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SUMMARY

A finite element formulation for solving muitidimensional phase-change problems is presented. The
formulation considers the temperature as the unigue state variable, it is conservative in the weak form sense
and it preserves the moving interface condition. In this work, an approximate jacobian matrix that preserves
numerical convergence and stability is also derived. Furthermore, a comparative analysis with other
different phase-change finite element techniques is performed. Finally, several numerical examples are
analysed in order to show the performance of the proposed methodology.

I. INTRODUCTION

Phase-change problems appear frequently in industrial processes and other problems of techno-
logical interest. The problem is highly non-linear due to the moving interface condition and,
therefore, few analytical solutions can be obtained.? Numerical solutions employing finite
differences,®* boundary elements,*® or finite elements” 2% techniques have been attempted by
many researchers.

Among the finite element procedures two important solution technigues are found: tracking
and fixed-domain methods. The first one typically uses a deforming grid formulation in order to
adapt the mesh to the interface displacements.’**3 In this context, the energy interface equation
is treated in a special form. Nevertheless, this method presents many drawbacks, such as the need
of starting solutions for the front position and the difficulty of dealing with appearing/disappear-
ing phases and multiple or no-smooth interfaces, as it has been reported in.2*

Fixed-domain methods are derived from a weak formulation that implicitly contains the
moving interface condition. Within this framework, one option is to use the enthalpy as the main
variable in order to take into account the latent heat effect. Once the nodal enthalpy vector is
obtained for each time step, the nodal temperatures can be computed using the well-known
enthalpy-temperature relationship. All enthalpy-based methods need a regularization to remove
the discontinuity that appears at the phase-change front.!*!7 Rolph III and Bathe*® and Roose
and Storrer'® use a fictitious heat source method based in the enthalpy concept. An alternative
approach known as the source-based method, also derived from the enthalpy concept, has been
used by Reddy and Reddy.?® Blanchard and Fremond?! introduce the freezing index in the
energy conservation equation and solve a variational equation with the help of an homographic
approximation which contains an enthalpy regularization. Other transformation methods have
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been developed by Ichikawa and Kikuchi®* and Lee et al.>® Tamma and Railkar®* employ the
transfinite element technique in combination with the enthalpy method.

A second approach, exploited by Crivelli and his co-workers,>**” consists in retaining the
temperature as the only state variable. In order to avoid any explicit smoothing, a special element
able to integrate discontinuous functions must be used.?*

The objective of this paper is to present an alternative temperature-based finite element
formulation. In Section 2 the governing equations for the generalized phase-change, including the
isothermal {the standard Stefan’s problem) and non-isothermal cases, are presented. The weak
form and the finite element formulation for the generalized phase-change problem are described
in Section 3.

Convergence and stability of the numerical sotution are preserved by using a new approximate
jacobian matrix which is derived in Section 4. A comparative analysis with alternative techniques
is performed in Section 5. Several crucial aspects of the proposed algorithm are also discussed
here.

Section 6 includes several simple examptes showing the effectiveness of the proposed methodo-
logy. Finally, a circular cylindrical casting test considering phase-change phenomena, temper-
ature-dependent material properties and thermal contact effects are also analysed. Numerical
results obtained for this case are compared with an existing numerical solution and some
faboratory measurements.

2.GOVERNING EQUATIONS

Let an open bounded domain @ — R™~ {1 < ngn < 3) be the reference {initial) configuration of
a non-linear heat conductor %, with particles defined by x 0, I' = 8Q its smooth boundary and
Y = R* be the time interval of analysis (t Y). As usual, Q = Qu T The ‘phase-change problem’
consists in finding an absolute temperature field 7 0 xY— R such that

de -

poé"fT: —Vg+ por InOQxY iy
w=d(x1t} nAxY 2)
q=q(x,7) inOxY ' (3)

subject to the boundary conditions
T=T inlxY {4)
g n= —§— Jeomy I I;xY (5)

and the initial condition

T(x, t),-0 = Tp(x) in {6)

Equation (1) expresses the energy balance derived from the First Law of Thermodynamics
fneglecting mechanical effects and volume changes®®) where the superposed dot denotes time
derivative, V{-) = &(*)/dx is the gradient operator relative to a Cartesian reference system,
000 — R is the density at the reference configuration and the standard tensor notation 1s used
in this equation.?® Further, @:Q x Y — R is the specific internal energy, r:{x Y — R the specific
heat.source and q:€x Y — R~ the heat flux vector. The superposed caret in & and § distin-
guishes these functions from their values in the constitutive equations (2) and (3), respectively.

A ar e e
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For the isothermal phase-change case, Q can be decomposed at any time ¢ into two subdo-
mains: (a) a solid phase €, and (b) a liquid phase £, such that x e Q, if T(x,t) < T, and x €Q; if
T(x,t) > T, where the moving interface I, separates both phases (Figure 1). On the other hand,
for the non-isothermal phase-change case, & can be decomposed at any time t into three
subdomains: (a) a solid phase Q,, (b) a mushy phase Q. and (¢) a liquid phase €, such that x e Q,if
Tx )< T, xeQ,if T, < Tx, ) < T; and x eQ, if T(x,t) > T (Figure 1).

In equation (4), Iy is the part of the boundary where the temperature T is prescribed, while in
equation {5) I, with unit outward normal n, is the region where the normal heat flux is applied:
(a) g is the prescribed normal heat flux and (b) geony is the normal heat flux due to convec-
tion-radiation phenomena. For this last term, the standard Newton’s constitutive law is adopted:

q.:onv = - h(T - Tenv) {7)

where h is the temperature-dependent convection-radiation coefficient and T, is the environ-
mental temperature (defined outside Q). In a general case, T, is the temperature at the boundary
of another body #,, and equation (7) is the constitutive law of the medium that separates both
bodies. The boundary condition (5) is of mixed type, but becomes of Neumann type when
Geony = 0. As usual, the conditions: v f“q = 303 and Ty n T, = B are assumed to hold.

In phase-change problems, the specific internal energy is defined as’

T
wxj cdT+ Lf,e inQxY (8)

Trer

where T, is a reference temperature, ¢ is the specific heat capacity, L is the latent heat released in
a freezing problem (or absorbed in a melting one) and f,. is the ‘phase-change function’ defined by
0, T<Tn

. 9a
1, T>T, (2)

foulT) = {

o

a) b)

Figure 1. Geometric description of a non-linear heat conductor &, for phase-change problems: (a) isothermal case;
{b) non-isothermal case
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for the isothermal case, and

0, T<T,
oM ={0<g(NN<l, T,<T<T (5b)
1, T>T,

for the non-isothermal one (Figure 2). In equation {9a), the melting temperature is indicated by
T.. while in equation (9b), 7, and T, denote the ‘solid’ and “liguid’ temperatures, respectively.
Further, function ¢(7") in equation (9b) may be obtained using a microstructure model!”
However, from a macroscopical point of view assumed in this paper, the simplest choice for g{T)
is the linear one with (Figure 2):

Q(T) = {T_ Ts)/(,fl - j:'s}’ Ts < T““-/"- j—ﬂl (10)

For the isothermal case, equation (8) shows that the specific internal energy presents a discon-
tinuity across the moviag interface I',.. This fact makes the problem highly nen-linear. For the
non-isothermal case, it can be observed that the latent heat effect appears only in €. Further-
more, in £, and €, the classical definition of the specific heat capacity, i.e. ¢ = dw/6T,' is
recovered because the temperature derivative of f, 1§ zero in those regions for both cases,

For a full description of the problem, an appropriate constitutive law for q {equation (3)) is
necessary. The well-known Fourier’s law is adopted:

g= —k-VT in Q=Y (11)

where k is the conductivity second-rank tensor (which may be temperature-dependent). As
a consequence of the Second Law of Thermodynamics, this tensor must be positive
semidefinite, *°

3. WEAK FORM AND FINITE ELEMENT FORMULATION

In order to obtain the weak form of this initial boundary value problem, a space ¥ of admissible
test functions is defined as:

¥ = {ne H'{(Q)n =0 on Ir} (12)

where H(Q) is the standard notation for the Hilbert space.?”

foc A foc k

—Y
~Y

a)l b)

Figure 2. Phase-change function for: {a) isothermal case; (b} non-isothermal case
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Furthermore, an admissible solution space ¥ (for fixed time ¢ €Y) is given by
19 = (T(x, 1) e H(Q)| T(x, 1) = T(x, 1) on [y} (13)

The integral problem can be formulated as: find a temperature field T(x, r) that satisfies the
local governing equations, such that??

—<pocT, e — {poLfos 1da ~ <k VT, Vg + {pot, 1a
-+ <é“7 11>1-q - <h(T - Tenv)r 7?>rq = 05 Vq 61/ (14)

where (-, >q and (-, -y, denote the standard L,-pairing in 2 and T, respectively (L, (£2) being the
space of square integrable functions®*? on Q).

Equation (14) describes the generalized phase-change problem in integral form. A further
generalization takes place when two or more phase-changes (n,. 2 2) occur. For this case, the
term L fpc must be replaced by ¥77°, L; fi., (L; and f,., are the latent heat and the phase-change
function associated with the ith phase-change, respectively) in equation (14) and subsequents
equations derived in this and next sections. For simplicity in the notation, the simpler form of
equation (14) is retained.

Different authors**'? formulate the problem as:

8 foc) .
- <p0(c + LFJ{V;:) Tz rl'>ﬂ - <k‘VT:VrI'>Q + <p0r3 ﬂ)ﬂ

+ <q-=11>r'q - <h(TW Tenv)7 }T>rq = 0! vn GIV (15)

where it should be noted that in the isothermal case, the temperature derivative of f,. is equal to
(T — T.) (Dirac function). For numerical reasons to be discussed in Section 3, the mtegral
equation (14) (instead of (equation 15)) will be used in this and subsequent sections. Further, an
important advantage that appears when standard mathematical arguments are used for equation
(14) is that the local form of the equations for the generalized phase-change problem can be
recovered.®’

To integrate in time equation (14), a generalized mid-point rule algorithm can be used.?® Let
[t,t + At] = Y(At > 0) be a time subinterval. Assuming that algorithmic approximations of the
temperature ‘7{x):Q— R* and temperature rate ‘7(x):Q — R are known, the objective is to
obtain "*4T(x) and **4'T(x). To this end, it is necessary to find '*#T which satisfies the local
governing equations, such that

r-h:Arg‘- e (r+At£~ _ r.%')/AI (163)
tradigr gt Mg 4 (] — o) with x€[0,1] - (16b)

4 being any variable in equation (14). Choosing « = 1 (the well-known Euler backward method),
unconditional stability is achieved.?®**

In the context of the finite element technique,**33 the discrete problem can be obtained via the
spatial Galerkin projection of the semidiscrete problem into a finite dimensional subspace
W¥ = ¥ of admissible C° continuous shape functions N €% Consequently, an admissible
“algorithmic’ solution space L& < % (for fixed time  €Y), also consisting of typical C° functions,
is defined.?”

Making use of the standard spatial interpolation for the temperature field, it leads to®®

W) = N(x)‘T® (17

with N;e, ¥ fori= 1, ..., fyode-
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In the above, N is the element shape function matrix and "T' is the nodal temperature vector
(the superscript e denotes element values). For simplicity in the notation, subscript h will be
dropped from here onwards.

Following standard procedures; the global discretized thermal equilibrium equations can be
written in matrix form as*!-*%3?

tHAIQ _ ttAIR _ AT CaRAUT _tHATrr AL A (18)

where F is the external heat flux vector, C is the capacity matrix, K is the conductivity matrix, L is
the ‘phase-change’ vector rate and R is the residual vector. Once more, ‘4T and ***°L are
computed using equation {16a). As usual, all vectors and matrices are assembled from the element
contributions in the standard manner.®**® The form of the different elemental expressions
appearing in equation (18) can be seen in Box 1, where the superscript &~ denotes the transpose
symbol, F represents the concentrated heat flux vector (temperature-dependent in a general
case), and #, is the number of loaded nodes at element e. Finally, it should be noted that the term
L contains the latent heat effect when oo #0.

4. SOLUTION STRATEGY

When the residual is differentiable, an incremental iterative formulation for solving the non-linear
system of equations (18) can be attemnpted. Therefore, the incremental iterative system can be
written as®®

r+Ari—1ATj::+Atij1 (19}

Box 1
Element matrices and vectors in the discretized thermal equilibrium equations

Flo = ) N7 por dQ +f N7 dTI, +L N7hT,, dT, + Y F@
Jag re @ e

C® = | NTp,eNdQ

e}
PRchy

K@= | (VNYkVYNIQ +f N7BNdT,
r

dnlt) lltj
L@ = | N7p,Lf..dQ
‘JQ{Q}
with
L® =1} N7poLf, dQ
un‘!’
CRAUTI L FANTIS L L AT G | (20a)

r+A:fr0 - IT

(20b)

where the iteration index j denotes the jth approximation to the solution in ¢ + At and the tangent
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jacobian matrix is given by
tHatap i
aT
(FALYC o i) (21b)
Replacing equation (18) into equation (21a) and neglecting the contributions due to temper-
ature-dependent thermal properties and external actions, equations (21) become

r+Az‘jj = —

(21a)

A rracc J r+Arcpc J
N e i S -— — 22a
At At (222)
_ e orrae o
SRAIJO o tHAJO K g pe 22b
+ At N At (22b)
where the element contribution of the ‘phase-change matrix’ C is
0f5e
Cle) = N7 poL /o NdQ (23)
o 3T

1t can be observed in equation (23) that for the isothermal case the temperature derivative of
Soe does not exist (as mentioned above, the result is the Dirac function). Nevertheless, Storti
¢t al?’ have derived an exact tangent jacobian matrix under certain conditions over the
temperature field. A different approach consists in performing an approximate numerical
smoothing in order to avoid this discontinuity. One possibility is

1+Arafpc Joor+Ar {)C _t+ Az _];);1
aT = t+Aij __ :+Arij~1 (248‘)
z+Arafpc o rafpc
Yol _ Zee 24b
or aT (24b)

For numerical stability conditions, a more convenient form of evaluating this derivative is

r+mafpc j I+Azfjc_!fc
57| = TR (25a)
:+Arafpc 0
= 25b
T 0 (25b)

With these considerations, obviously J is an approximate jacobian matrix and, therefore, the
quadratic convergence of Newton-Raphson’s method is lost. However, when solving the system
of non-linear equations, the residual R is evaluated ‘exactly’ (within the numerical frame) via
equation (18). Consequently, this formulation is conservative in the weak form sense.

As f,. can present a jump discontinuity inside an element in the isothermal case, a non-standard
spatial integration is needed to compute L accurately. Many researchers®* 2% have developed
special integration techniques based in splitting the integrai over Q©@ into Q¥ and Q" integrals,
such that f,. is a continuous function of T within those regions. Then, the standard Gaussian
quadrature can be applied in each domain separately.

In the non-isothermal problem, the idea used in this paper is basically the same as described
above but splitting the Q' integral into Q) integrals (with the number of element subdivisions
ng;v fixed). Although f,, is continuous in Q© (but with great variations, depending on the size of
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the phase-change interval (7,-7,)), a more accurate integration is achieved using this subdomain
technigue.

Due to latent heat effects, a severe non-linearity is introduced in this problem. To take this fact
into account, a proper convergence criterion for stopping the iteration process has to be used. The
option used in this paper is written as*>26

TR,

‘EﬁijwArTsz R

(26)

where ||, is the L, vector norm, and ey is the measure of the admissible out-of-balance residual
{often taken equal to 1073

5. COMPARISON WITH OTHER FINITE ELEMENT TECHNIQUES

Different formulations within the framework of fixed-domain methods for solving phase-change
problems have been developed by many researchers in recent years. The aim of this section is to
perform a brief comparative analysis between some of these techniques®*®25-27 angd the
temperature-based formulation presented above.

3.4, Enthalpy method

Although there are different versions of this method, all of them define the enthalpy H as a new
variable such that*4-%7
aH 8fe

ﬁ:C+LaT

{27)

where ¢ = dH/8T is usually called the equivalent specific heat capacity. Note that in fact the
enthalpy variable coincides with the specific internal energy (equation (8)).

In particular, one of such versions'*™!° retains the temperature as the nodal unknown variable
while the enthalpy, computed using the exact H-T curve (Figure 3), is only needed to take into
account the latent heat effect via equation (27). Substituting the equivalent specific heat capacity

A

Y

'_F

o
—

a)

Figure 3. Exact enthalpy-temperature curve for phase-change problems: (a) isothermal case; (b) non-isothermal case
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Z (equation (27)) into the generalized phase-change equation (15) and following the same
procedure described in Section 3, the residual vector can be computed in this case as'?

tHAIQ _ tHAIR _ r+A:C:+AtT_I+AtK FRALT L ) (28}

where the element contribution of **4/C is
H—A:é(e) - JA N.‘fpot+AtENdQ (29)
g(!l

Several approximate forms have been proposed to evaluate & when phase-change occurs.”
However, due to numerical stability conditions,'* a regularization in the H-T curve is necessary
for the isothermal problem (Figure 4).

1t should be noted that equation (28) involves a temperature derivative of an almost (due to the
regularization) discontinuous enthalpy function, because it derives from the integral equation (15)
and not from (14). Clearly, equations (27) and (28} lead to an approximate evaluation of ¢ and R,
respectively. This fact makes the method to be non-conservative in the weak form sense.
Nevertheless, this drawback can be partially overcome if very small time steps are used.

As R is computed approximately, it is not useful to derive an ‘exact’ tangent jacobian matrix
and then is usually taken in this case simply as'*

r+Aary t+ At Hmé

J = K+ A (30)
A medification to recover improved nodal temperatures using the exact H-T curve, after
computing H via the numerical integration of equation (27), has been proposed in. 6 For the
isothermal problem, however, the moving interface condition is viclated because an artificial
(numerical) plateau, leading to the impossible situation of zero interface velocity, 1s produced.
Furthermore, in this method the residual vector is calculated as described above with the inherent

drawbacks mentioned.

Figure 4. Regularized enthalpy—temperature curve for the isothermal phase-change problem (2 AT, = regularization
temperature interval}




3450 D. CELENTANO, E. ONATE AND S. OLLER

An alternative formulation considers the nodal enthalpies as the unknowns of the problem. For
this purpose, the standard spatial interpolation is now adopted for H, ie.

H(x) = NI (31)

with H being the nodal enthalpy vector. Furthermore, the following Taylor expansion is used:!”

PRAUP T . rﬁ(r+arﬁ _ rﬁ) (32)
with
- aT
3 P (33)
dH

where in general B is a full matrix. In practice, however, it is assumed to be a diagonal matrix
containing the enthalpy derivative of the temperature at each nede. Taking into account
equations (15), (27) and (32) the residual is written as'”

AR o hap [1\7 ; rmrxrﬁ}%ﬁ ) — PR 2 0 G4

where M is the usual mass matrix.>® Due to the diagonalization of B, the residual vector is
computed in an approximate form. After solving the non-linear system of equations, the nodal
temperature vector is evaluated by means of the exact H-T curve. As it can be observed, this
technique has the same drawbacks discussed above.

In this case, the simplified jacobian matrix is taken as!’

- Tt AL M ~ )
t+A1J: _+1+A1K1B 35
A (35)
Note that both equations (30} and (35) incorporate the latent heat effect into the jacobian
matrix. This is important to avoid numerical oscillations when phase-change takes place.
To the author’s knowledge, no enthalpy method evaluates the residual vector as equation (18)
does. Therefore, all these methods are only nearly conservative in the weak form sense.

3.2, Source method

Rolph IIT and Bathe'® include the non-linear effects due to phase-change in the residual as
a source term Q. The residual takes in this case the following form:

t+AtR — tTAtE prAre 1+ArrI~ _ttArg Aty I+AIQ =0 (36)

When computing Q, some internal constraints are imposed in order to enforce the nodal
temperature vector to follow the exact H-T curve consistently with the amount of latent heat
released or absorbed. Once more, the moving interface condition is violated for isothermal
preblems. Hence, the method is only nearly conservative in the weak form sense.

The proposed jacobian matrix in this case is'®

1+m§ — I+ATK (37)

It should be noted that now the latent heat effect is not considered in J.
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5.3. Temperature-based methods

Animportant feature of these methods, which do not need any additional state variable for the
numerical solution of the problem, is that the residual vector is evaluated using equation {18}
{which derives from the integral equation {14)} with the consequence of being conservative in the
weak form sense. Nevertheless, the most difficult task consists in finding an accurate jacobian
matrix which ensures convergence and stability of the algorithm.

In the frame of quasi-Newton methods, Crivelli and Idelsohn?® have proposed a jacobian
matrix of the form:

t-i-mc H-AKCT—B

r+Ar3=t+A:K+ -~

At At (38)

where Cr_g is a diagonal matrix computed at nodal level which takes into account phase-change
effects. It has to be noted that this equation looks like equation (22a). In fact, the temperature-
based methods differ only in the evaluation procedure for Cr_p.

Later, Storti et al.®? have derived an exact jacobian matrix (considering constant thermal
properties) for the isothermal problem. Its expression is similar to equation (38), but in this case
the Cr_p contribution only exists for those elements containing the moving interface.

In the temperature-based formulation presented in this paper, the phase-change term in the
jacobian matrix is only contributed by elements experiencing the phase-change effect during the
time increment for which equations (25) are used for the temperature derivative of f,.. This fact
makes the algorithm to be stable even in the isothermal case. It should be noted that this is not the
case if equations (24) are considered. In other words, the evaluation of the temperature derivative
of f,. via equations (25) ensures numerical stability and a reasonable convergence rate.

6. NUMERICAL EXAMPLES

6.1. Unidimensional example: convergence tests

A very simple example has been analysed first in order to test the effectiveness of the proposed
solution algorithm. The problem consists of a rod of unit values of length, density, specific heat
capacity and conductivity (all in consistent units) with melting temperature Tm = — 1°C and
initially at To(x) = 0°C. At ¢t = 0 the temperature on x = 0 is prescribed to 7= — 2°C and
adiabatic conditions are assumed on x = 1 m. In the numerical analysis, one two-noded linear
finite element has been used with the normalized residual error taken as gg = 107°.

Figures 5 and 6 show comparative histograms for the number of iterations necessary for
convergence of the iterative algorithm given in Section 4, where the jacobian matrix is computed
using equations (22) in addition with equations (25) for evaluating the temperature derivative of
foe- This problem has been analysed using different latent heat values and time steps, and
therefore, each histogram represents an experiment for a given L and At. The columns of each
histogram correspond to successive time steps for the same experiment. The standard New-
ton-Raphson method shown in Section 4 has been used without any special numerical technique
to improve the convergence rate.

From Figures 5 and 6, it can clearly be noted that the proposed jacobian matrix gives
a reasonable convergence rate in these cases. Furthermore, it is important to note that the
numerical convergence cannot be achieved not even for the first time step in all cases when the
contribution of C,. is neglected. Therefore, it is possible to conclude that the consideration of the

SEF hEaddR i
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proposed phase-change matrix into the jacobian matrix is crucial for the numerical convergence
of the iterative algorithm.

6.2, Semi-infinite slab problem

This well-known 1-ID example has been studied in References 1,14, 18, 25. A semi-infinite slab
initially in liquid state (7(x) = 0°C) is frozen with an imposed boundary condition at x = 0
(T(0,t) = - 45°C). The melting temperature is T, = — 0-1°C and the rest of the thermal
properties are found in Table 1.

The numerical analysis has been performed with 32 equally spaced linear two-noded
isoparametric elements of 0-125 m width. The time step used was At = (-2 s with the normalized
residual error taken as gg = 1072,

The temperature evolution of a point placed at x = 1 m is plotted in Figure 7. Figure 8 shows
the front position evolution during the cooling process. Both curves show a very good agreement
between the analytical and numerical results obtained with the present temperature-based
formulation. Moreover, a better approximation is attained in comparison with other numerical
solutions. In order to overcome the difficulties mentioned in Section 35, the enthalpy method**
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Table 1. Thermal properties

Specific heat capacity of the solid phase: ¢ = ¢, = 1-0(J/kg °C)
Specific heat capacity of the liquid phase: c = ¢ = 1-0(J/kg°C)

Conductivity tensor of the
Conductivity tensor of the

Density of the solid phase:

solid phase: k;; = &;k, = 108(J/ms°C)
liquid phase: k;; = 6;;k = 1-08{J/ms°C)
Po = pos = 1-0(kg/m?)

Density of the liquid phase: pg = po; = 1-0(kg/m?)
Latent heat: L = 70-26[J/kg]
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Figure 7. 1-D phase-change problem: temperature evolution at x = 1m with Tm= —0I°C
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employs a time step of At = 0:01 s with 2AT,, = 1°C. In addition, an artificial plateau, corres-
ponding to the solution given by the source method,'® can clearly be noted in Figure 7.

The convergence rate for the first time steps is depicted in Figure 9. Similar reasonable
convergence rates were observed for the rest of the analysis.

The same problem has been analysed with a melting temperature of 7,, = - 1-0°C. Figure 10
shows the temperature evalution at x = 1 m while Figure 11 depicts the front position evolution.
Once more, very good agreement was found between the analytical and numerical results
obtained with the present formulation. Furthermore, these curves are also compared with results
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Figure 9. 1-D phase-change problem: convergence rate with T.= —01°C
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Figure 10. 1-D phase-change problem: temperature evolution at x = 1 m with T, = — 10°C
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reported in Reference 25 using a temperature-based approach as well. Note that an accurate
solution near the melting temperature is reached for both temperature-based formulations.

This problem has also been studied considering a phase transition temperature interval of
10°C, with T, = — 10-1°C and T; = — 0-1°C. Figure 12 shows the temperature evolution at
x = 1 m for this case. The analytical solution is not available and, therefore, numerical results are
compared with those obtained using the source method.!®

Finally, a simple assessment concerning the computational cost has been performed. All these
problems have been run on a CONVEX-120 computer. The total CPU time for the first case was
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Figure 11. 1-D phase-change problem: front position evolution with T, = — 1-0°C
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Figure 12. 1-D phase-change problem: temperature evolution at x = 1m with T, = — 10-1°C and T,= —-01°C
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56s, where the time required to compute the phase-change matrix was 6s. Therefore, the
additional cost is about 11 per cent.

For the second case, the computational expense is similar to the former. Finally, for the
non-isothermal case, the total CPU time was 35s while the time necessary to evaluate C,, was
1-58( ~ 4 per cent). As expected, this last problem is, from a numerical point of view, simpler than
the isothermal cases previously studied.

6.3. Two-dimensional problem

A two-dimensional example has also been analysed.!-®1824.25.26 A semi.infinite region, ini-
tially at 0-3°C, is frozen by lowering the temperature on the side y = 0 to — 1°C. The thermal
properties are given in Table Il

Since the problem is symmetric along the line x = y, the analysis is restricted to the region
y = 0and x > y, imposing adiabatic conditions on the mentioned line. To simulate the infinite
region, adiabatic conditions have also been imposed on the other two boundaries. With these
considerations, the geometry and the finite element mesh used are plotted in Figure 13. Four-
noded bilinear isoparametric elements have been used in the computations with At = 0-01 s and
Ep = 10_3.

Table II. Thermai properties

Specific heat capacity of the solid phase: ¢ = ¢, = 10(J/kg °C}
Specific heat capacity of the liquid phase: ¢ = ¢, = 1-0(J/kg°C)
Conductivity tensor of the solid phase: k; = §;;k, = 1-0(J/m s °C)
Conductivity tensor of the liquid phase: k;; = &,k = 1-0(J/ms°C}
Density of the solid phase: pg = po, = 1-0{kg/m?)

Density of the liquid phase: py = po; = 1'0(kg/m?)

Latent heat: L = 0-25[J/kg}

Melting temperature: T, = 0-0(°C).

Figure 13. 2-D phase-change problem: geometry and finite element mesh
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Two temperature profiles along the line x = y for r = 0-04s and t = 0-08 s are shown in Figures
14 and 135, respectively. Figure 16 depicts the front position evolution along the same line x = y.
Figure 17 shows the temperature evolution at x = y =0-5m and Figure 18 represents the
interface location for t = 0-04s. Note the excellent agreement of the results obtained with the
proposed formulation and the analytical solutions.! Numerical results using the enthalpy
method,®?* source method'® and an alternative temperature-based approach®>?% are also
plotted for comparison.
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Figure 14. 2-D phase-change problem: temperature profile along x = y for t = 0-04s
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Figure 15. 2-D phase-change problem: temperature profile along x = y for ¢ = 0-08s
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Figure 17. 2-D phase-change problem: temperature evolution at x = v = 0-3m

Figure 19 shows the convergence rate for the first time steps. The relatively low number of
iterations per time step shows the effectiveness of this approach.

Finally, the total CPU time for this problem was 164 s, while the time necessary to compute
Cpe was 13s{~ 8 per cent).
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6.4. Solidification test
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The circular cylindrical casting of Nishida et al.>® has been studied. The experiment consisted
of casting commercial purity aluminium into an instrumented steel mould. Thermocouples were
placed at the centre of the casting and at the casting-mould interface (Figure 20) in order to
measure temperature evolutions at such points.

The temperature-dependent material properties of aluminium are shown in Table IIL It should
be noted that for this kind of aluminium, only an isothermal liquid—solid phase-change can occur.
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Figure 20. Solidification test: (a) schematic of the experimental set-up of Nishida et a
couple locations (drawings from Reference 37)

LSG

and (b) geometry and thermo-

The steel is assumed to have constant material properties (TableIV). The convection—radiation
coefficient of the casting-mould interface is shown in Table V and it is considered as temperature-
dependent in order to take into account the effect of gap formation when the aluminium starts to
solidify.?®

The numerical analysis begins when the mould is completely filled with aluminium in liquid
state. The initial temperatures are assumed to be 670°C for the casting and 200°C for the mould.
The time step used was Az = 5s and the normalized residual error was taken as eg= 1072,

Three different finite element meshes have been used to study this problem. Firstly, the problem
has been analysed using a 2-D finite element mesh, composed of linear triangular axisymmetric
elements, shown in Figure 21(a). A second option consists in assuming that the temperature
depends exclusively on the radial co-ordinate and time. In this case, a horizontal slice of unit
height at the midheight of the mould has been chosen for the analysis. The corresponding finite
element mesh, containing forty-two four-noded bilinear axisymmetric elements, is shown in
Figure 21{b). In accordance with this simplifying assumption, a quarter of a 3-D strip has
also been considered for the numerical analysis, The 3-D finite element mesh is depicted in
Figure 21(c) and it has been discretized with nearly 600 linear tetrahedral elements.
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Table III. Thermal properties of aluminivm

Density
po = 2650-0(kg/m®}
Specific heat capacity

e(THykealkg®C)  TCC)

0-2283 1000
0-2379 2000
0-2476 3000
0-2576 400:0
02672 5600
2769 600-0

Conductivity coefficient
k(T)(kcal/ms°C} TG

0560 106-0
0-0540 2000
6-0530 4000
0-0520 600-0
0-0500 6599
0-0220 660-1
00230 800-0

Melting temperature B
T, = 660-0(°C)
Latent heat
L = 94-44({kcal/kg}

The variations of ¢(T") and k{T") have been assumed to be piecewise

linear within the mentioned temperature.

Table IV. Thermal properties of steel

Density: po = 7850-0(kg/m?)
Specific heat capacity:
¢ = 0-1320(kcal/kg °C)
Conductivity coefficient:
k = 0-0109(kcal/ms °C})

Table V. Thermal properties of the casting-

mould interface

Convection-radiation coefficient:

hx107 (keal/m* s°C) T(°C)
7-00 = 6600
1-00 < 660-0

3461
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Figure 21. Solidification test: finite clement meshes: (a) complete model with triangular axisymmetric elements, {b) 2-D
strip with bilinear axisymmetric elements and (c) a quarter of a 3-ID strip with tetrahedra elements
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Figure 22. Solidification test: temperature evolution at the centre

The temperature evolution at the centre of the casting, at the outer casting surface and at the
inner mould surface are piotted in Figures 22,23 and 24, respectively. A good agreement between
numerical results obtained with the present formulation and experimental measurements is
achieved. The phase-change effects in the casting can clearly be noted in Figure 22. The numerical
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Figure 24. Solidification test: temperature evolution at the mould surface

solution given by Smelser and Richmond corresponds to the well-known apparent specific heat
capacity method,®” that poorly predicts the temperature field near the phase-change region.
Finally, the simplifying assumption mentioned above seems to be relatively good, as it was
already mentioned in Reference 37.
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CONCLUSIONS

A temperature-based finite element formulation has been presented. The main features of such

a formulation are:

{a) It is conservative in the weak form sense.

{b} It preserves the moving interface condition.

{c) It can solve generalized phase-change problems.

{d) It does not need any explicit regularization because an accurate integration technique is
employed. Thus, coarser meshes and larger time steps (in comparison with other methods)
can be used.

() It considers a proper convergence criterion.

{f) An approximate jacobian matrix has been derived. This matrix preserves numerical stabil-
ity and gives a reasonable convergence rate.

(g} The numerical examples analysed show the accuracy of the present formulation and its
computational efficiency.

Although a rigorous convergence and stability analyses are still lacking, numerical experiments

have demonstrated that the present formulation is robust and it can accurately simulate
generalized phase-change problems.
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