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ABSTRACT: This is the second part of an investigation on probabilistic finite ele­
ment methods for nonlinear concrete structures. The study is concentrated on two 
reinforced concrete application examples including a simply supported beam and 
a portal frame. Nonlinearity in material and geometry, and randomness in loading, 
material, and geometry are considered. Extensive computations using a probabi­
listic finite element method imbedded in the computer code PFRAME developed 
at the University of Colorado, Boulder, are carried out to verify analytical results. 
The effect of Taylor series expansions about different values of various random 
variables on structural response is demonstrated in both application examples. Fur­
thermore, using the simply supported beam example, it is shown that the proba­
bilistic finite element method proposed is applicable to the assessment of structural 
safety of material and geometric nonlinear concrete structures. Further investiga­
tions are necessary in order to develop this probabilistic finite element approach 
into a mature structural safety assessment method. 

INTRODUCTION 

This is the second part of an investigation on probabilistic finite element 
methods for analysis of nonlinear concrete structures. The formulation of a 
method that accounts for both randomness in loading, material and geom­
etry, and nonlinearity in material and geometry is stated in part 1 of this 
paper (Teigen et al. 1991). Also, the assumptions, analytical results, and 
description of a computer code for probabilistic finite element analysis of 
nonlinear concrete structures are given in part 1. Using the concepts and 
methodologies described in part 1, this study is concentrated on reinforced 
concrete application examples, including a simply supported beam and a 
portal frame. The emphasis is on the consideration of randomness and non-
linearity, accuracy of the computed response quantities, and application of 
the probabilistic finite element proposed in part 1 to safety assessment. 

APPLICATION EXAMPLES 

Example 1: Simply Supported Beam 
The problem definition for this example is summarized in Fig. 1. As shown, 

the random fields for material and load are discretized into only one random 
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FIG. 1. Simply Supported Beam: Problem Definition 

variable each. No random geometry is considered. Thus the problem is stat­
ically determinate with two independent random variables. The reason for 
choosing this example is that the results from the computer code PFRAME 
(Teigen et al. 1991) are easy to verify. 

The trilinear interaction diagrams used in the analysis are shown as broken 
lines in Fig. 2. The correspondingly calculated values based on the material 
and section properties given in Fig. 3 are shown as solid lines. While the 
simplified M^-N diagram is in good agreement with the one that is cal­
culated, a trilinear approximation for the Kmax-iV diagram turns out to be more 
crude, especially for the tensile force region. The material characteristics 
shown in Fig. 3 are meant to represent the Norwegian grades C 25 and K 
400 TS for concrete and reinforcing steel, respectively. Extrapolation to mean 
values are based on data given by Mirza and MacGregor (1982). Also, the 
assumed coefficient of variation of 0.10 for the maximum balanced moment 
^mL is based on results reported by Mirza and MacGregor (1982). In the 
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FIG. 2. Beam Interaction Diagrams: (a) Maximum Moment-Axial Force; (ft) Max­
imum Curvature-Axial Force 

moment-curvature relationship [see (22) in Teigen et al. (1991)] a parameter 
7 = 0.0 is chosen. Thus the moment becomes constant in the plastic region. 

The mean load is applied incrementally for prescribed values of the load 
parameter A until collapse of the system takes place. Since the problem is 
statically determinate, the structure should fail as soon as Mmax is attained 
at one integration point. 

By expanding the solution about the mean values of both basic random 
variables the structure failed immediately after exceeding the load parameter 
A = 7.2. This corresponds to Mmax = 225 kNm, which is in close agreement 
with the value that can be read from Fig. 2(a) corresponding to a zero axial 
force. For this solution Fig. 4(a) shows the evolution of the mean and mean 
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FIG. 3. Mean Material and Cross-Section Properties 

± one standard deviation of the midspan displacement with the load param­
eter A. As shown, the standard deviation of the midspan displacement in­
creases rapidly, when the structure approaches collapse. This is due to a 
corresponding increase in the displacement gradients. Although the structure 
is statically determinate, the displacements are still a function of the stiffness 
properties as well as the applied load. The member moments will, on the 
other hand, be a function of the load only. Fig. 4 (b) shows the correspond­
ing evolution of the midspan member moment (or, strictly, the member mo­
ment pertaining to the integration point nearest the midspan) versus the load 
parameter A. For a statically determinate system, these curves are straight 
lines as shown. No "blow up" effect is experienced for the standard devia­
tion as in the case of the displacement. In fact, the results show that the 
coefficients of variation for all member moments are exactly the same and 
equal to the coefficient of variation of the applied load (0.15) during the 
entire load history. This is in agreement with the exact solution, and it is 
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FIG. 4. Simply Supported Beam: Effect of Expansion about Mean Values on: (a) 
Midspan Displacement; (h) Midspan Moment 

an especially promising result considering that the gradients of member mo­
ments were computed based on the displacement gradients, which again be­
come unstable when the structure approaches collapse. 

Fig. 5(a) shows a comparison between standard deviations of midspan 
displacements for solutions expanded about different values of the material 
random variable M^L- The trend is the same for all cases, namely that the 
standard deviations "blow up," when the structure approaches its load car­
rying capacity. Fig. 5(b) shows that the corresponding relationships between 
the mean load and midspan moment are still linear and have identical values 
for all three cases considered. 

2694 

 J. Struct. Eng., 1991, 117(9): 2690-2707 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

v 
Po

lit
ec

 C
at

al
un

ya
 o

n 
08

/1
4/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



I 

Expanded about Mean 

Exp. about Mean - 1 x St. dev. 

Exp. about Mean - 3 x St. dev. 

I I I 1 

0.03 0.04 0.05 0.06 

Midspan displacement [m] 

I ~~r 

(b) 

J 
Expanded about Mean 

Bxp. about Mean - 1 x St. day. 

Bxp. about Mean - 3 X St. dev. 

1 1 1— 
15 20 25 

Midspan moment [kNm] 

FIG. 5. Simply Supported Beam: Effect of Expansion about Different Values of 
Material Random Variable on Standard Deviations of: (a) Midspan Displacement; 
(h) Midspan Moment 

Also, the mean values of the same response quantities are computed for 
these cases. The results are presented in Figs. 6(a) and 6(b). Due to the 
"blow up" effect for the displacement gradients, the predicted mean midspan 
displacement becomes heavily unreliable for expansions about lower values 
of the material random variable. This indicates clearly that the computation 
of mean responses in nonlinear problems should be based on solutions ex­
panded about mean values of the basic random variables. However, for the 
linear behavior of the midspan moment, the mean values become the same 
for all three cases. 
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Material Random Variable on Mean Values of: (a) Midspan Displacement; (b) Mid-
span Moment 

Fig. 7 shows the calculated correlation coefficients along the beam among 
displacements and member moments, respectively. Both response quantities 
are fully correlated. This is in accordance with the exact solution. 

Example 2: Portal Frame 
The problem definition for this example is summarized in Fig. 8. Since 

the girder is the same as in the previous example, the main difference now 
is that the simple supports have been replaced by columns, which are fixed 
at the ends. The interaction diagrams for the columns are shown in Figs. 
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FIG. 7. Simply Supported Beam: Correlation of Displacements and Correlation 
of Moments along Beam for Expansion about Mean Values 

9(a) and 9(b), both the simplified ones that are applied as input to PFRAME 
(Teigen et al. 1991) and those calculated based on the material and section 
properties given in Fig. 3. In the moment-curvature relationships a parameter 
•y = 0.0 is again chosen. Therefore, moments are constant in the plastic 
region. 

As can be seen from Fig. 8, all three basic random fields are now present. 
The discretizations of material properties and loading into random variables 
are more refined than in the beam example. Two random material variables 
are applied to each structural unit (a total of six), while the girder has also 
two random load variables compared to one in the previous example. The 
random geometry field (i.e., deviation from ideal geometry normal to the 
beam axis) is only applied to the columns by assuming zero mean and a 
linearly increasing standard deviation. The random geometry nodes coincide 
with the structural nodes. Thus there are a total of ten discretized random 
geometry variables, although the two at the fixed ends of the columns have 
no effect on the results. The correlation lengths for the three fields are all 
assumed to be X = 5.0 m. As mentioned in the companion paper (Teigen 
et al. 1991), correlation is only considered within the same structural unit 
and only among variables originating from the same field. Otherwise the 
basic random variables are taken as independent. 

As in the previous example, the solution is first expanded about the mean 
values of the basic random variables. The portal frame failed immediately 
after exceeding the load parameter A = 10.7. The failure mode for this case 
was a three plastic hinge mechanism, namely initial yielding in the midspan 
of the girder and collapse after plastification of the top regions of the two 
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FIG. 8. Portal Frame: Problem Definition 

columns had taken place. Fig. 10(a) shows the evolution of the mean and 
mean ± 1 standard deviation of the midspan girder displacement. As can be 
seen, we experience the same "blow up" effect for the standard deviation 
of displacement when the structure approaches collapse as in the previous 
example. Fig. 10(b) shows the corresponding evolution of the midspan girder 
moment (or the moment pertaining to the integration point nearest to the 
midspan). The yielding shortly before collapse can clearly be identified. Also, 
a "dent" in the evolution of the midspan girder moment when yielding takes 
place can be experienced. In the final state, the coefficient of variation of 
the moment becomes exactly equal to the coefficient of variation of the cor­
responding random material variable M*L- Thus the statistics of the plasti-
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fied moment depend no more on other properties of the system. 
Fig. 10(c) shows the corresponding values for the moment at the top of 

one of the columns (or the moment pertaining to the integration point nearest 
to the top). As for the displacements, the moment also "blows up" when 
yielding takes place in the midspan of the girder. However, the standard 
deviation in this case reduces rapidly again (can be seen on the figure), 
because the moment is also approaching its plastic limit. Since this failure 
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FIG. 10. Portal Frame: Effect of Expansion about Mean Values on: (a) Mldspan 
Girder Displacement; (b) Mldspan Girder Moment; (c) Top Column Moment 

mode is perfectly symmetric, the plastic limit is reached simultaneously in 
the two columns, representing the load carrying capacity of the system. For 
an asymmetric case (not shown here), the plastic moment had an evolution 
similar to that in Fig. 10(c), but in that case the coefficient of variation 
returned to the value of the corresponding M*L before the structure failed. 

Fig. 11 shows the correlation coefficient between the midspan girder and 
the top of column moment. Initially they are almost fully correlated (negative 
value means that the two moments have opposite sign) because of the strong 
correlation through the applied load. In the final stage, however, they ap­
proach independence since the moments tend to adopt the same statistics as 
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FIG. 11. Portal Frame: Correlation between Midspan Girder Moment and Top 
Column Moment 

their corresponding random material variables, which in turn have been as­
sumed independent in the analysis. 

Also, solutions based on various expansion levels of the "resistance gov­
erning" basic random variables have been performed. By reading the signs 
and values of the gradients of certain response quantities, it is possible to 
assess the influence of the individual basic random variables on the response. 
However, since this information affects only one response quantity at a time, 
it can be difficult for more complex structural systems to predict the influ­
ence of a change in a basic random variable on the behavior of the system. 
To improve this situation, future work should also include the gradient com­
putation of an overall stiffness estimator with respect to the basic random 
variables. 

Based on the aforementioned judgments, the following two configurations, 
named symmetric imperfections and asymmetric imperfections, have been 
considered. 

1. Symmetric imperfections are associated with the two columns that are ini­
tially given out-of-alignment positions that are symmetric with respect to the 
vertical center axis of the system. The lower part of the columns have an inward 
position, while the position is outward for the upper part. Furthermore, all ran­
dom material variables are expanded about values that have the same relative 
reduction compared to their mean. The two random load variables are expanded 
about values on opposite side of their means such that the total load on the 
system is retained (i.e., right load increased, left load decreased). 

2. Asymmetric imperfections are associated with the two columns that are 
initially given out-of-alignment positions that are asymmetric with respect to the 
vertical center axis of the system. The columns are positioned to the left of their 
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FIG. 12. Portal Frame: Effect of Expansion about Different Values of "Resis­
tance" Random Variables on Standard Deviations of: (a) Midspan Girder Displace­
ment; (b) Top Column Displacement 

ideal geometry line in their lower part and to the right in their upper part. Ran­
dom material and load variables are expanded about the same values as for the 
symmetric case. 

Thus the two configurations deviate only with respect to the form of the 
geometric imperfections. 

Fig. 12(a) shows the evolution of the midspan girder displacement, when 
the solutions are expanded about different levels Of the basic random vari­
ables for the two configurations. While the results differ significantly for the 
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various expansion levels due to different load carrying capacities, the dif­
ferences between the two configurations at each level are only minor. In 
Fig. 12(b) similar results are shown for the horizontal displacement at the 
top of the left column. The "dents" here occur when the initial yielding in 
the midspan of the girder takes place. In addition, the trend in the results is 
the same as that shown in Fig. 12(a). 

SAFETY ASSESSMENT USING PROBABILISTIC FINITE ELEMENT METHOD 

How can results from a probabilistic finite element method (PFEM) be 
applied to structural safety assessment? This section will deal with an ap­
proach to this problem where the simply supported beam analyzed in the 
previous section serves as a reference example. The reason for this is that 
the PFEM results can then be compared to an analytical solution. 

Suppose that a reliability-based code requirement is imposed with regard 
to a minimum reliability index (3_ that the structure should possess in order 
to be considered safe, i.e., B a 0. For the simply supported beam example 
(see Fig. 1) with only two independent random variables (i.e., material 
Mmax and load q = Aaj), we can derive an explicit expression between the 
load parameter A and the corresponding reliability index B. By introducing 
the following relationships 

Aqil
2 

load effect: Q = -2— (1) 

resistance (zero axial force): R = MfUL (2) 

safety margin: S = R - Q (3) 

S 
reliability index: B = — (4) 

as 
and substituting the statistical quantities for the material and load random 
variables in (4), we finally arrive at the following expression: 

M<°> , 
A = n n ""ksv [1 - V l - (1 - 8&»)(1 - 8*B2)] (5) 

where Qx — qxl
2/& = the mean load effect corresponding to qu and 5M and 

8, = the coefficients of variation (CoV) of material and load random vari­
ables, respectively. If the code requires a minimum reliability index, say 
P = 3.0, the corresponding load parameter A can be found from (5). For the 
actual set of data (see Fig. 1) this value then becomes A = 4.27. Thus for 
the design to be safe enough, the mean value of the applied load qa needs 
to satisfy: qa < A?, = 42.7 kN/m. 

The results obtained by using the computer code PFRAME (Teigen 1990; 
Teigen et al. 1991) for the simply supported beam are shown in Fig. 13. 
Fig. 13(a) shows different (JJL + 3rr) scenarios of the midspan displacement. 
The standard deviations are based on different expansion levels of the ma­
terial random variable, while all curves are based on the same mean value, 
namely when expanded about the mean of the material random variable. The 
mean response is also shown [the same curve as that presented in Fig. 4(a)] 
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Midspan displscement [m] 
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Midspan displacement [m] 

FIG. 13. Simply Supported Beam: Effect of Expansion about Different Values of 
Material Random Variable on: (a) Mean + 3 Standard Deviations of Midspan Dis­
placement; (to) Mean + Standard Deviation of Midspan Displacement 

together with a vertical line through the maximum mean displacement, called 
mean failure line. The horizontal distance between the mean response and 
the mean failure line can be interpreted as the mean safety margin for various 
values of the load parameter A. Furthermore, the calculated standard devia­
tions account for all uncertainties in the system (displacements are dependent 
on both stiffness and load). The A values corresponding to intersections be­
tween the different (u, + 3cr) curves and the mean failure line can then be 
taken directly as estimates for A corresponding to |3 = 3.0. As shown, the 
three (u, + 3o-) curves give quite different estimates for A. Since the correct 

2704 

 J. Struct. Eng., 1991, 117(9): 2690-2707 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

v 
Po

lit
ec

 C
at

al
un

ya
 o

n 
08

/1
4/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



11 

10 -

r-

St.Dev. Bxpanded about Mean 
St.Dev. about (Mean-lxSt.Dev.) 
St.Dev. about (Mean-3x$t.Dev.) 
Mean Failure Line 
Mean Expanded about Mean 

1 — 
0.07 

~r 
0.02 0.03 0.01 0.05 0.06 0.07 0.08 0.09 0,10 0.11 

Midspan girder displacement [m] 

(b) 

s U -

10 

• -
7 -

6-

5 -

4 -

3 -

2 -

1 -

y' , - ~ - ' 

>' / ' 

/jf St.Dev. Expanded about Mean 

ff St.Dev. about (Mean-lxSt.Dev.) 

/ / St.Dev. about (Mean-3xSt.Dev.) 
,y Mean Failure Line 

Mean Expanded about Mean 

1 1 1 1 1 l l 1 
0.03 0.04 0.05 0.06 0.07 0.08 

Midspan girder displacement [m] 
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tance" Random Variables on: (a) Mean + 3 Standard Deviations of Midspan Girder 

Displacement; (b) Mean + Standard Deviation of Midspan Girder Displacement 

answer is A = 4.27, it is readily seen that, among the various curves, the 
one where the standard deviation of the displacement is based on expansion 
about (|x — 3CT) of the material random variable, gives the best estimate for 
A. For this curve we can read a value of A ~ 4.40 from the graph in Fig. 
13(a), which is in good agreement with the correct value. 

To see how the results change with p, the same procedure has been re­
peated for p = 1.0. The corresponding (|x + a) scenarios of the midspan 
displacement are presented in Fig. 13(b). From (5) we get the correct value 
of the load parameter: A = 6.00. For this case the best estimate of A is 
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obtained from the curve where the standard deviation of the displacement is 
based on an expansion about (u. - a) of the material random variable. For 
this curve the value from the graph in Fig. 13(b) is A ~ 6.10, which is also 
in close agreement with the exact result. 

This procedure for safety assessment has finally been applied to the portal 
frame structure shown in Fig. 8. The midspan girder displacement has been 
selected as the governing displacement quantity of the system. Since, as 
shown in Fig. 12(a), the expansions based on symmetric and asymmetric 
imperfections have almost the same effect on the midspan displacement, only 
the symmetric configuration has been considered in the following examples. 
Figs. 14(a) and 14(b) show different scenarios corresponding to a required 
minimum reliability index (3 = 3.0 and p = 1.0, respectively. The curve of 
interest in Fig. 14(a) is the one where the standard deviation of displacement 
is based on an expansion taken about (u- - 3CT) of the "resistance governing" 
basic random variables, while expansion about (u- — CT) is the curve of in­
terest in Fig. 14(b). The load parameters corresponding to the intersections 
between these curves and the mean failure lines are A ~ 6.40 and A = 8.90 
for p = 3.0 and p = 1.0, respectively. In the simply supported beam ex­
ample the corresponding results were A = 4.40 and A = 6.10. Since the 
girders are the same in the two examples, the columns have improved the 
saftey of the structure substantially. 

These promising results indicate that for general cases reasonably accurate 
safety assessments with PFEM might be obtained following a three-step pro­
cedure: 

1. Expand about mean values of the basic random variables to obtain the mean 
response and the mean failure line. 

2. Expand about (u, — jicr) of the "resistance governing" basic random vari­
ables to obtain a standard deviation that is representative for the required reli­
ability index p. 

3. Obtain A either by means of a graphic solution or, more efficiently, using 
a computer program. 

SUMMARY AND CONCLUSIONS 

In this second part of the investigation on probabilistic finite element methods 
for nonlinear structures two reinforced concrete application examples in­
cluding a simply supported beam and a portal frame are presented. Nonlin-
earity in material and geometry, and randomness in load, material, and ge­
ometry are taken into account. It is shown that the probabilistic finite element 
method proposed in the companion paper (Teigen et al. 1991) is able to 
predict the behavior of material and geometric nonlinear concrete structures 
accounting for the uncertain nature of these structures and their environ­
ments. Furthermore, it is shown that the method is applicable to the as­
sessment of structural safety of nonlinear concrete structures. A simple ap­
proach to this problem that matches a reliability index design code format 
is developed. Although this approach, which does not require an expression 
of the limit state function or the solution of a time-consuming optimization 
problem, is still in its infancy, the results are so far encouraging. Further 
investigations are necessary in order to develop this probabilistic finite ele­
ment approach into a mature structural safety assessment method. 
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