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Abstract: At an intersection with complex traffic flow, the early detection of the intention of drivers
in surrounding vehicles can enable advanced driver assistance systems (ADAS) to warn the driver in
advance or prompt its subsystems to assess the risk and intervene early. Although different drivers
show various driving characteristics, the kinematic parameters of human-driven vehicles can be used
as a predictor for predicting the driver’s intention within a short time. In this paper, we propose a
new hybrid approach for vehicle behavior recognition at intersections based on time series prediction
and deep learning networks. First, the lateral position, longitudinal position, speed, and acceleration
of the vehicle are predicted using the online autoregressive integrated moving average (ARIMA)
algorithm. Next, a variant of the long short-term memory network, called the bidirectional long
short-term memory (Bi-LSTM) network, is used to detect the vehicle’s turning behavior using the
predicted parameters, as well as the derived parameters, i.e., the lateral velocity, lateral acceleration,
and heading angle. The validity of the proposed method is verified at real intersections using the
public driving data of the next generation simulation (NGSIM) project. The results of the turning
behavior detection show that the proposed hybrid approach exhibits significant improvement over a
conventional algorithm; the average recognition rates are 94.2% and 93.5% at 2 s and 1 s, respectively,
before initiating the turning maneuver.

Keywords: advanced driver assistance system; autonomous vehicle; driving intention prediction;
online time series prediction; bidirectional long short-term memory network

1. Introduction

With the widespread implementation of advanced driver assistance systems (ADAS) and the rapid
development of artificial intelligence, autonomous driving has become a reality [1–4]. This development
means that in the future, a mixed environment will be inevitable. Human-driven vehicles, autonomous
vehicles, as well as connected vehicles, will travel together on roads. Many scholars have begun to study
the characteristics of safe driving of mixed traffic and its impact on drivers [5–11]. It is well-known
that intersections represent bottlenecks in urban traffic, reducing traffic efficiency. Due to the complex
characteristics of intersections, the accident rate at or near this location is relatively high [12,13].
Numerous collisions and fatal accidents occurred at intersections in the United States, where an
estimated 45% of injury crashes and 22% of roadway fatalities are intersection-related [14]. According
to the EU community road accident database, in the past decade (2001–2010), intersection-related
fatalities accounted for more than 20% in the EU [15]. The inability of drivers to assess correctly and/or
observe dangerous situations is believed to be a major factor in these accidents [16]. For example,
in Figure 1, the traffic light is green, allowing vehicles on East Street and West Street to pass. The white
vehicle on West Street will turn left, followed by a black autonomous vehicle behind it, ready to drive
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straight through the intersection. The black vehicle needs to infer the turning behavior of the white
vehicle to plan a safe driving path and minimize the acceleration or deceleration rate to improve
passenger comfort and reduce emissions [17]. Therefore, the accurate and early detection of the driving
intentions of surrounding vehicles is crucial to prevent traffic accidents and improve ride comfort for
new-generation ADAS systems. The earlier the detection occurs, the earlier the system can intervene,
and every millisecond is critical for safe driving.
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Figure 1. The scene of a vehicle entering the intersection. 

In this paper, we propose a method for predicting and recognizing vehicle turning behavior at 

intersections using a combination of time series prediction and deep learning networks, which can 

predict the intention of the vehicle before the turning maneuver is initiated. In recent years, scholars 

conducted extensive research on driver behavior recognition or intention prediction [18–23]. Driving 

behavior is considered a continuous time-varying dynamic process [24,25], which is consistent with 

our general cognition. The problem of driving behavior recognition/inference/estimation is 

transformed into a problem of classification, recognition, or prediction of a time series. Many studies 

have used machine learning algorithms to analyze driving behavior, such as a continuous hidden 

Markov model (CHMM), Gaussian mixture model (GMM) [24–29], support vector machine (SVM) 

[30,31], back-propagation (BP) neural network [18,32], random forest, and Adaboost algorithm [33]. 

Specifically, in [24,27], an algorithm combining an HMM and Bayesian filtering (BF) was proposed 

to model the vehicle behavior while entering the intersection and performing a lane change. In [26], 

the author used the steering wheel angle and the steering wheel angle velocity as inputs for model 

training to develop the CHMM model. In [28], a CHMM and GMM were combined to model lane 

change and lane-keeping behaviors, respectively. The authors used public data and highway driving 

as a scenario to recognize and predict the lane change behavior of the target vehicle from the 

perspective of the host vehicle. In [25,29], a hybrid-state system (HSS) and HMM framework were 

integrated to model vehicle turning behavior at an intersection. In the HSS, the driver’s decision was 

modeled as a discrete state system, and the vehicle dynamics were modeled as a continuous state 

system. The SVM is a popular algorithm for classification problems, but it cannot model a time series. 

In [30,31], the objective was to classify driving behavior. The author concatenated different meta 

features of different times in the window to create a feature vector of fixed length or used the means 

and variances of the data collected in the sliding time window to replace individual measurements. 

In reference [32], the author developed a BP neural network prediction model of driver lane change 

behavior using vehicle movement data, relative motion data of the vehicle of interest and 

surrounding vehicles, and head movement data of the drivers. Another study [33] used ensemble 

learning methods to model lane changing driving behavior for the first time. The results showed that 

both methods provided high classification accuracies and low false alarm rates. 

In existing research on driving behavior modeling, the HMM+GMM algorithm is most 

commonly used because the HMM can model time series of any length and infer unobserved 

(hidden) states. The GMM can model continuous observations using multiple probability density 

functions. As a result of the recent success of deep learning in image classification, speech recognition, 

and other fields, many researchers have begun to use this method for driving behavior recognition 

[34–36]. A long short-term memory (LSTM) model was proposed in [37] to increase the long-term 

Figure 1. The scene of a vehicle entering the intersection.

In this paper, we propose a method for predicting and recognizing vehicle turning behavior at
intersections using a combination of time series prediction and deep learning networks, which can
predict the intention of the vehicle before the turning maneuver is initiated. In recent years, scholars
conducted extensive research on driver behavior recognition or intention prediction [18–23]. Driving
behavior is considered a continuous time-varying dynamic process [24,25], which is consistent with our
general cognition. The problem of driving behavior recognition/inference/estimation is transformed
into a problem of classification, recognition, or prediction of a time series. Many studies have used
machine learning algorithms to analyze driving behavior, such as a continuous hidden Markov
model (CHMM), Gaussian mixture model (GMM) [24–29], support vector machine (SVM) [30,31],
back-propagation (BP) neural network [18,32], random forest, and Adaboost algorithm [33]. Specifically,
in [24,27], an algorithm combining an HMM and Bayesian filtering (BF) was proposed to model the
vehicle behavior while entering the intersection and performing a lane change. In [26], the author used
the steering wheel angle and the steering wheel angle velocity as inputs for model training to develop
the CHMM model. In [28], a CHMM and GMM were combined to model lane change and lane-keeping
behaviors, respectively. The authors used public data and highway driving as a scenario to recognize
and predict the lane change behavior of the target vehicle from the perspective of the host vehicle.
In [25,29], a hybrid-state system (HSS) and HMM framework were integrated to model vehicle turning
behavior at an intersection. In the HSS, the driver’s decision was modeled as a discrete state system,
and the vehicle dynamics were modeled as a continuous state system. The SVM is a popular algorithm
for classification problems, but it cannot model a time series. In [30,31], the objective was to classify
driving behavior. The author concatenated different meta features of different times in the window
to create a feature vector of fixed length or used the means and variances of the data collected in the
sliding time window to replace individual measurements. In reference [32], the author developed a BP
neural network prediction model of driver lane change behavior using vehicle movement data, relative
motion data of the vehicle of interest and surrounding vehicles, and head movement data of the drivers.
Another study [33] used ensemble learning methods to model lane changing driving behavior for the
first time. The results showed that both methods provided high classification accuracies and low false
alarm rates.

In existing research on driving behavior modeling, the HMM+GMM algorithm is most commonly
used because the HMM can model time series of any length and infer unobserved (hidden) states.
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The GMM can model continuous observations using multiple probability density functions. As a
result of the recent success of deep learning in image classification, speech recognition, and other
fields, many researchers have begun to use this method for driving behavior recognition [34–36].
A long short-term memory (LSTM) model was proposed in [37] to increase the long-term dependency
property and overcome the problem of gradient descent. LSTM is a variant of RNN that can capture
and model long-term dependence in time series data. In [38–40], LSTM models were developed to
infer the driving intention of vehicles approaching intersections. Since an LSTM can be trained in a
sequence-to-sequence prediction manner, it can predict the trend of a period of time in the time series,
enabling to predict the future activities of drivers [41].

The following conclusions can be drawn from the reviewed literature. First, regarding
lane-changing behavior, what happens from the intent to the execution of the behavior is the result
of the interaction between the driver and the surrounding environment. However, changes in the
environment, such as pedestrians, front vehicle cut-ins, and motorcycle interference, are often less likely
to modify the driver’s turning intention. Generally, the behavior of surrounding vehicles will only
affect the steering maneuver, and it is difficult to reverse the driver’s turning intentions [42]. Intention
prediction refers to recognizing the driving maneuver before the initiation of the actual maneuver, and
behavior recognition refers to recognizing the driving maneuver in the early stage after the initiation of
the maneuver. Since the behavior of the vehicle at the intersection is related to the driver’s task level,
it is difficult to infer indirectly the driver’s intention through changes in the environment, such as the
lane change behavior recognition that was proposed in [28]. When the driver’s destination is unknown,
it is difficult to predict the turn behavior, similar to navigation software. However, different drivers
have different driving preferences and characteristics, and the effects of their actions on the kinematics
of the vehicle often reflect the driver’s intentions [15,43]. We can estimate the driver’s future activity
from motion information and trajectory information of the vehicle approaching the intersection for a
certain period of time, or recognize the activity in time when the vehicle exhibits early turning behavior
characteristics. Second, empirical analysis has shown that if ADAS or autonomous vehicles cannot
recognize the driving behavior of surrounding vehicles, the system cannot plan a safe and comfortable
route in real-time. Most of the above studies were conducted from the perspective of the host vehicle,
and the results may not be applicable to the behavior prediction and recognition of surrounding
vehicles because the eye movement and facial tracking data of the drivers of the surrounding vehicles
cannot be obtained [44,45]. In addition, most research on driving behavior recognition at intersections
recognizes turning behaviors in the early stages after the maneuver has started [24,25,29,31]. Whereas
references [15,38,39], and [40] claim to achieve intent prediction, ADAS or autonomous vehicles cannot
record extensive historical data of the target vehicle to achieve intent prediction. During actual driving,
the prediction of the future situation of the surrounding vehicles is often more in line with the driver’s
preference, and the intention of the surrounding vehicles is inferred based on this [3]. However, in the
literature, the prediction of car trajectories has mostly used offline algorithms, including the recurrent
neural network (RNN), which is a deep learning network, LSTM [36,46], the interacting multiple model
(IMM) [3], and the potential field method [47]. None of these methods meet the real-time requirements
of the system, and the intuitive observation of the speed often has a significant effect on predicting
the intention of the vehicle [42,48]. It is preferred to obtain the speed of the surrounding vehicles
through on-board sensors. Furthermore, most studies that recognized or predicted driving behavior
were essentially predicting time series or vector data based on variables that characterize the driving
behavior, such as trajectory, speed, and acceleration. It should be noted that the vector data in previous
studies is obtained using average or variance processing on the multi-dimensional variables in the
time window.

As stated, the main problem to be solved in this article is the early prediction of the driver’s intention
before the actual turning maneuver begins. We regard the trajectory and kinematic characteristics
of the vehicles as time series and consider the temporal context of these parameters. Based on the
literature review and the concept of classification and prediction of time series [49,50], we propose
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a method for turning behavior prediction and recognition using online time series forecasting and
deep learning classification. The proposed driver behavior prediction system comprises two layers,
including offline behavior learning via a high-level behavior model and online behavior prediction via
low-level vehicle state prediction. The schematic is shown in Figure 2. First, the driving behaviors at
the intersection are learnt using a deep learning network. A bidirectional long short-term memory
(Bi-LSTM) model is developed to recognize the turning behavior using time series data of the motion
parameters and derived parameters characterizing vehicle behavior and intention. Second, an online
autoregressive integrated moving average (ARIMA) time series prediction algorithm is used to predict
the variables that characterizes the turning behavior. Then, the predicted data are used by the Bi-LSTM
to predict drivers’ turning behavior.
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Figure 2. Schematic of intersection behavior prediction and recognition. 
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Figure 2. Schematic of intersection behavior prediction and recognition.

To the best of the authors’ knowledge, this work is the first attempt to integrate online time
series forecasting and behavior recognition for driving behavior prediction. The proposed framework
is validated using the open-source next-generation simulation (NGSIM) dataset, which is based on
real-world driving experiments that were conducted by the Federal Highway Administration’s (FHWA)
and provided promising performance.

The main contributions of this study are as follows.

• The purpose of this research is to realize the intention prediction of the vehicle before the start
of the steering maneuver, and propose a framework that combines time series prediction and
deep learning methods to apply to the new generation of ADAS or future autonomous vehicles.
The framework uses online prediction algorithms to reflect the driving intention of the vehicle in
the prediction window, and achieves high recognition accuracy and modeling of vehicle kinematics
that indicate steering behavior through Bi-LSTM.

• Since the variables representing the driving behavior are time series data, a novel vehicle behavior
prediction method is proposed that combines the ARIMA with an online gradient descent
(OGD) optimizer. This method allows for predicting the driving intention without reducing the
recognition rate.
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The remainder of this paper is organized as follows. Section 2 details the proposed online ARIMA
and Bi-LSTM hybrid approach. The experimental data and the data processing and analysis methods
are described in Section 3. The experimental results are described in Section 4. Finally, the conclusions
are provided in Section 5, and potential future studies are outlined.

2. Framework for Turning Behavior Recognition

Survey results have shown that the dominant factor causing traffic accidents is human error.
More than 90% of traffic accidents are partially caused by human error, and 57% of accidents are entirely
caused by human error [48]. Perception of danger has always been a focus of ADAS development.
The prediction of the driving intentions based on the movement of surrounding vehicles in real-time
has been a challenge for ADAS systems.

In this section, we describe the methods used in the proposed framework. The system is divided
into two parts. In the offline learning phase, a Bi-LSTM model is used to learn the extracted turning
behavior. The online phase takes place in two steps. Multiple time series variables that characterize
the turning behavior are predicted using the online ARIMA algorithm, and the predicted data and the
derived parameters are used in conjunction with the offline training data of the turning behavior to
recognize the turning behavior.

2.1. Bi-LSTM

We know from the literature that when vehicles approach an intersection, the historical information
hidden in the vehicle’s motion parameters often reflects the driver’s turning intention, and previous
information often has a considerable impact on the recognition result [15,40,43]. Therefore, it is
preferred to use a model that considers the behavioral characteristics of the vehicle for an extended
period before approaching the intersection to detect the turning behavior.

RNNs use historical information to assist in current decision-making. However, earlier signals
have less important information than more recent signals and RNNs cannot solve the long-term
dependence problems. An LSTM network with its unique gate structure not only solves the problem
of long-term dependence but also addresses gradient vanishing or explosion that occur when RNNs
are used to process time series and can be used to model arbitrary time series [41]. Each gate has its
own weight matrix and time lag. A single LSTM unit is shown in Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 22 

 

2. Framework for Turning Behavior Recognition 

Survey results have shown that the dominant factor causing traffic accidents is human error. 

More than 90% of traffic accidents are partially caused by human error, and 57% of accidents are 

entirely caused by human error [48]. Perception of danger has always been a focus of ADAS 

development. The prediction of the driving intentions based on the movement of surrounding 

vehicles in real-time has been a challenge for ADAS systems. 

In this section, we describe the methods used in the proposed framework. The system is divided 

into two parts. In the offline learning phase, a Bi-LSTM model is used to learn the extracted turning 

behavior. The online phase takes place in two steps. Multiple time series variables that characterize 

the turning behavior are predicted using the online ARIMA algorithm, and the predicted data and 

the derived parameters are used in conjunction with the offline training data of the turning behavior 

to recognize the turning behavior. 

2.1. Bi-LSTM 

We know from the literature that when vehicles approach an intersection, the historical 

information hidden in the vehicle’s motion parameters often reflects the driver’s turning intention, 

and previous information often has a considerable impact on the recognition result [15,40,43]. 

Therefore, it is preferred to use a model that considers the behavioral characteristics of the vehicle for 

an extended period before approaching the intersection to detect the turning behavior. 

RNNs use historical information to assist in current decision-making. However, earlier signals 

have less important information than more recent signals and RNNs cannot solve the long-term 

dependence problems. An LSTM network with its unique gate structure not only solves the problem 

of long-term dependence but also addresses gradient vanishing or explosion that occur when RNNs 

are used to process time series and can be used to model arbitrary time series [41]. Each gate has its 

own weight matrix and time lag. A single LSTM unit is shown in Figure 3. 

( )tx

  tanh

tanh








( 1)th  ( )th

( )th

( 1)C t  ( )C t

LSTM cell

tf ti
tC

to

 

Figure 3. Internal structure of a long short-term memory (LSTM) cell. 

A graphic illustration of a standard LSTM network is depicted in Figure 4a. The i is an input 

gate that controls the size of the new content added to the memory. The f is a forget gate that 

determines the amount of memory that should to be forgotten. The o is an output gate that adjusts 

the amount of output memory content. The c is the cell activation vector, which consist of the partially 

forgotten previous memory ct−1 and modulated the new memory �̃�𝑡. t represents the t-th moment [51]. 

  

Figure 3. Internal structure of a long short-term memory (LSTM) cell.

A graphic illustration of a standard LSTM network is depicted in Figure 4a. The i is an input gate
that controls the size of the new content added to the memory. The f is a forget gate that determines
the amount of memory that should to be forgotten. The o is an output gate that adjusts the amount
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of output memory content. The c is the cell activation vector, which consist of the partially forgotten
previous memory ct−1 and modulated the new memory c̃t. t represents the t-th moment [51].

it = σ(Wxixt + Whiht−1 + bi)

ft = σ
(
Wx f xt + Wh f ht−1 + b f

)
ot = σ(Wxoxt + Whoht−1 + bo)

c̃t = tanh(Wxcxt + Whcht−1 + bc)

ct = fx ⊗ ct−1 + it ⊗ c̃t

ht = ot ⊗ tan h(ct)

(1)

where it, ft, ot, and ct represent the values of i, f, o and c at time t, respectively. yt is the output of the
output layer at time t. xt is the current input vector. ht is the hidden layer vector at time t, which
contains all the outputs of the LSTM. The W represents the self-updating weight of the hidden layer,
and b represents the bias vector. The σ is the sigmoid activation function, and tanh is the hyperbolic
tangent function. The operator ⊗ is the dot multiplication operation. All gate values and hidden layer
outputs are in the range (0, 1).Sensors 2020, 20, x FOR PEER REVIEW 6 of 22 
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Figure 4. Illustration of a LSTM model (a) and a bidirectional (Bi-LSTM) model (b).

In [27], lane change intention recognition is considered a speech recognition problem. We know
that when filling vacancies in a sentence, it is necessary to grasp the words before the vacancy; however,
the words after the vacancy must also be considered to predict an outcome that is in line with the
situation and accurate. The Bi-LSTM solves these types of problems. In the example of the sequence,
the network connects the same output from two LSTM networks that is learned and modeled from both
ends of the sequence. The forward LSTM obtains past data information of the input sequence, and the
backward LSTM obtains future data information of the input sequence [52]. Therefore, the network
processes information from both ends of the time series and not only considers the influence of historical
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data but also that of future states, thereby significantly increasing the generalization ability of the
model. The model structure of the LSTM is shown in Figure 4b. The formula is expressed as follows:

→

ht =
→

LSTM(ht−1, xt, ct−1), t ∈ [1, T]
←

ht =
←

LSTM(ht+1, xt, ct+1), t ∈ [T, 1]

Ht = [
→

ht,
←

ht]

(2)

where Ht is the hidden state of the Bi-LSTM at time t, including two the LSTMs that operate in the

opposite directions
→

ht and
←

ht.

2.2. Online ARIMA

As mentioned before, the vehicle’s driving trajectory and motion feature parameters can be
considered a dynamic process in a time series. On this basis, the ARIMA algorithm is adopted. Because
ARIMA has good statistical properties and excellent flexibility, it is one of the most commonly used
linear models for time series prediction [53].

The proposed online prediction model processes the collected vehicle trajectory and motion
feature parameters in the order in which they arrive and simultaneously updates the model parameters.
Subsequently, the trajectory and motion feature parameters are predicted for a period based on the
constantly updated model. This type of processing is consistent with the characteristics of quantitative
observation sequences over time.

Since they are influenced by the driver, the trajectory and motion feature parameters of the vehicle
are generally not in a steady-state and may contain some deterministic trends. The differential method
is an effective method for dealing with high sequential correlation. The ARIMA model is defined
as follows:

DdXt =

q∑
i=1

βiεt−i +
k∑

i=1

αiDdXt−i + εt (3)

where Dd represents the d-th order difference, D is expressed as a differential symbol, Xt denotes the
observation at time t.

∑q
i=1 βiεt−i represents the moving average (MA) model.

∑k
i=1 αiDdXt−i is the

autoregressive (AR) model. εt is the zero-mean noise term. α and β are weight vectors. k, d, and q are
parameterized terms.

We assume that Xt satisfies the ARIMA (k, d, q) model, the prediction of Xt over time can be
achieved by an inverse differential process. The predicted value at time t + 1 as X̃t can be expressed by
the following equation:

X̃t = DdX̃t +
d−1∑
i=0

DiXt−1 (4)

For the ARIMA model of Equation (3), due to the existence of a noise term εt, the existing
online convex optimization technique cannot be applied to estimate the coefficient vector. Therefore,
an ARIMA (k + m, d, 0) model that approximates the original ARIMA (k, d, q) and has no noise terms is
designed. The expression is as follows,

X̃t
(
γt

)
=

k+m∑
i=1

γiDdXt−i +
d−1∑
i=0

DiXt−1 (5)

where m is a constant, and γ is the new weight vector.
The loss function is:

`m
t (γ

t) = `t(Xt, X̃t(γ
t)) = `t(Xt, (

k+m∑
i=1

γiDdXt−i +
d−1∑
i=0

DiXt−1)) (6)
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The goal of online ARIMA learning is to minimize the sum of losses over multiple iterations.
After eliminating the noise term, we use the OGD method as an online convex optimization solver in
this study [54]. More details on the OGD optimization technique can be found in [55].

The prediction algorithm needs a large dataset to update the model and cope with the rapidly
changing vehicle trajectory and motion parameters to predict the future trend accurately. As the
acquired data volume increases, the prediction result approaches the actual value.

3. Experimental Data

The mathematical model discussed in Section 2 requires a large amount of data for successful
model training. The data must also be carefully selected to enable researchers to train models that
correspond to the expected vehicle events.

3.1. Data Description

We use the open-source NGSIM dataset to verify the performance of the proposed hybrid method;
the dataset was provided by the FHWA NGSIM project. This dataset has been widely used to
develop and test various models [28,33,40,56–58]. A literature review indicated that most scholars
investigated lane changes using the US-101 and I-80 dataset, but few had analyzed the turning behavior
at intersections using this dataset. The NGSIM Lankershim and Peachtree street datasets are used in
this work to develop the behavior recognition model for vehicles entering intersections. The behavior
of the vehicle includes turning left (TL), turning right (TR), and going straight (GS).

Figure 5 is a schematic diagram of the intersection area investigated in this work. The red boxes
and labels in the left picture of Figure 5a,b are the study area and camera coverage, and the right
picture is the schematic diagram of the study area. Figure 5a shows Lankershim Boulevard, an artery
running primarily north-south in Los Angeles, California. The speed limit on Lankershim Boulevard
is 35 mph. Figure 5b shows Peachtree Street, which is a main road in Atlanta, Georgia; it runs from
north to south, with a speed limit of 35 mph. As shown, there are four intersections on Lankershim
and five intersections on Peachtree. Lankershim road is wide and is approximately 2100 feet in length,
and Peachtree Street is narrow and is approximately 1600 feet in length. It also includes T-shaped
intersections. The Lankershim data were collected on 16 June 2005 from 8:45 to 9:00 in the morning
during the peak commuting period. The collection time of the Peachtree street data was from 12:45 to
1:00 and 4:00 to 4:15 on the afternoon of 8 November 2006.
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Sensors 2020, 20, 4887 9 of 22

The dataset contains information on the vehicle’s lateral and longitudinal position, speed,
acceleration, vehicle type, lane ID, and time/space headway, which were obtained from the video
trajectory data at a resolution of 10 frames/s using a tracking algorithm [33]. In this work, we used
some of the available variables.

3.2. Data Extraction

The purpose of this work is to recognize the TL, TR, or GS behavior of the vehicle when approaching
the intersection before initiating the maneuver. In other words, we predict the future maneuver of the
vehicle rather than classify the ongoing turning events to provide support for new generation ADAS
or future intelligent vehicles or intelligent transportation systems. The process of the vehicle entering
the intersection and turning includes the following sub-processes: first, the vehicle starts to decelerate,
then the driver turns the steering wheel to change the vehicle’s direction of travel, and when the
direction meets the driver’s needs, the driver starts to accelerate and drives away from the intersection.
Figure 6 shows the process of a vehicle traveling from south to north, entering an intersection and
turning left.
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Figure 6. The process of a vehicle entering the intersection.

Due to the influence of the length of the intersection or the habits of the driver, the process of
passing through the intersection has different durations. The turning process needs to be extracted to
ensure that the differences between the samples are not excessive and to shorten the training time of
the model. In this work, the extracted sample time for the vehicle approaching the intersection is 11 s.
The “Movement” feature in the dataset is used to indicate the vehicle’s current maneuvering state.
When the value of movement is 1, it denotes GS, 2 denotes TL, and 3 denotes TR. However, when the
trajectory information of the vehicle is combined with these data, it is found that the vehicle state
indicated by this value is not accurate, and it is difficult to determine the starting time and ending time
of the vehicle turning maneuver accurately. The heading angle is often regarded as a crucial parameter
of the vehicle during the turning maneuver. The starting and ending time of a turning maneuver can
be determined by observing the course of the heading angle. Normally, after a turning maneuver is
completed, the vehicle heading angle has changed by about 90◦. According to vehicle kinematics,
the heading angle θ defined in this work is calculated as follows:

θ = arctan
( .

y
.
x

)
= arctan

(vy

vx

)
(7)
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where x and y represent the lateral and longitudinal coordinates of the vehicle, and vx and vy are the
lateral and longitudinal speeds of the vehicle, respectively. The starting time ts is the initial time of the
increasing or decreasing part on the curve, and the ending time te is the end time of the increasing or
decreasing part on the curve [24], as shown in Figure 7. It should be noted that we define the heading
angle as a negative value when TL and a positive value when TR (Figure 7), and the heading angles
corresponding to the starting time and ending time set here are not exactly 0◦ and 90◦ or −90◦ because
there are fluctuations. The extraction process follows the following criteria:

1. Identify the ID of the vehicle TL or TR;
2. Calculate the heading angle of the vehicle based on the trajectory information of the vehicle;
3. Search the starting time ts when the vehicle begins to turn and mark it;
4. Using the ts as a reference, 11 s is extracted from the time series of the entire turning process,

including the time series of 10 s before ts and 1 s after ts.
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After this extraction process and manual selection, invalid data are eliminated, such as
short-duration turning or GS maneuver samples; eventually, 2993 sets of sample data are extracted.
The data of the different road sections and different time periods are summarized in Table 1. The number
of maneuvers in the Peachtree dataset is relatively small because we eliminated many invalid data and
short-duration data.

Table 1. Summary statistics.

Dataset Time Period Going Straight Left-Turn Right-Turn Total

Lankershim 8:30–8:45 a.m. 341 265 315 921
Lankershim 8:45–9:00 a.m. 341 302 339 982

Peachtree 2:45–1:00 p.m. 151 218 173 542
Peachtree 4:00–4:15 p.m. 143 254 151 548

Total 1 h 976 1039 978 2993

3.3. Input and Output Variable

The raw dataset of Lankershim and Peachtree cannot be used directly in the model because it
has noise and errors. The locally weighted scatterplot smoother (LOWESS) algorithm was adopted
to smooth the extracted data [59], as shown in Figure 8. The speed, acceleration, and the lateral and
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longitudinal position of the TL maneuvers are filtered. The use of filtered data does not only accelerate
the convergence of the loss function during the model training phase but also makes the online
prediction algorithm more stable. Note that the distance and speed units in the original dataset are feet
and feet per second, which are converted into international units of meters and meters per second.
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The parameters used in this work to characterize the vehicle’s motion are the vehicle’s lateral
and longitudinal positions, speed, and acceleration. As shown in Figure 6, Local X (x) indicates the
lateral coordinate of the front center of the vehicle with respect to the left-most edge of the section in
the direction of travel, Local Y (y) denotes the longitudinal coordinate of the front center of the vehicle
with respect to the edge of the section in the direction of travel, v and a are the speed and acceleration
of the vehicle, respectively. It should be noted that because vehicles will enter the intersection from all
directions, the trajectory information of different vehicles in the dataset will be quite different.

The input data Xt of the prediction algorithm consists of all observations from a particular
trajectory segment at time t, and Yt is the output of its prediction. xt contains the lateral (xt) and
longitudinal (yt) positions, as well as the speed (vt) and acceleration (at), where:

Xt = [xt−h+1, xt−h+2, xt−h+3, . . . , xt]

xt = [xt, yt, vt, at]

Yt =
[
yt+1, yt+2, yt+3, . . . , yp

]
yt = [xt, yt, vt, at]

(8)

Here, Xt is the given historical observation sequence and h is the sequence length; Yt is the
predicted sequence, and p is the predicted length.

In addition, the vehicle’s lateral motion parameters reflect the vehicle’s trajectory and status.
Based on this, we use the local coordinates related to the road to calculate the parameters of the
vehicle’s lateral motion state, including the lateral speed vx, lateral acceleration ax, and the key variable,
i.e., the heading angle θ. The input of the Bi-LSTM behavior recognition model is XB

t , where:

XB
t = [Yt, xlat

t ] (9)

Here, xlat
t = [vxt, axt,θt].
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3.4. Data Analysis

Different drivers have different driving preferences or characteristics for different maneuvers at
intersections [15]. The driving speed is often the critical parameter reflecting the driving characteristics
of the driver. By observing the changing characteristics of the driving speed, it is often possible to
detect driving intentions early. For turning maneuvers, the change in the heading angle, which is
a crucial parameter, can often be used as a critical indicator to determine the start and end of the
maneuver. The vehicle speed and heading angle of the samples extracted from different datasets are
statistically analyzed to understand the vehicle’s turning maneuver, as shown in Figures 9 and 10.
The abscissa in the figures is time with an interval of 0.2 s, and 0 indicates the starting time of the
turning maneuvers. Note that the speed and heading angle are statistically analyzed only from 10 s
before ts to 1 s after ts, and each boxplot contains all sample subjects for each maneuver. The speed
characteristics in Figure 9 show that the standard deviation starts to decrease at around −5 s, regardless
of whether it is a left turn or a right turn, indicating that the driver may have started to execute his
intention 5 s before the start of the turning maneuver, and that this was reflected by the change in
speed. The mean values of the speed show that the driver on Peachtree is relatively stable when TL
and TR, and the trend in the speed is similar. The speed of the vehicle on Lankershim before the start
of the TL is significantly slower than that before the start of the TR, but when approaching the ts, the
speeds of the two maneuvers are similar. The heading angle boxplots shown in Figure 10 indicate
that the heading angle has a tendency to change from −3 s to −4 s before ts, although there are some
outliers in the data. This result indicates that the driver started to control the vehicle’s heading 3 to
4 s before the initiation of the actual turning maneuver, such as merging or adjusting the vehicle’s
position However, we can also see from the comparison of TL in Figure 10a,c, and TR in Figure 10b,d
that different intersections have various impacts on the vehicle’s turning maneuver. Although the
change in the heading angle is about 90◦, this change differs for intersections of different lengths.
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Figure 9. Boxplot of the speeds of the vehicle in the Lankershim and Peachtree datasets. (a) Statistics
of the turn left (TL) speed in the Lankershim dataset. (b) Statistics of the turn right (TR) speed in the
Lankershim dataset. (c) Statistics of the TL speed in the Pearchtree dataset. (d) Statistics of the TR
speed in the Pearchtree dataset.
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Figure 10. Boxplot of heading angles of the vehicles in Lankershim and Peachtree dataset. (a) Statistics
of the TL heading angle in the Lankershim dataset. (b) Statistics of the TR heading angle in the
Lankershim dataset. (c) Statistics of the TL heading angle in the Pearchtree dataset. (d) Statistics of the
TR heading angle in the Pearchtree dataset.

3.5. Training and Test Procedure

3.5.1. Evaluation Index for the Online Prediction Algorithm

In this work, the mean absolute percentage error (MAPE) and the root mean square error (RMSE)
are used as an indicator to reflect the forecasting accuracy of the proposed online prediction algorithm.
The calculation formula of these two evaluation indexes are defined as follows:

MAPE = 1
n

n∑
i=1

|yi−ŷi|
yi
× 100%

RMSE =
√

1
n

n∑
i=1

(yi − ŷi)
2

(10)

where n is the total number of data, yi and ŷi are the real value and predicted value at the i-th
time, respectively.

3.5.2. Training of the Behavior Recognition Model

The dataset was divided into training and testing datasets to develop and evaluate the model.
In addition, five-fold cross-validation (CV) method is used to test the performance of the model.
The extracted sample data are randomly and evenly divided into five folds; four folds are used to train
the model, and one fold is used to evaluate the trained model. A total of five times are performed for
such procedures. After implementing the test procedure, the model performances for detecting TL, TR,
and GS are determined.

The receiver operating characteristic (ROC) curve was used to evaluate the model performance;
this method evaluates the performance of a classifier by assessing the true positive rate (TPR) and false
positive rate (FPR). The calculation formulas of the TPR and FPR are as follows:

TPR = TP
TN+FN

FPR = FP
TN+FP

(11)
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where TP, TN, FP, and FN are the true positives, true negatives, false positives, and false negatives,
respectively. The function provided by Matlab is used to calculate the ROC curve of the model, and TP,
TN, FP, and FN are calculated after obtaining the true class labels and predicted scores of the test
samples. According to the ROC curve of the model, the recognition performance of the model can
be compared for different methods or premises by calculating the value of the area under the curve
(AUC), where the value range of AUC is from 0 to 1. The larger the AUC value, the better the model
performance is.

In this work, the developed Bi-LSTM network consists of 4 layers of stacks, the number of hidden
units in each layer is 128, the activation function of the fully connected layer is ReLU, and the dropout
rate is 0.9. A BP algorithm with the Adam stochastic optimization method is used to train the network
over time with a learning rate of 0.001. The networks are trained using batches of size 80, and the
epoch is 100. Note that all networks and algorithms are implemented in MATLAB 2019a under the
Windows 10 Operation System and are evaluated on a PC with the following configuration: Intel Core
i7-8700CPU at 3.20 GHz with 16 GB of RAM.

4. Results and Discussion

In this section, the sample data extracted in Section 3 are used to verify the performance of the
proposed hybrid method for predicting the turning behavior. As mentioned before, we first use an
online prediction algorithm to predict the vehicle’s trajectory and state and use the predicted results
as the input to the turning behavior recognition model to obtain the turning maneuver prediction
results. The purpose is to predict the vehicle’s intention as early as possible before the initiation of the
maneuver. The basic parameters extracted from the dataset that characterize the vehicle’s motion state
include the lateral and longitudinal coordinates, as well as the speed and acceleration. Based on the
above parameters, the derived parameters that intuitively characterize the vehicle’s lateral state are
obtained; these include the lateral speed, lateral acceleration, and heading angle. Therefore, the online
prediction algorithm only predicts the basic parameters of the vehicle, and the derived parameters
can be calculated based on the prediction results, thereby reducing the workload of the prediction
algorithm and shortening the calculation time.

4.1. Performance of the Online Prediction Algorithm

The use of an offline model to predict the vehicle’s future trajectory or motion state is often suitable
for algorithm verification, but it does not meet the real-time requirements of the ADAS system, i.e.,
it cannot be used to evaluate the actual driving process. However, online prediction algorithms can
achieve this, and they also meet people’s expectations for predicting the movement of surrounding
autonomous vehicles in the future. This algorithm predicts the vehicle’s trajectory and movement
in the future based on historical information, providing advanced prediction of the maneuver time.
As mentioned in Section 2.2, in the algorithm, the model parameters are continuously updated based
on the acquired data, and the future values are predicted based on the new model. In the beginning,
the prediction algorithm has just received real-time data and has generated the model parameters.
The data error based on the model prediction at this time will be relatively large; however, as more and
more data enter the model, the prediction accuracy of the algorithm will increase. In this work, we do
not start at the beginning of the extracted 11 s time series, but rather at 11 s before the ts until the end
of the sequence, and we set the prediction horizon to 1.5 s. As a result, more accurate real-time data are
available for the subsequent turning behavior recognition model. Note that entering an intersection
from different directions will result in large differences in the trajectories, as mentioned previously.

In this work, the lateral position, longitudinal position, speed, and acceleration of the TL and TR
processes are used to verify the performance of the online ARIMA prediction algorithm. Table 2 presents
the RMSEs and MAPEs of these parameters. Figures 11–13 are GS, TL, and TR processes randomly
selected from the dataset, respectively. The performance of the proposed prediction algorithm by the
RMSE in Table 2 and Figures 11–13 illustrates that the prediction algorithm accurately predicts the
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driving trajectory and motion state of the vehicle. It can be seen from Table 2 and Figures 11–13 that
the algorithm can relatively accurately predict the trajectory and motion state of the vehicle in the
predicted horizon, which shows that the algorithm can reflect the driving intention of the vehicle in
the future to a certain extent.

Table 2. The root mean square error (RMSE) for vehicle’s position, speed, and acceleration in straight
through and turn scenarios.

Scenarios

Lateral
Position (m)

Longitudinal
Position (m)

Speed
(m/s)

Acceleration
(m/s2)

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

GS 0.0932 1.119 0.1093 1.028 0.1635 1.227 0.2381 0.043
TL 0.2719 0.162 0.1592 0.258 0.3674 0.184 0.1218 0.023
TR 0.1168 0.026 0.3954 0.200 0.1350 0.213 0.4007 0.058
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4.2. Performance of the Hybrid Method for Turning Behavior Recognition

The performance of the proposed hybrid method is evaluated in terms of the recognition accuracy
and behavior recognition time. A sliding time window is used to maximize the use of the data,
as shown in Figure 14. The moving step is 0.1 s, i.e., each time the window moves forward, the data in
the subsequent and previous windows always contains the same Tw − 0.1 s information. Since the
window is relatively wide, the real-time performance of the model is affected, and large computing
memory is required. After a comparative test, Tw is set to 1.5 s.
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The performance of the proposed hybrid model for turning intention recognition combined with
the online prediction algorithms and deep learning method is compared with the conventional machine
learning method CHMM, and the LSTM network with the same architecture, and the LSTM with a
similar structure with convolutional layer added (Conv-LSTM). Figure 15a,b shows the recognition
results of the TL and TR maneuvers at the time of ts, respectively. Because the driver has not
performed the turning maneuver before ts, the CHMM does not accurately recognize the maneuver.
The ROC curves clearly show the superiority of the proposed hybrid approach over the CHMM-based,
LSTM-based, and Conv-LSTM-based algorithms. Specifically, the recognition accuracy of the proposed
method at the turning moment ts is 95.37% for TL with an AUC of 0.9733 and 96.07% for TR with
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an AUC of 0.9662. In comparison, the recognition accuracy of the CHMM is only 79.23% for TL
with an AUC of 0.7968 and 74.33% for TR with an AUC of 0.7651. It can be seen from the figure
that the Conv-LSTM network can also achieve better performance, which is better than that of the
CHMM-based and LSTM-based algorithms, but is inferior to Bi-LSTM. This result reveals that the
superiority of the deep learning method, and also reflects the good time series modeling capabilities of
the Bi-directional LSTM in the turning case.
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Figure 15. Receiver operating characteristic (ROC) curves for TL (a) and TR (b) based on the continuous
hidden Markov model (CHMM) and the proposed hybrid algorithms at time ts. The dashed line shows
the true positive rate around a false positive rate of 5%.

The online prediction algorithm uses historical information to predict a future event; the LSTM
network has strong capabilities for context modeling, sequential learning, and other nonlinear time
series modeling. The Bi-LSTM analyzes data from both ends of the sequence and considers the effect
of reverse timing, which improves its predictive ability. Therefore, the proposed hybrid method has
strong prediction performance. Figures 16 and 17 show how quickly the proposed method can predict
the intention of the driver before the initiation of the TL and TR maneuvers. The results indicate that
for the TL and TR behaviors, the model has an average accuracy of 94.2% at 1 s before the maneuver,
93.5% at 2 s before the maneuver, and 74.5% at 3 s before the maneuver.
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Figure 17. Performance of the proposed method at different times before the actual maneuver for
the TR.

The time to recognize the turning behavior is very critical for ADAS or autonomous vehicles.
The earlier the intent of the surrounding vehicles is recognized, the higher the probability is of achieving
safe and comfortable driving. Figure 18 shows the driving behavior recognition time; (a) shows the
recognition time for TL, (b) shows the recognition time for TR. The data are obtained using only
Bi-LSTM to identify the samples. The results shown in (c) and (d) are the statistics of the recognition
time of the TL and TR maneuvers, respectively, using the proposed hybrid method. For the TL
maneuvers, it is observed in Figure 18a,c that the cumulative frequency of the recognition time of the
Bi-LSTM is 86% at 1 s before ts. The cumulative frequency of the proposed method is 84.8% and 96.36%,
respectively at 2 s and 1 s before ts by using the proposed hybrid method. For the TR maneuvers,
we obtain similar results. The use of the hybrid method does not reduce the recognition accuracy much
but increases the recognition time. The results show that the proposed hybrid approach provides early
recognition of the intention of surrounding vehicles approaching the intersection.

Sensors 2020, 20, x FOR PEER REVIEW 18 of 22 

 

 

Figure 17. Performance of the proposed method at different times before the actual maneuver for the 

TR. 

The time to recognize the turning behavior is very critical for ADAS or autonomous vehicles. 

The earlier the intent of the surrounding vehicles is recognized, the higher the probability is of 

achieving safe and comfortable driving. Figure 18 shows the driving behavior recognition time; (a) 

shows the recognition time for TL, (b) shows the recognition time for TR. The data are obtained using 

only Bi-LSTM to identify the samples. The results shown in (c) and (d) are the statistics of the 

recognition time of the TL and TR maneuvers, respectively, using the proposed hybrid method. For 

the TL maneuvers, it is observed in Figure 18a,c that the cumulative frequency of the recognition time 

of the Bi-LSTM is 86% at 1 s before ts. The cumulative frequency of the proposed method is 84.8% and 

96.36%, respectively at 2 s and 1 s before ts by using the proposed hybrid method. For the TR 

maneuvers, we obtain similar results. The use of the hybrid method does not reduce the recognition 

accuracy much but increases the recognition time. The results show that the proposed hybrid 

approach provides early recognition of the intention of surrounding vehicles approaching the 

intersection. 

 

  
(a) (b) 

Figure 18. Cont.



Sensors 2020, 20, 4887 19 of 22Sensors 2020, 20, x FOR PEER REVIEW 19 of 22 

 

  
(c) (d) 

Figure 18. Statistical distribution for the correct recognition result. (a,b) shows the driving behavior 

recognition time: (a) for TL, (b) for TR. (c,d) are the statistics of the recognition time of the TL and TR 

maneuvers, respectively, using the proposed hybrid method. 

The calculation time of the proposed method for a single sample is a crucial factor in determining 

whether the method is suitable for real vehicle experiments. Table 3 shows that the average runtime 

of the hybrid method, whose magnitude is 10 to the negative power of 2 s, indicating that the 

proposed method meets the real-time requirements of the system. 

Table 3. Average runtime of the recognition. 

Model Online Prediction (s) Bi-LSTM (s) Total (s) 

Average time 0.0013 0.0150 0.0163 

5. Conclusions 

In this work, a hybrid approach that combines time series prediction with deep learning 

networks is proposed to predict the intention of surrounding vehicles when approaching an 

intersection to improve driving safety. The performance of the proposed hybrid approach is verified 

using real natural driving data. The driving intention is predicted accurately by the proposed model 

with an average accuracy of 74.5%, 93.5%, and 94.2% at 3, 2, and 1 s, respectively, before the 

surrounding vehicles initiate the turning maneuver. The proposed approach can be used to alert 

drivers of human-driven vehicles of possible safety risks when entering an intersection or to plan a 

safe and comfortable driving path for ADAS. In the prediction stage, the trajectory, speed, and 

acceleration of the vehicle are predicted, and the lateral state parameters of the vehicle are derived 

based on the predicted value, including the lateral speed, lateral acceleration, and heading angle. In 

the behavior recognition stage, the output of the online prediction algorithm and its derived 

parameters are input into the Bi-LSTM behavior recognition model to obtain the behavior recognition 

result. 

The use of time series prediction enables the proposed method to perceive the future driving 

trajectory and driving state of the vehicle. The OGD optimizes in the ARIMA algorithm allows for 

the online prediction of the vehicle trajectory and state. Due to the RNN, the Bi-LSTM has strong 

modeling ability, and the hybrid method has excellent predictive ability.  

In actual intersections, Lidar or millimeter-wave radar can be used to detect the vehicle’s 

trajectory, speed, and acceleration; therefore, the proposed hybrid approach may be achievable. In 

future studies, additional analysis and implementation will be performed to achieve faster detection 

and higher recognition rates of the intention of the surrounding vehicles after including additional 

information from the infrastructure, such as traffic light information. 

Author Contributions: H.Z. conceived of and designed the method. H.Z. analyzed the experimental data. 

Finally, H.Z. wrote the paper with the help of R.F. All authors have read and agreed to the published version of 

the manuscript. 

Figure 18. Statistical distribution for the correct recognition result. (a,b) shows the driving behavior
recognition time: (a) for TL, (b) for TR. (c,d) are the statistics of the recognition time of the TL and TR
maneuvers, respectively, using the proposed hybrid method.

The calculation time of the proposed method for a single sample is a crucial factor in determining
whether the method is suitable for real vehicle experiments. Table 3 shows that the average runtime of
the hybrid method, whose magnitude is 10 to the negative power of 2 s, indicating that the proposed
method meets the real-time requirements of the system.

Table 3. Average runtime of the recognition.

Model Online Prediction (s) Bi-LSTM (s) Total (s)

Average time 0.0013 0.0150 0.0163

5. Conclusions

In this work, a hybrid approach that combines time series prediction with deep learning networks
is proposed to predict the intention of surrounding vehicles when approaching an intersection to
improve driving safety. The performance of the proposed hybrid approach is verified using real natural
driving data. The driving intention is predicted accurately by the proposed model with an average
accuracy of 74.5%, 93.5%, and 94.2% at 3, 2, and 1 s, respectively, before the surrounding vehicles initiate
the turning maneuver. The proposed approach can be used to alert drivers of human-driven vehicles
of possible safety risks when entering an intersection or to plan a safe and comfortable driving path
for ADAS. In the prediction stage, the trajectory, speed, and acceleration of the vehicle are predicted,
and the lateral state parameters of the vehicle are derived based on the predicted value, including the
lateral speed, lateral acceleration, and heading angle. In the behavior recognition stage, the output
of the online prediction algorithm and its derived parameters are input into the Bi-LSTM behavior
recognition model to obtain the behavior recognition result.

The use of time series prediction enables the proposed method to perceive the future driving
trajectory and driving state of the vehicle. The OGD optimizes in the ARIMA algorithm allows for the
online prediction of the vehicle trajectory and state. Due to the RNN, the Bi-LSTM has strong modeling
ability, and the hybrid method has excellent predictive ability.

In actual intersections, Lidar or millimeter-wave radar can be used to detect the vehicle’s trajectory,
speed, and acceleration; therefore, the proposed hybrid approach may be achievable. In future studies,
additional analysis and implementation will be performed to achieve faster detection and higher
recognition rates of the intention of the surrounding vehicles after including additional information
from the infrastructure, such as traffic light information.
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