. They are obtained by choosing identical 
interpolations: 

N~ = Ne = N~u = N~so (say), (67) 

which of  course implies nf -- n:j --- n~ju. Consequently H = H~, and S = S~ = S,, all matrices being 
square and symmetric, reducing (65) to 

-s3H (Sl + s 3 ) S  - s l S A  = 0 , (68) 

- s 2 A T H  - - s lATS  (1 + s l  + s 2 ) K  p 

with K = ATSA.  Elimination of  the g and f unknowns, a task that may be carried out at the 
element level, yields the stiffness equation K*v = p. The effective stiffness K* can be presented in 
a compact form through the introduction of  a "residual rigidity" c A S  defined by 

C ( S  + e A S )  = H 2, (69) 

where e is a series-expansion scaling factor. Then 

K* = ATS*A,  S* = S - s~e A S  S S - e A S  = S - s~e A S  + O(e 2), (70) 
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in which Sde t : S1S 2 -~- $2S 3 -~- S3S I and s~ = s2 + $3. In particular, if s3 -- 0, K* = AT(S - s2eAS)A 
exactly. It can be seen that in general the solution provided by an isomixed model is parameter 
dependent unless s~ = 0, or Sdet = 0, or AS  : 0. The latter case is further studied below. If 
parameter dependence occurs so can be used to adjust the stiffness to try to improve element 
performance. 

3.5. Commutative &omixed models 

An isomixed element will be called commutative if the additional conditions (A)-(C)  stated in 
Appendix I are satisfied. It is shown there that this subclass verifies 

C S = S C - - H  2, i.e. A S = 0 ,  (71) 

and K* = K -- ATSA becomes independent of  the parameters. Because S and C now commute, S, 
C and H share the same eigensystem and all these matrices (and their powers) may be commuted 
at will (see Appendix A). Under these assumptions the inverse of  the coefficient supermatrix in 
(68) becomes 

7 H - I ( q I S Q S -  S ) H  -I H - I ( q 2 S Q -  I) H - I S A K  -l 

(q2QS - I ) H  -l q3Q A K  -1 , (72) 

K-I  AT SH- I  K-I  AT K-I 

where ql, q2 and q3 are defined in (20) Comparing (72) with (19) shows that the discrete equations 
may be presented as 

(S "~- S 3 )C -s31 -s2A 

-s31 (sl + s3)S - s lSA  

-s2A v - s lATS  (1 +sl +s2)ATSA 

/'*//!/ g = . 

V 

(73) 

where f *  = H f  may be called a vector of  effective internal forces. But this has exactly the 
same configuration, for f 0  = gO = 0, as the parametrized supermatrix system (16). Consequently 
all techniques described in Section 2 for classical MSA are applicable to commutative isomixed 
models at both element and assembly levels, if f is redefined as f * .  The equilibrium, constitutive 
and kinematic equations may be separated as 

ATf * = A T H f = p ,  f * = H f = S g ,  H g = C f ,  g = A v .  (74) 

Initial strain effects may be readily introduced by changing the constitutive equations to f *  = H f  = 
S(g - gO)  and Hg = C ( f  - f o).  

3.6. Hypermixed models and the limitation principle 

Let aiso and e~so denote the stress and strain fields, respectively, of  a commutative isomixed model. 
Suppose that we want to further enrich these two fields by injecting additional interpolation modes: 

0 = O'is o + Nrfx = NisoJ~so + Nx~, e = eiso + N~gx = Ni~ogiso + Nxgx. (75) 
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Vectors fx and gx contain additional generalized stresses and strains, respectively, while the dis- 
placement field interpolation stays the same so that e u -- N~soAV. This will be called a hypermixed 
model. Its finite element equations are 

(S2 + s3)C (s2 + s3)fx - s 3 H  -s3Ux 

(s2 + s3)Cf (s2 + s3)Cxx -s3Hrx -s3Hxx 

-s3H - s 3 n x  (s 1 ÷s3)S (s I ÷s3)S x 

--S3 HI -s3Hxx (Sl ÷ s3)S T (si ÷s3)Srx 
-s2AT H - s z A r  Hx - s l A V S  - s l A r  Sx 

s2 A l{I} If} -s2n A 
- s l S A  g = , (76) 

- s I S ~ A  gx 

(1 + sl + sz)K v 

where Cx = fv NxE-~Niso dV, S,: = fv NxENiso dV, etc. By hypothesis the first, third and fifth matrix 
equations are satisfied if f : fso, g = giso, fx -- 0 and gx = 0. Using that property and the following 
identities derived iLn Appendix A: S~ = TS, Cx = TC and Hx = TH,  in which T = HxH -I, it is 
easily shown that the second and fourth matrix equations are satisfied only by the isomixed solution. 
Consequently nothing is gained by injecting extra stress/strain freedoms as per (75) 

This is a statement of  Fraeijs de Veubeke's limitation principle [36], here shown to hold for 
arbitrary functionals. The proof can be extended, with more algebra, to different interpolations 
for the additional stress and strain modes. A point generally overlooked is that principle is not 
valid for arbitrary right-hand sides of  (76) as might be produced, for instance, by general initial- 
strain or initial-stress patterns. The question of  whether the principle holds for noncommutative 
isomixed models is open. In addition, the principle is not generally applicable to hybrid models, or 
to displacement-stress-connected mixed models [37]. 

3. 7. Hypomixed models 

Mixed FE models that are not isomixed or hypermixed will be called hypomixed. For these the 
solution of  the element-level and assembled equations depend on the choice of  free parameters. 
Condensation o f f  and g (a process that can be carried out at the element level) gives the stiffness 
equations 

K* v = AT S*,4v : p, (77) 

where K* and S* are effective stiffness and rigidity matrices, respectively. This form shows that 
discrete equilibrium, constitutive and kinematic relations may be extracted by redefining f and g as 
their effective counterparts: 

AT.]" * = p, f *  ---- S 'g*,  g* = Av. (78) 

But now, unlike the case (74) of  commutative isomixed models, both S* and f *  are parameter 
dependent. 

In the general case this dependence is complicated. One situation that lends itself to simple analysis 
consists of  assuming constant strains and stresses over each element. For brevity we consider here 
a one-parameter formulation in which s2 = s3 -- 0 and sl = - s  to eliminate stresses as independent 
field, and assume that constitutive properties are uniform over elements. The element strain field is 
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taken as 

e = & (79) 

where a bar over a quantity denotes its mean value over an element. The resulting discrete model 
is hypomixed unless the displacement-derived strains e u are also constant, which happens only for 
simplex elements. Denoting by v = fv d V the element volume measure, the individual-element 
equations become 

[ -suE-~ sSeA 

Condensation of the strain degrees of freedom g - ~ yields (77), where 

x* : aT [ ( 1 - s ) S , , + s s ; ] a ,  S;:o-'sTEse. 

(80) 

(81) 

This shows that the effective stiffness matrix is simply a weighted linear combination of the displace- 
ment-assumed stiffness AvS,,A and the constant-strain stiffness ArS~A. The former is frequently 
overstiff while the latter is generally rank deficient and oversoft. Thus parameter s may be adjusted 
to try to achieve a balanced stiffness [4] and hence improve the overall performance of the element. 
The practical realization of this idea while requiring low geometric-distortion sensitivity has been 
far more successful, however, in hybrid elements because additional "performance control levers" 
are then available [38-41]. 

4. Historical vignettes 

This final section correlates the foregoing unification results with selected turning points in the 
evolution of Matrix Structural Analysis methods. 

4.1. Who first wrote down a stiffness or flexibility matrix? 

The non-matrix formulation of Discrete Structural Mechanics, based on the ancestors of the present 
Force and Displacement Methods , can be traced back to the 1860s. By the early 1900s the essential 
developments were complete. A readable historical account is given by Timoshenko [42]. (Interest- 
ingly enough, the term "matrix" never appears in this book.) 

The matrix formulation that preceded the modem FEM is generally ascribed to a group of  aircraft 
engineers, cited in Section 2.12, whose work appeared over the period 1947 through 1956 following 
the World War II "blackout." These were the pioneers in the use of programmable (analog and 
digital) computers to aircraft analysis and design. But what happened between World Wars? 

The author has found a comprehensive description of matrix methods in the monograph by Frazer 
et al. [43], .the first edition of which appeared in 1938. It presents research material developed in 
support of the British aeronautical industry, and is clear from references to internal reports that those 
investigations were carried out since the late 1920s. The methods described are geared towards man- 
ually operated desk calculators, for which matrices are natural vehicles to organize repetitive tabular 
computations. Because the emphasis is on dynamic analysis (vibration and flutter) the Displacement 
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Method dominates. Flexibility matrices are only used to generate dynamical matrices in combination 
with mass matrices. 

Going back along the mathematical path it should be recalled that matrices - or "determinants" 
as they were initially called - were invented in 1858 by Cayley at Cambridge, although Gibbs 
(the co-inventor of vector calculus) claimed priority for the German mathematician Grassmann. In 
any case, matrix algebra was initially cultivated in Great Britain and Germany. The application of 
matrices to structural problems may have been prompted by the 1925-1932 appearance of several 
comprehensive treatises in matrix algebra cited in [43, p. 401]. 

Thus the answer to the subtitle question remains so far unanswered. But circumstantial evidence 
suggests: somebody working for the aircraft industries in Britain or Germany, which were the leading 
aeronautical powers of the time, circa 1930. 

4.2. Transitional thinking: from humans to computers 

Matrix Structural Analysis evolved rapidly over the period 1950-1970. Readers trained in present 
FEM technology may find publications of that period difficult to follow on account of personalized 
notation and overreliance on physical arguments. Such difficulties may be placed in perpective by 
noting that those two decades were a transitional period between the human-driven calculations of 
the pre-computer era and the fully automatic procedures of present finite element programs. 

For efficient digital computation, data organization (in terms of fast access as well as exploitation 
of sparseness, vec~forization and parallelism) is of primary concern whereas raw problem size, up to 
certain computer-dependent bounds, is secondary. But for hand calculations minimal problem size is 
a key aspect. Most humans cannot comfortably solve linear systems of more than 5 or 6 equations 
by direct methods, and perhaps 5-10 times that through problem-oriented "relaxation" methods. Thus 
problem reduction techniques were clearly paramount before 1950, and exerted noticeable influence 
until the early 1970s. 

One can recognize "transitional MSA thinking" by the elaborate functional groupings of static and 
kinematic variables. Most such schemes can be understood in terms of the following classification: 

generalized forces { 

generalized displacements { 

applied forces 
primary redundant forces 

secondary { 

primary { 

condensable forces 
support reactions 

applied displacements 
redundant displacements 

(82) 

condensable displacements 
secondary support conditions 

Here, applied forces are those acting with nonzero values, that is, the ones visibly drawn as arrows 
by an engineer or instructor. In transitional thinking (zero) forces on unloaded degrees of freedom 
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are classified as condensable because they can be reduced out through static condensation tech- 
niques. Similarly, nonzero applied displacements  were clearly differentiated from zero-displacements 
arising from support conditions because the latter can be easily thrown out while the former must 
be retained. Redundant displacements, which are the counterpart of redundant forces, have been 
given many names, among them "kinematically indeterminate displacements" and "kinematic defi- 
ciencies." 

The hierarchy of (82) can be accommodated within the notation of this article by introducing the 
symbols {appied {applied / 

pgen = redundant: y rgen ---- redundant: z 
condensable: Pc = 0 ' condensable: Vc " 

reactions: Ps support: vs -- 0 

(83) 

It should be noted that these two vectors are not energy conjugate. To further exacerbate the 
confusion, many transitional expositions embed y in Ps while merging z and vc. 

In the influential unification of the Force and Displacement methods by Argyris and Kelsey [15] 
the decomposition of internal states may be expressed as 

f = B0pa +/~lY, g = Aora + ,4,vc, (84) 

Here z - vc, that is, condensable displacements were taken as redundant displacements (a differen- 
tiation was made by later authors). The relation of the A and B matrices to those used in Section 
2 is as follows. Matrix/}0 omits columns corresponding to condensable forces collected in pc = 0. 
Matrix A'0 is a subset of A1. Finally, A~I ~ A0, and B~ = BI. The resultant duality, presented in 
side-by-side fashion in Table II of [15], states that Pa ~ Va and y ~ vc, as illustrated in Figure 
6. This correspondence effectively "crosswires" subsets of (15), whereas support conditions were 
explicitly removed from the discrete governing equations. As such, (84) represents a mixture of 
what are here called EPD and IPD forms. 

While important for hand computations (as well as for the memory-limited computers of that 
period), this reduction-oriented organization is unsuitable for FEM programming. In present FEM 
practice the distinction between applied and condensable forces, or between applied displacements 
and support conditions, is irrelevant. This computer oriented viewpoint, governs the present unifica- 
tion, for example in the force/displacement partition (8). 

Why then bother about these historical matters? Two arguments may be offered. 
First, transitional MSA thinking, while irrelevant to FEM programmers, still pervades many under- 

graduate textbooks. This is often done with good pedagogical intentions, for hand computations do 
help in understanding key steps of structural modeling and analysis. Some students face difficulties, 
however, in moving to "computer thinking" in more advanced courses. 

Second, problem size reduction techniques are still important in computer-algebra symbolic com- 
putations because symbolic expressions tend to "combinatorially explode" as the number of degrees 
of freedom increases. This kind of computation is becoming more popular in prototyping and de- 
sign of structural systems, as powerful CAS programs become available on inexpensive personal 
computers. 
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Va 0 0 Pa 

f X f 

t ........ ......... 

,¢ ' ,  , , 

Va Vc  'Pa 

~ " ~ " ~ .  "duality reflector" 

Fig. 6. Graphical representation of the Argyris-Kelsey duality scheme, which should be compared to Fig. 5. The relation 
of the hatted A and B matrices to those used in Section 2 is explained in the text. 

4.3. The decl&e and fall  o f  the force method 

Before the advent of the digital computer, the non-matrix version of the standard Force Method 
had enjoyed a distinguished reputation since the source contributions by Maxwell, Mohr and 
Castigliano. The method provides directly the internal forces, which are of paramount interest in 
stress-driven design. It offers considerable scope of ingenuity to experienced structural engineers 
through clever selection of redundant force systems. By the late 1940s the matrix version had taken 
the lead in the aircraft applications of the time. As discussed in the previous subsection, the energy- 
based matrix transformation theory of structures developed by Argyris culminated (by 1954) in 
showing the formal duality of the Force and Displacement methods. 

The duality statement, however, had a confusing aspect. If taken literally, it appears as if both 
methods go through exactly the same sequence of steps, which can be (and were) displayed side by 
side. The explanation, as illustrated in Fig. 6, is that this duality applies to an artificial situation: the 
same structure is ~tnalyzed by the Force Method under a system of applied loads Pa, and then by 
the Displacement Method under applied displacements v a corresponding to those loads. The second 
case is contrived. What practically counts is being able to solve the same problem by dual methods 
rather than dual problems by the same method. 

Aerospace engineers trained in the 1950s Matrix Force Method - who were often in managerial 
positions in the 1960s - did not give up easily. By 1965 only Boeing and Bell, among the major 
aerospace companies, had made major investments in the Displacement Method. That tenacity was 
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eventually put to a severe test. The 1965 NASA request-for-proposal to build the NASTRAN finite 
element system called for the simultaneous development of Displacement and Force versions [44]. 
Each version was supposed to have identical modeling and solution capabilities, including dynamics 
and buckling, and contracts were awarded accordingly. Eventually the development of the Force 
version was cancelled in 1969. The following year may be taken as closing the transitional period 
discussed in Section 4.2, and as marking the end of the Force Method as a serious contender for 
general-purpose FEM programs. 

Can the Force Method be revived? This was the subject of a 1987 Technical Note [8], where 
its potential for special applications was speculated upon. Breakthroughs along those directions may 
have to rely on a multifaceted attack, as outlined next. 

One obstacle in extending the standard Force Method to mixed or hybrid FE models of con- 
tinua is that the governing discrete equations become "diffuse" on account of element integration. 
Interweaving makes the separation of equilibrium, constitutive and kinematic relations less clear. 
For arbitrary d-connected mixed models this difficulty can be overcome by using effective internal 
forces f *  and deformations g* as illustrated by (74) and (78). But stress-connected mixed elements 
and hybrid elements cause additional complications. This fuzziness also clouds duality. 

The correct Force-Displacement duality for arbitrary continuum elastic systems was systemati- 
cally pursued by Fraeijs de Veubeke and co-workers at Lirge from 1965 through 1975, following 
suggestions from Zienkiewicz on the exploitation of Southwell's slab analogy [45]. The equivalence 
requires the introduction of stress functions as continuum duals of the displacement field [46]. This 
path, although elegant, is impractical because it requires the development of new potential-based 
elements with non-physical degrees of freedom. Those elements cannot be mixed with standard ones. 

The Calgary Lecture Notes [31 ] hint at a more practical approach: the direct construction of sparse 
B matrices by consideration of weak compatibility forms on patches of displacement-connected el- 
ements. Systematic exploitation of this idea might have resulted in a serious revival effort. Unfor- 
tunately this research was closed by Fraeijs de Veubeke's untimely death in 1976. Several of the 
aforementioned topics have been systematically investigated by Patnaik since the early 1970s [47- 
49] within the framework of the so-called Integrated Force Method, independently from the work 
at Lirge. 
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Appendix A. Some matrix relations for mixed finite element models 

In this appendix matrix relations useful in the derivations of Sections 3.5 and 3.6 are obtained 
for isomixed and hypermixed FE models. Consider first the case of isomixed models defined by the 
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interpolations (67). Such models are called commutative if the following assumptions hold: 
(A) All constitutive coefficients are constant over each element. 
(B) Each component of stress and strain is interpolated by the same shape functions, Ns. 
(C) If the elements are numerically integrated, the same quadrature rule is used for all stress and 

strain components. 
If these assumptions hold it will be shown that the rigidity and compliance matrices S and C 

commute and that their product is H 2. The proof is worked out for a plate element in plane stress 
rather than for a 3D element to save space. This 2D element has thickness h and area A. For such 
an element, assumption (B) reads 

0-11 : N, f l ,  a22 : Nsf22, 0"12 = N, f2,  e l l  = Nsgll, e22 = Nsg22, e l 2  = Nsgl2, (A. 1) 

where J]~ through g12 are stress and strain generalized coordinates. Now consider an individual 
element. Let &i and E;j denote the entries of the constitutive modulus matrices E and E -~, respec- 
tively, which according to assumption (A) are constant. Then the element-level matrices S, C and 
H defined by (66)and (67) take the following block configurations: 

FE~,ME',2MEI3M] [ M  O O 

S :  , C =  [E',2M E'22M E'23M[, H =  M 0 , (A.2) 

L E',3M E;3M E;3M J 0 M 

ElIM Et2M &3M- 

E12M E=M E23M 

E13M E23M E33M 

where 

M =  f hNJNsaA, (A.3) 

is a purely numeric, positive-definite symmetric matrix denoted by M because its configuration 
resembles that of a consistent mass matrix. The powers M 2 and H 2 are also symmetric. Matrices 
(A.2) can be compactly represented as the Kronecker products 

S = E ® M ,  C = E - ~ Q M ,  H = I N M .  (A.4) 

The mixed product rule of Kronecker products, proven for example in [50, p. 24], states that 

(T ® U)(V ® W) = TV ® UW, (A.5) 

where T through W are arbitrary, but product conforming, matrices. Application of this rule with 
T - + E ,  V - ~ E  -1 and U =  W - - * M  yields (E®M)(E - I®M)=I®M 2,or 

SC = CS = H 2. (A.6) 

Thus not only S and C commute, but their product is independent of constitutive coefficients and 
depends only on the element geometry (and on the integration rule if the element is evaluated by 
numerical quadrature). The property (A.6) generalizes immediately to element assemblies for which 
S, C and H are block-diagonal because stresses and strains are interelement-discontinuous in the 
models considered in Section 3. 

Because C and S commute, they must have the same eigensystem. Let/ '~ and/-2 be the diagonal 
matrices of eigenvalues of C and S, respectively (which must be positive because E and E- t  are 
positive definite), and V = (VV) -1 the orthogonal matrix of normalized eigenvectors. Then 

C = VTr2cV, S = vTF2sV, H = vTFcFsV, H -~--- VTFc~Fs IV. (A.7) 
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If assumption (B) fails while the others hold, commutativity of S and C (which still conform) 
continues to be verified if the interpolation for corresponding components of strain and stress is 
the same. But their product is no longer H 2 and now depends on the constitutive coefficients. For 
example, suppose that in a four-noded quadrilateral plane stress element tr~, a22, e~ and e22 are 
interpolated bilinearly whereas a~2 and e~2 are kept constant. Then S C  -- CS ¢ H 2 because S and 
C are no longer Kronecker matrices and the mixed product rule does not apply. If corresponding 
strains and stresses are interpolated by different functions (in the above example, take try2 as bilinear 
while e~2 is constant) both commutativity and material-independence are lost; furthermore S and C 
would not generally conform. 

If numerical integration is used, sometimes selective integration, which is the use of different inte- 
gration rules for different stress and/or strain components, is used to improve element performance. 
Such schemes are equivalent to selective component interpolation [51], and the foregoing properties 
apply. Thus assumptions (B) and (C) are interrelated. 

Another useful set of identities can be obtained for hypermixed elements defined by the enriched 
interpolations (75). Let N,x denote the shape function submatrix for each component of stress and 
strain. The counterpart of M for the coupling of isomixed and enriched modes is 

which is generally a rectangular matrix. Then 

Sx = 

"EliM~ EIzM~ E13gx] 

E12M~ E2zMx E23Mx [ , 

EI3M~ E23M~ E33M~ J 

(A.8) 

Cx = E~2M~ E;zMx E;sMxl , Hx = Mx . 

E;3M x E;3M ~ E'33Mx J 0 M~ 

(A.9) 

In Kronecker-product form: Sx = E ® Mx, C~ = E- l  ® Mx and Hx = I @ Mx. Applying the mixed 
product rule and using (A.4), one finds that Sx and C~ can be expressed as linear transformations 
of S and C, respectively: 

(E @ Mx)(E- '  ® M )  = I @ MxM ~ SxC = H~H, 

(E- '  ® Mx)(E ® M )  = I Q M~M --, CxS = H~H. (A.10) 

Adding to these the identity Hx = HxHH-J we obtain 

Sx=  TS, C~= TC, Hx=  TH with T = H x H  -~. (A.11) 
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