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Abstract

We identify in this paper a general framework for the development of continuum damage models in their fully coupled

plastic damage form. The focus of this paper is directed to the general formulation of in®nitesimal models de®ned by

yield and damage surfaces in stress space. The main feature of the proposed formulation is the direct and independent

consideration of the damage mechanisms (isotropic damage, cracking, etc.) degrading the sti�ness of the material, thus

allowing for a complete physical characterization of these e�ects. This modular structure is accomplished by a kinematic

decomposition of the strains in an elastic, plastic and multiple damage parts, as belonging to each activated damage

mechanism. An additive decomposition in the in®nitesimal range of interest is considered. Based on this decomposition,

the constitutive characterization alluded to above for each damage mechanism is carried out in a complete thermody-

namically consistent framework. One of the virtues of the considered framework is the fact that it includes many of the

diverse damage models existing in the literature as particular cases. In this way, the developments presented herein

furnish a uni®ed framework for the formulation of continuum damage models, including isotropic damage, compliance

based formulations, e�ective stress anisotropic models, smeared crack models and the related formulations of cracking

and damage based on strong discontinuities. Besides the clear physical signi®cance added to these existing formulations,

the proposed framework also de®nes a very convenient context for the e�cient numerical integration of the resulting

models. This aspect is explored in Part II of this work, as it is the application of the framework proposed herein to the

numerical simulation of porous metals. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Continuum damage models; Plasticity and damage

1. Introduction

Damage in solids usually refers to the degradation of their elastic response on unloading. In this way, the
elastic moduli of the material decrease as further damage loading occurs. Added to these e�ects, we can ®nd
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the presence of plasticity characterized by the permanent strains in the material after full unloading. This
observation has made very popular (almost universal) the formulation of plasticity models based on the
kinematic decomposition of the strains in an elastic and a plastic or permanent parts. In contrast, the
formulation of damage models has been based on much more diverse, and usually unrelated, frameworks.

For example, the concepts of e�ective stress and/or strain can be found in the literature in the devel-
opment of damage models. These ideas can be traced back to the pioneering work of Kachanov (1958) in
the context of isotropic damage models. The resulting models consider a scalar variable measuring the
ratio between damage and intact surfaces on which the stresses act, thus de®ning naturally the concept of
e�ective stress as the equivalent stress acting on the intact material. More recent references, considering
also plasticity e�ects, thus leading to a coupled damage-plastic model, include Simo and Ju (1987a,b), Ju
(1989), Lubliner et al. (1989) and Luccioni et al. (1996) among many others. Extensions of these ideas to
the anisotropic case leads to the consideration of rank four tensors, de®ned in terms of generically called
``damage tensors'', relating the total and e�ective stresses; e.g. Cordebois and Sidoro� (1982) and
Murakami (1983), involving rank two damage tensors. The characterization of the evolution of these
damage tensors is usually mathematically very complex and di�cult (if not impossible) to motivate
physically.

In contrast, we can ®nd more physically motivated approaches in the modeling of damage in concrete.
Following the characterization of damage as the degradation of the elastic moduli, we can ®nd in the
literature a number of models considering the fourth-order secant compliance of the material as funda-
mental internal variable in the formulation. The evolution of this compliance is then usually obtained in a
thermodynamically consistent framework. Examples of this class of damage models can be found in Ortiz
(1985), Simo and Ju (1987a,b), Ju (1989), Hansen and Schreyer (1994) and Govindjee et al. (1995), among
others. Yet to incorporate more directly the physical mechanisms causing the damage in the material,
namely the cracking of the concrete, we ®nd models considering directly reduced stress±strain relations
across the cracks. A classical example is furnished by the so-called smeared crack models as developed in
the works of Rashid (1968), Bazant and Cedolin (1979), Bazant and Oh (1983) and Rots et al. (1985) among
other early references. Related to these ideas, we can also quote the so-called microplane approach of
Bazant and Oh (1985), where the damage is introduced not through a particular crack direction but
through a collection of prede®ned planes. Smeared crack models, however, have not been linked in the
literature to the above developments in continuum damage theories. We have recently presented a for-
mulation of these models in a completely thermodynamic framework in the context of strong disconti-
nuities; see Armero (1997a,b), and Armero and Li (1998) for preliminary results of its extension to the ®nite
deformation range. This context provides, in addition, the proper multi-scale treatment for the regular-
ization of the localized failure of the material in the large-scale models of interest (Armero, 1999).

We identify in the current paper a general framework for the formulation of continuum damage models
that, in particular, uni®es these di�erent treatments found in the literature, including the smeared crack
models. Our attention is directed to the formulation of in®nitesimal plastic damage models de®ned by yield
and damage surfaces in stress space. The fundamental observation in the proposed framework is to base all
the developments on the kinematic decomposition of the strains in an elastic, plastic and damage parts,
following ideas common to elastoplastic models. With the damage strain at hand, the dissipative mecha-
nisms causing the damage in the material can readily be modeled, independent of the elastic and other
responses in the material. This allows a complete physical interpretation of the resulting equations. For
example, we consider an energy potential modeling the damage stress/strain relations associated to a
damage mechanism (e.g. crack stress/displacement relations), including inelastic e�ects like hardening/
softening cohesive laws. The presence of this damage potential identi®es the recoverable nature of the
damage strains. Special care is given to the identi®cation of the di�erent components of the stress and strain
causing the damage in the material: volumetric, deviatoric, stress/strains associated to a given direction
(crack), etc.
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We show the extent of the proposed framework with the consideration of the particular simple case of a
quadratic damage potential, involving the evolution of a set of reduced compliances associated only to the
damage mechanism. We recover then, as a particular case, the formulation presented in the seminal work of
Ortiz (1985) for the purely elastic-damage case. As shown in detail herein, the framework of smeared crack
models is also recovered when the identi®ed general framework is considered in its reduced form. It is
interesting to observe that even though the consideration of damage strains (sometimes in the more
common form of ``crack strains'') can be found in these early references, their use in the formulation of
continuum damage models has essentially disappeared in more recent literature. Instead, emphasis is given
to the so-called ``degrading strains'', while maintaining the total strains decomposed only in elastic and
plastic parts; representative references of these considerations are the works of Dougill (1976), Hueckel and
Maier (1977), Ortiz (1987) and Yazadani and Schreyer (1988), among others. The ``degrading strains'' are
associated to the compliance degradation of the material (i.e. _Dr for the rate of the compliance tensor D
and the stress tensor r). Therefore, they do not correspond to an actual ``strain'', in particular a recoverable
strain like the damage strains, since they are only de®ned through a rate when damage is active. As shown
in the more recent work of Carol et al. (1994), the consideration of these ``degrading strains'' leads to a
partial uni®cation of several of the aforementioned approaches in damage modeling, leading to a formal
structure similar to elastoplastic models. We refer to this attempt as partial because models like the smeared
crack approaches were not considered. In contrast, we show in this paper that the fundamental unifying
assumption (in the theoretical developments and more especially at the level of the numerical integration of
the resulting models, since the standard structure of return mapping algorithms common in elastoplastic
models is recovered) is to be traced back to the elastic±plastic±damage decomposition of the total strains.
Furthermore, it is the direct consideration of the damage strains and not the ``degrading strains'' that
allows the physical characterization of the damage mechanisms.

We focus the developments in this ®rst part on the consideration of plastic damage models in the in-
®nitesimal case, with the threshold of damage characterized by surfaces in stress space. The general
framework is developed in detail as it is the identi®cation of existing models, giving the unifying character
described above. We present in Part II, the application of these ideas to the formulation of a simple plastic
damage model of ductile failure in porous metals, including the e�ects of closing/opening of voids, an e�ect
usually referred to as unilateral damage (see Chaboche (1995) and Hansen and Schreyer (1995) among
others). Numerical algorithms for the integration of the plastic damage framework investigated herein can
also be found in Part II.

An outline of the rest of the paper is as follows. Section 2 develops the general framework proposed in
this work. Emphasis is given to the incorporation of multiple damage mechanisms in the inelastic response
of the material, hence illustrating the ability of the proposed formulation to handle the physical charac-
terization of each of them independently. A completely consistent thermodynamic framework is considered
for a particular damage mechanism. Section 3 particularizes the preceding developments to a quadratic
damage potential. We show in the di�erent subsections of Section 3.1 that this case includes as particular
cases existing damage models from isotropic damage to smeared crack models. Finally, Section 4 concludes
with some ®nal remarks.

2. General formulation

We develop in this section, the general framework for the formulation of damage theories proposed in
this work. The fundamental kinematic assumptions underlying the proposed framework are presented in
Section 2.1 with the resulting evolution equations of the considered internal variables described in Section
2.3 after deriving the dissipation expression in Section 2.2. The tangent rate equations are derived in Section
2.4.
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2.1. Fundamental kinematic assumptions

With the assumption of in®nitesimal deformations considered herein, the kinematics of the deformation
at a given point x of a solid X (identi®ed with its reference placement through the above assumption) is
characterized, under the classical assumption of local response, by the in®nitesimal strain tensor

e :� sym�ru� 2 S; �2:1�
for the displacement ®eld u : X! Rndim (ndim � 1; 2 or 3) and spatial gradient r���. We denote by S, the
linear space of symmetric ndim � ndim tensors. In this context, we introduce the fundamental decomposition
of the total strain tensor e in

e � ee � ep � ed; �2:2�
that is, in elastic ee, plastic ep and damage ed parts. The latter is assumed decomposed additively as

ed �
Xndam

dI�1

edI ; �2:3�

that is, as the sum of ndam similar terms.
Additive kinematic decompositions of the forms (2.2) and (2.3) are commonly used in the context of

elastoplastic theories, but are rarely considered in the context of damage models. It is the main aim of this
paper to explore this decomposition in this latter case, and to show the convenience of their use from the
point of view of the modeling of the damage response of the material and its subsequent numerical inte-
gration. In particular, the assumed decomposition (2.3) characterizes a part of the strain given by ndam

``damage mechanisms''. More speci®cally, it corresponds to a decomposition of the deformation at a given
point of the solid in elastic, plastic and damage mechanisms in series, referring to the usual convention in a
generalized standard solid.

Fig. 1 illustrates the basic idea behind the assumed decomposition (2.3) through a typical uniaxial
tension test. On loading, elastic, plastic and damage strains develop, the latter arising from two damage
mechanisms in the material, say, crack and void formation. In more general situations, the di�erent damage
mechanisms may also be identi®ed with di�erent crack orientations at a given material point, brittle
damage associated to particularly oriented ®bers embedded in the material, etc., i.e., with di�erent physical
mechanisms introducing a damage response in the material under repeated loading and unloading. In

ε e
+1

σ

σ

ε p

ε d
ε d2

void

crack
ε d1

1

ε p

1

loading unloading

Fig. 1. Sketch of a uniaxial tension test of a material exhibiting elastic, plastic and damage strains, the latter consisting of the addition

of two damage mechanisms, say the formation of cracks and voids. On unloading, both the elastic and damage strains are recovered.
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contrast with the plastic part ep, the damage strain ed is thought as a recoverable strain, in the sense that it is
recovered upon unloading, a feature that will become more apparent when discussing the stored energy of
the material in Section 2.2. The decomposition (2.3) allows the modeling of each component of the ma-
terial's response, i.e., elastic, plastic and damage components based on the corresponding strains, with the
explicit consideration of the possible several couplings between these components, if necessary. Fig. 2 il-
lustrates a typical stress/strain relation in this uniaxial setting, as discussed in detail in Section 2.2 when
formulating a general thermodynamic framework of the material response.

As illustrated in Section 3, the damage mechanisms characteristic of the response of many materials lead
to particular constrained forms of the associated damage strains ed; typical examples involve volumetric
damage strains, rank-one strains associated to cracks in brittle materials, etc. In general, and for each
damage mechanism (dI � 1; ndam), we have edI 2VdI for the linear subspace

VdI � edI

(
�
XndI

a�1

PdI
a edI

a for edI
a 2 R and PdI

a 2S

)
� S; �2:4�

where the set of symmetric tensors fPdI
a g

ndI

a�1 is assumed to de®ne a basis of VdI , with dimension
ndI
6 �ndim � 1�ndim=2. Without loss of generality, we consider an orthonormal basis in the usual inner

product of symmetric tensors S (i.e., double contraction A : A :� AijAij, summation implied). In this way,
we have the orthogonality relations

PdI
a : PdI

b � dab �Kroenecker delta� �2:5�
and the component relations

edI
a � PdI

a : edI for a � 1; ndI
�2:6�

Fig. 2. Typical stress±strain relation of a plastic damage material with quadratic elastic and damage potentials under uniaxial loading

conditions. The three di�erent components of the strain, i.e., elastic ee, plastic ep, and damage strains ed are identi®ed. We also observe

the representation of the di�erent axial moduli for the current E, (initial) elastic Ee and damaged Ed � EEe=�E ÿ Ee� Young moduli,

with the corresponding compliance Dd � Edÿ1

, employed in the assumed linear loading/unloading response.

F. Armero, S. Oller / International Journal of Solids and Structures 37 (2000) 7409±7436 7413



for each damage mechanism dI � 1; ndam independently. To avoid the use of double indices when referring
to the damage mechanism and damage strain component, we write the component relation in Eq. (2.4) in
the compact form

edI � PdT
I edI for edI :� edI

a

� � � edI

1

..

.

edI
ndI

2664
3775 �2:7�

and PdI � �PdI

a�ij�� for a � 1; ndI
and i; j � 1; ndim, with PdT

I :� �PdI

�ij�a�. We write symbolically

PdI �
PdI

1

..

.

PdI
ndI

2664
3775 �2:8�

in the developments that follow.

Remark 2.1.
1. In the numerical implementation, we use the standard vector notation e � fe11 e22 2e12gT

and
r � fr11 r22 r12gT

for, e.g., plane problems. The linear operator PndI corresponds to a 4ndI
vector

(6ndI
in three-dimensional problems in this notation).

2. We have assumed, for simplicity, that the projection matrices fPdI
a g

ndI

a�1 are constant. A general de®nition of
Vd as a nonlinear manifold in S can be considered, with the space of variations given by the linear basis
fPdI

a g
ndI

a�1 at a given point ed. To avoid the added complexity introduced by this general treatment, we con-
sider only the simple case furnished by a linear space of damage strains. The case of a nonlinear de®nition of
the damage space is treated separately by imposing explicitly the constraints. This is done in Part II of this
work (Armero and Oller, 1999) for the imposition of unilateral damage associated to the closing/opening of
voids in a particular coupled plastic damage model of porous metals.

2.2. Elastic energy and plastic-damage dissipation

The considerations described in Section 2.1 identi®ed the kinematics of the problem of interest. In
particular, we considered the existence of ndam mechanisms leading to the damage of the solid. In accor-
dance, we introduce the decomposition of the stored energy function,

W � W e�ee� �Hp�Ip� �
Xndam

dI�1

W dI�edI ;IdI�; �2:9�

for a stored energy function W e��� characterizing the elastic response of the solid in terms of the elastic
strains ee, a potential Hp��� modeling the hardening plastic response in terms of a general set of plastic
internal variables Ip (not including ep), and a set of stored energy functions W dI��� characterizing the in-
ternal energy stored in each of the ndam damage mechanisms. The latter is given in terms of the corre-
sponding damage strain edI and a general set of internal variables IdI (not including edI ) characterizing the
inelastic response associated to the damage mechanisms. For simplicity, we assume a full decoupling of the
di�erent damage mechanisms, leading to an independent set of internal variables for each of them. Un-
coupled thermomechanical conditions have been assumed with the identi®cation of the stored energy
function W with the Helmholtz free energy of the material in the case of isothermal deformations as it is
customary.
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A main feature of the considered formulation is the presence of the damage potential W dI��� in terms of
the damage strains edI and the general set of internal variables IdI . A simple choice for this potential is
provided by a quadratic potential, as considered in detail in Section 3, which together with a quadratic
elastic potential W e��� leads to a linear response of the material during unloading and subsequent re-
loading. The sti�ness or, equivalently, the compliance associated to the damage of the material as observed
in these processes appears as a natural choice for one of the internal damage variables IdI . Fig. 2 illustrates
these ideas for the simple uniaxial tension test depicted in Fig. 1 for one damage mechanism. Alternative
forms of this damage potential can be assumed in general. We observe again in Fig. 2, the recoverable
nature of the damage strains ed and the corresponding damage potential upon unloading, a direct conse-
quence of the explicit consideration of these strains in the expression of the stored energy function, as it
occurs with the elastic strain ee and in contrast with the plastic strains ep.

Given the expression (2.9) of the stored energy of the material, the local dissipation rate (Simo and
Hughes, 1998) can be written, after using the kinematic decomposition (2.2), as

D � r : _eÿ _W

� r

�
ÿ oW e

oee

�
: _ee � �r : _ep ÿ _Hp�|����������{z����������}

Dp

�
Xndam

dI�1

�r : _edI ÿ _W dI�|����������{z����������}
DdI

P 0 �2:10�

for the stress tensor r. After imposing the physically motivated constraints

Dp P 0 and DdI P 0; dI � 1; ndam �2:11�
for the plastic and damage dissipations, the imposition of the physical inequality DP 0 for all elastic strain
rates _ee leads to the constitutive equation

r � oW e

oee
: �2:12�

The procedure outlined here follows the classical arguments known as Coleman's method (Truesdell and
Noll, 1965; Lubliner, 1990).

The plastic dissipation in Eq. (2.10) can then be written as

Dp � r : _ep � Qp � _Ip P 0 for Qp :� ÿ oHp

oIp ; �2:13�

the conjugate plastic hardening variable. The symbol � in expression (2.13) denotes a general tensor
contraction depending on the character of the internal variables Ip. The speci®c case of a scalar variable
Ip � ap with scalar conjugate variable Qp � qp and standard scalar multiplication between them, is con-
sidered in the particular model example of Section 3.

The damage dissipation DdI in Eq. (2.10) can be expressed in the same way as

DdI � r

�
ÿ oW dI

oedI

�
: _edI ÿ oW dI

oIdI
� _IdI P 0; �2:14�

where � denotes again a general contraction depending on the character of the internal variables IdI .
Following the same arguments as before, i.e., imposing the non-negative character of the dissipation (2.14)
for independent variations of the damage strains edI and internal variables IdI , leads after noting the
constrained character of Eq. (2.14) (since edI 2VdI ) to

DdI � QdI � _IdI P 0 �2:15a�

for QdI :� ÿ oW dI

oIdI
�2:15b�
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and the general relation

r � oW dI

oedI
� r?; �2:16�

for a component r? 2Vd?
I de®ned by

Vd?
I :� r 2S : r : edI

� � 0 8 edI 2VdI
	 �2:17�

that is, the orthogonal complement of the original space of damage strains VdI . The explicit absence of the
damage strains edI in the expression of the damage dissipation (2.15a) emphasizes once more the recoverable
character of these strains, in contrast with ep.

If rdI denotes the projection of the general stress tensor r 2S onto the space VdI , we can write the
general relation

rdI �
XndI

a�1

PdI
a sdI

a �2:18a�

for sdI
a :� PdI

a : r �2:18b�
or, simply,

rdI � PdT
I sdI �2:19a�

for sdI �
sdI

1

..

.

sdI
ndI

2664
3775 � PdI : r �2:19b�

in the compact notation introduced in Eq. (2.7). We note that with this notation at hand, the following
equality holds:

rdI : edI � sdI � edI 8 rdI � PdT
I sdI ; edI � PdT

I edI 2VdI �2:20�
given the orthogonality relation (2.5). Projecting the relation (2.16) on VdI , we have

rdI � oW dI

oedI
�2:21�

or, simply,

sdI � o bW dI

oedI
or; in components; sdI

a �
o bW dI

oedI
a

�a � 1; ndI
�; �2:22�

wherebW dI�edI ;IdI� � W dI�edI ;IdI� for edI � PdT
I edI 2VdI �2:23�

after using the compact notation introduced in Eq. (2.7). We also note the relation

QdI � ÿ oW dI

oIdI
� ÿ o bW dI

oIdI
�2:24�

for future use.
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Remark 2.2. We emphasize that the formal argument behind the separate treatment in Eq. (2.11) of the
di�erent components of the dissipation does not imply that these components will only occur independently. The
total dissipation is given by Eq. (2.10), allowing deformation paths that involve coupled plastic and damage
dissipation. We observe in this respect that the presence of a common stress in the two components of the
dissipation does indeed lead to this coupling. The ``equilibrium'' relation (2.18b), identifying the stress com-
ponents in the di�erent dissipative mechanisms, appears then as fundamental. In fact, this role is emphasized in
the numerical treatment developed in Part II of this work, since it becomes the key relation for an e�cient
integration of the resulting plastic damage models. We also refer to Section 3.2.1, where the dissipation (2.10)
is recast in the context of a speci®c model involving the classical notion of e�ective stresses.

2.3. The plastic damage evolution equations

The above thermodynamic framework leads directly to the evolution equations of the damage internal
variables IdI and plastic variables fep;Ipg. In particular, we note from the expressions (2.13) and (2.15a),
the conjugate character of the internal variables QdI and IdI for the damage part and fep;Ipg with fr;Qpg
for the plastic part. In this context, we introduce a set of damage surfaces /dI�QdI� for each damage
mechanism dI � 1; ndam and a plastic yield surface /p�r;Ip� by the relations

/dI�QdI�6 0; �2:25a�

/p�r;Qp�6 0 �2:25b�
de®ning the elastic domain of the material response.

A classical argument based on the stationarity of the dissipation functionals (2.13) and (2.15a) leads to
the associated damage evolution equations for the damage and plastic internal variables, with the proper
convexity requirements for the damage and yield criteria; see e.g. Lubliner (1990) and Simo and Hughes
(1998) for similar arguments in the context of elastoplasticity. In particular, the damage evolution equa-
tions read

_IdI � cdI
o/dI

oQdI
�2:26�

for the damage multiplier cdI satisfying the complementary Kuhn±Tucker loading/unloading conditions

cdI P 0; /dI 6 0 and cdI/dI � 0 �2:27�
as well as the damage consistency condition

cdI _/dI � 0 �2:28�
during persistent damage. Similarly, the associated plastic evolution equations read

_ep � cp o/p

or
; �2:29a�

_Ip � cp o/p

oQp �2:29b�

for the plastic multiplier cp satisfying

cp P 0; /p6 0 and cp/p � 0 �2:30�
and the plastic consistency condition

cp _/p � 0: �2:31�
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The above relations de®ne completely the plastic damage model. A summary of these constitutive relations
for a general damage model is given in Table 1.

Remark 2.3. Additional extensions can be easily accommodated in the above framework. For example, the
consideration of general damage and plastic potentials in the damage and plastic evolution equations (2.26) and
(2.29), di�erent from the damage and plastic surfaces, respectively, may be used in the formulation of non-
associated models. Similarly, the formulation of viscous damage models is easily accomplished by the viscous
regularization of the Perzyna type as employed in elastoplasticity, namely, replacing the Kuhn±Tucker loading
and unloading conditions (2.27) and consistency condition (2.28) by the evolution equation

cdI � hf
dI�/dI�i
gdI

�2:32�
for a damage viscosity gdI , general monotonically increasing scalar function f dI���, and Macaulay brackets
hxi :� �x� jxj�=2 while retaining the evolution equation (2.26). Finally, the case of multi-surface damage
mechanisms can be easily considered through a damage evolution equation of the Koiter type (Simo and
Hughes, 1998), following the same arguments as in elastoplasticity. Details are omitted.

2.3.1. Damage models in stress space
The above arguments led to the consideration of damage surfaces de®ned in terms of the internal

variables QdI . These variables are de®ned by Eq. (2.15b) and, thus, they can be written as

QdI :� ÿ o bW dI

oIdI
� cQdI �edI ;IdI� �2:33�

Table 1

Summary of the constitutive relations for a general damage model

(1) Elastic stress±strain relation

r � oW e

oee

for an elastic potential W e�ee�.
(2) Damage stress±strain relations

rdI � oW dI

oedI
or edI � ovdI

ordI
() sdI � o bW dI

oedI
or edI � obvdI

osdI

 !
for the conjugate damage potentials W dI �edI ;IdI � and vdI �rdI ;IdI � (or, equivalently, bW dI �edI ;IdI � and bvdI �sdI ;IdI �), for each

damage mechanism dI � 1; ndam. The damage stresses rdI are given in terms of the (total) stresses r by the projection relation

(equilibrium)

rdI �
XndI

a�1

PdI
a sdI

a with sdI
a � PdI

a : r

between the two sets of stresses.

(3) The (associated) damage evolution equations

_IdI � cdI o/dI

oQdI
;

cdI P 0; /dI 6 0; cdI /dI � 0;
cdI _/dI � 0;

8<:
where QdI � ÿo bW dI=oIdI � obvdI=oIdI ; for each damage mechanism dI � 1; ndam.

(4) The (associated) damage evolution equations

_ep � cp o/p

or ;
_Ip � cp o/p

oQp ;
cp P 0; /p6 0; cp/p � 0;
cp _/p � 0;

8<:
where Qp � ÿoHp=oIp:
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that is, as functions of the damage strains edI (or, equivalently, edI ) and conjugate internal variables IdI .
However, and as noted in Section 1, our interest in this paper is the consideration of stress-based damage
models, that is, with the damage surfaces /dI in terms of the stresses r. For this purpose, the internal
variables QdI can be alternatively de®ned as follows.

We introduce the damage complementary energy function, denoted for the mechanism dI � 1, ndam by

vdI�rdI ;IdI� � bvdI�sdI ;IdI� for rdI � PdT
I sdI 2VdI �2:34�

and obtained by the Legendre transform of the stored energy function W dI in the damage strains. That is,
for a given stress rdI � PdT

I sdI 2VdI , we de®ne the function

bvd�sdI ;IdI� :� max
edI

sdI � edI|���{z���}
rdI :edI

8<: ÿ bW dI�edI ;IdI�
9=; �2:35�

� sdI : cedI �sdI ;IdI� ÿ bW dI�cedI �sdI ;IdI�;IdI� �2:36�
for the function cedI �sdI ;IdI� obtained by inverting the constitutive relation

sdI � o bW dI

oedI
�edI ;IdI�: �2:37�

A simple argument based on the chain rule applied to Eq. (2.36) shows that

obvdI

osdI

����
IdI

� edI � sdI :
ocedI

osdI

�����
IdI

ÿ o bW dI

oedI

�����
IdI|������{z������}

sdI

:
ocedI

osdI

�����
IdI

�2:38�

so

edI � obvdI

osdI
or; in components; edI

a �
obvdI

osdI
a

�a � 1; ndI
�; �2:39�

where the arguments of the function bvdI�sdI ;IdI� are implied. Equivalently, we write

edI � ovdI

ordI
�2:40�

for vdI�rdI ;IdI� de®ned in Eq. (2.34).
A calculation similar to Eq. (2.38) leads easily to the relation

obvdI

oIdI

����
sdI

� ÿ o bW dI

oIdI

�����
edI

; �2:41�

thus de®ning the internal variables

QdI � cQdI �sdI ;IdI� � obvdI

oIdI
�sdI ;IdI� �2:42�

in terms of the stresses sdI (or, equivalently, rdI � PdT
I sdI ) associated to the damage mechanism dI. The

damage surfaces (2.25) can then be expressed as

/̂dI�sdI ;IdI� :� /dI�cQdI �sdI ;IdI�� �2:43�
in terms of the damage stresses sdI and the conjugate internal variables IdI . The equations of the ®nal
plastic damage model are summarized in Table 1.
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Remark 2.4.

1. A su�cient condition for the invertibility of the relation (2.37) is the convexity of the damage potentialsbW dI�edI ;IdI� in the damage strain argument edI (that is, for ®xed IdI ), which also implies the convexity
of the complementary functions vdI in the stresses sdI . This convexity applies for the cases of interest de-
scribed in Section 3, and it is assumed hereafter, once the damage mechanism is activated.

2. The construction of the damage linear subspace VdI is, in fact, motivated by the ®nal relation (2.43) de®ning
the damage surfaces in terms of the speci®c damage stress components sdI .

2.4. The rate equations

To identify better the damage response introduced by the considerations presented in the previous
sections by the total stress±strain relations, we derive in this section the tangent rate equations associated to
the general models developed above. As noted in Section 1, one of the main advantages of the proposed
formulation is the modularity in the treatment of simultaneous damage mechanisms. We can exploit this
modularity by ®rst deriving the tangent rate form of the equations for each of the damage mechanisms to
account for their combined action together with the elastoplastic response of the material afterwards. In
this way, we consider a given damage mechanism dI � 1, ndam and derive the rate equation

_sdI � cdI
lu _edI �2:44a�

or, in components,

_sdI
a �

XndI

b�1

cdI

luab
_edI

b �a � 1; ndI
� �2:44b�

for a tangent matrix cdI

lu 2 RndI
�ndI to be found, accounting for the active damage loading or inactive damage

unloading state of the damage mechanism dI. We note the use in Eq. (2.44a,b) of the reduced arrays in VdI ,
thus avoiding in the following developments the singularities associated with the components of the strain
and stress not involved in the damage of the material.

2.4.1. The tangent damage rate relations
The rate form of Eq. (2.39) reads

_edI � o2bvdI

osd2
I

_sdI � o2bvdI

osdIoIdI
� _IdI � ddI _sdI � cdI

o2bvdI

osdIoIdI
� o/dI

oQdI
; �2:45�

where we have used the evolution equation (2.26) and introduced the damage compliance ddI through the
de®nition

ddI :� o2bvdI

osd2
I

: �2:46�

The symmetry of the compliance ddI follows. As noted in Remark 2.4, we assume the convexity of the
damage potential bv�sdI ;IdI� in the stress component, hence resulting in the positive de®niteness of the
compliance ddI in Eq. (2.46) (and thus invertible), once the damage mechanism dI is activated. We introduce
the notation

cdI :� ddÿ1
I �2:47�

for the damage tangent. Similarly, the rate form of Eq. (2.42) leads to the relation
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_QdI � o2bvdI

oIdIosdI

_sdI � o2bvdI

oId2
I

� _IdI

� o2bvdI

oIdIosdI

_sdI � cdI
o2bvdI

oId2
I

� o/dI

oQdI
�2:48�

_QdI � o2bvdI

oIdIosdI
cdI _edI ÿ cdI

o2bvdI

oIdIosdI
cdI

o2bvdI

osdIoIdI

�
ÿ o2bvdI

oId2
I

�
� o/dI

oQdI
�2:49�

after using Eqs. (2.45) and (2.47). The damage multiplier cdI is obtained by imposing damage consistency
during persistent damage, as follows.

(i) Damaged unloading. No further damage of the material occurs in this case, with

/dI < 0) cdI � 0 �2:50�
by the Kuhn±Tucker condition (2.27c). Therefore, Eq. (2.45) leads to

_sdI � cdI _edI ) cdI

lu � cdI for �damaged� unloading �2:51�
with no further evolution of the compliance associated to the damage mechanism in this case.

(ii) Damage loading. The imposition of the consistency condition (2.28)

_/dI � o/dI

oQdI
� _QdI � 0 �2:52�

leads in combination with Eq. (2.49) to

cdI � 1

DdI

o/dI

oQdI
� o2bvdI

oIdIosdI

� �
cdI _edI ; �2:53�

where

DdI :� o/dI

oQdI
� o2bvdI

oIdIosdI
cdI

o2bvdI

osdIoIdI

�
ÿ o2bvdI

oId2
I

�
� o/dI

oQdI
; �2:54�

which is assumed to be positive DdI > 0; see Remark 2.5 below. The introduction of this expression of cdI in
Eq. (2.45) leads to the tangent rate Eq. (2.44a,b) with

cdI
lu � cdI ÿ 1

DdI
cdI

o2bvdI

osdIoIdI
� o/dI

oQdI

� �� �

 cdI

o2bvdI

osdIoIdI
� o/dI

oQdI

� �� �
: �2:55�

The symmetry of this tangent is to be noted.

Remark 2.5. The constitutive assumption DdI > 0 in Eq. (2.54) is to be veri®ed on a case by case basis in the
model examples described in Section 3. With this assumption, Eq. (2.53) leads to the equivalent condition for
persistent damage loading

o/dI

oQdI
� o2bvdI

oIdIosdI

� �
cdI _edI > 0 �2:56�

for the damage mechanism dI, after noting the constraint cdI > 0 in the ®rst term of Eq. (2.27).

2.4.2. The global elastoplastic-damage tangent
The above considerations focused on a given damage mechanism dI. Global relations between the rates

of total strain _e and stress _r can be obtained as follows. The rate form of the elastic relation (2.12) leads to
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_r � Ce _ee � Ce�_eÿ _ed ÿ _ep� for Ce :� o2W e

oee2 ; �2:57�

the symmetric elastic tangent (not necessarily constant). The plastic strain rates _ep in this last expression are
eliminated in the usual way. Indeed, the imposition of the plastic consistency (2.31) in combination with
Eq. (2.57) leads to the expression of the plastic multiplier

cp � 1

Dp n/p : Ce�_eÿ _ed�; �2:58�

where we have introduced the notation

n/p :� o/p

or
and Dp :� n/p : Cen/p � o/p

oQp

� �2

Kp �2:59�

for the hardening modulus Kp :� o2Hp=oap2
in terms of the plastic hardening potential Hp. Combining

Eqs. (2.29a), (2.57) and (2.58), we arrive at the tangent relation

_r � Cep�_eÿ _ed� �2:60�
for the elastoplastic tangent Cep

Cep � Ce ÿ 1

Dp Cen/p 
 Cen/p ; �2:61�

a symmetric tangent in the assumed associated case.
The combination of Eqs. (2.19b) and (2.60) leads to

_sdI � PdI : _r � PdI : Cep _e

 
ÿ
Xndam

dJ�1

PdT
J _edJ

!
for dI � 1; ndam; �2:62�

which with (2.44a) leads toXndam

dJ�1

cdI

luddIdJ

h
� PdI : CepPdT

J cdJ
lu

i
_edJ � PdI : Cep _e for dI � 1; ndam: �2:63�

Following the notation introduced in Eq. (2.8), we consider the matrix

A :� cdI

luddIdJ � PdI : CepPdT
J|������������������{z������������������}

block AdIdJ 2R
ndI
�ndJ

2664
3775 2 Rntotal

d
�ntotal

d ; �2:64�

where

ntotal
d �

Xndam

dI�1

ndI
; �2:65�

the total number of damage variables. The symmetry of the matrix A is to be noted. From Eq. (2.63), we
conclude that

_edI �
Xndam

dJ�1

Aÿ1
ÿ �

dIdJ
PdJ : Cep _e ; �2:66�

where �Aÿ1�dIdJ
2 RndI

�ndJ denotes the block of the inverse of matrix A associated to the mechanisms
dI and dJ .
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The ®nal tangent rate equation is obtained as

_r � Cep _e

 
ÿ
Xndam

dI�1

PdT
I _edI

!
�2:67�

_r � Cep

"
ÿ
Xndam

dI;dJ�1

Cep : PdT
I Aÿ1
ÿ �

dIdJ
PdJ : Cep

#
_e; �2:68�

identifying the ®nal rate equation

_r � Cepd _e; where Cepd � Cep ÿ
Xndam

dI;dJ�1

Cep : PdT
I Aÿ1
ÿ �

dIdJ
PdJ : Cep: �2:69�

We note the symmetry of the ®nal tangent. The damage incorporated in the tangent response of the ma-
terial is apparent in the ®nal relation (2.69) through the evolution of the tangent sti�ness of the material
from its elastoplastic value Cep. The degradation of this tangent response is accomplished in the proposed
formulation through a direct modeling of the physical damage mechanisms. To illustrate better the added
compliance added to the global tangent response of the material by these mechanisms, we present next an
alternative derivation of the tangent in terms of the damage compliances.

2.4.3. Alternative form of the damage tangent
An alternative form of the tangent (2.69) can be obtained by deriving ®rst the corresponding compliance,

when possible. We ®rst note that the compliance ddI
lu � c

dÿ1
I

lu associated to the tangent cdI
lu in Eq. (2.55) for the

damage mechanism dI can be obtained using the Sherman±Morrison formula (Golub and van Loan, 1989,
page 51), leading to the expression

ddI
lu � ddI � 1

~DdI

o2bvdI

osdIoIdI
� o/dI

oQdI

� �

 o2bvdI

osdIoIdI
� o/dI

oQdI

� �
; �2:70�

where

~DdI � DdI ÿ o/dI

oQdI
� o2bvdI

oIdIosdI
cdI

o2bvdI

osdIoIdI

� �
� o/dI

oQdI

� ÿ o/dI

oQdI
� o2bvdI

oId2
I

� o/dI

oQdI

�2:71�

assuming ~DdI 6� 0; see Remark 2.6. Expression (2.70) can be obtained alternatively by combining Eq. (2.48)
(instead of Eq. (2.49)) and the consistency condition (2.52). For the case of no further damage (i.e. damaged
unloading) characterized by the tangent relation (2.51), the corresponding compliance is simply obtained as

ddI
lu � ddI �2:72�

given by Eq. (2.46).
The global rate equation is then easily obtained from the inverse of the elastic rate Eq. (2.67) in com-

bination with the inverse of the rate equation (2.44a), that is,

Dep _r � _eÿ
Xndam

dI�1

XndI

a�1

PdI
a _edI

a|������{z������}
_edI

0BBBB@
1CCCCA and _edI

a �
XndI

b�1

ddI

luab
PdI

a : _r|���{z���}
_s
dI
a

�2:73�
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for the elastoplastic compliance Dep :� Cepÿ1

, thus leading to the elastoplastic-damage compliance

_e � Depd _r; where Depd � Dep �
Xndam

dI�1

DdI
lu �2:74�

with the damage compliance contribution

DdI

lu �
XndI

a;b�1

ddI

luab
PdI

a 
 PdI

b �2:75�

for the damage mechanism dI. The ®nal expression (2.74) identi®es clearly the added compliance to the
tangent material response

Remark 2.6. The compliance (2.70) is only well de®ned when the elastoplastic tangent C ep is invertible and
~DdI 6� 0 in (2.71) (otherwise the tangent cdI

lu in Eq. (2.55) is singular). After observing the nature of ~DdI in Eq.
(2.71), we note that this situation may occur in the case of perfect damage (no hardening/softening response of
the material) as it is shown in the model examples considered in Section 3. The same considerations apply to
the invertibility of the elastoplastic tangent given by Eq. (2.61). For these reasons, the form of the tangent
(2.69), not requiring this inversion before adding the elastic contributions, is to be preferred in the numerical
implementation.

3. Model examples

We consider in this section a generic elastoplastic-damage model involving a quadratic damage poten-
tial, thus introducing a secant damage compliance. Secant damage compliance have been considered in
Ortiz (1985), leading to similar developments to the ones presented herein for the purely elastic-damage
case only. These considerations lead to a linear stress±strain relation in unloading and reloading when
combined with a quadratic elastic potential, as illustrated in Fig. 2 in the context of a uniaxial tension test.

After describing this generic quadratic damage model in Section 3.1 in the general elastoplastic-damage
framework developed in Section 2, we consider in Section 3.2 several existing models, developing their
formulation within the proposed framework. A single damage mechanism (i.e. ndam � 1) is considered in
Section 3, for simplicity in the presentation, but each and every particular case considered next ®ts in the
general framework presented in Section 2. The several possible combinations of these di�erent cases allow
the formulation of more general models. In this way, we may consider from simple extensions like smeared
crack models based on several crack orientations to more involved cases like a smeared crack model
combined with a scalar isotropic damage model to mention two possible examples.

3.1. A generic quadratic damage model

We consider a damage mechanism characterized by the generic quadratic potentialbW d�ed;Id� � 1
2
ed : cded �Hd�ad� �3:1�

with the internal variables

Id � dd; ad
� 	

for dd :� cdÿ1 �3:2�
and for the scalar variable ad. The generic function Hd�ad� accounts for an isotropic hardening/softening
damage law of the material. The damage space Vd de®ned in terms of the projection matrices Pd by
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Eq. (2.4), so the damage strains are ed � PdT

ed, is to be speci®ed for a particular damage surface; see ex-
amples below. We also write the global compliance

Dd �
Xnd

a;b�1

dd
abP

d
a 
 Pd

b �3:3�

and the global tangent

Cd �
XndI

a;b�1

cd
abP

d
a 
 Pd

b for cd
ab :� Pd

a : CdPd
b �3:4�

leading to the equality

ed : Cded � edI � cdedI �3:5�
for the quadratic term in Eq. (3.1). We write Cdÿ1 � Dd in Vd, i.e., the generalized inverse.

The complementary energy associated to bW d in Eq. (3.1) is given by

bvd�sd; dd; ad� � 1
2
sd : ddsd ÿHd�ad�

� 1
2
�sd 
 sd� : dd ÿHd�ad� �3:6�

� 1
2
�rd 
 rd� : Dd ÿHd�ad� �3:7�

for rd � PdT

sd, as a calculation based on Eq. (2.35) shows. The constitutive relations (2.40) and (2.42) read
in this case

ed � obvd

osd
� ddsd �or; equivalently; ed � Ddrd � Ddr�; �3:8�

Qd
1 �

obvd

odd
� 1

2
�sd 
 sd�; �3:9�

Qd
2 �

obvd

oad
� ÿ oHd

oad
�: qd �3:10�

leading to the expression (2.15) of the damage dissipation

Dd � 1
2
�sd 
 sd� : _dd � qd _ad P 0: �3:11�

Appropriate damage surfaces are de®ned then in this case as

/d�1
2
�sd 
 sd�; qd�6 0 �3:12�

leading to the associated damage evolution equations

_dd � cdN/d for N/d :� o/d

o�1
2
�sd 
 sd�� ; �3:13�

_ad � cd o/d

oqd
�3:14�

with the Kuhn±Tucker loading/unloading conditions (2.27) and the consistency conditions (2.28).

Remark 3.1. The constraint (3.11) on the damage dissipation Dd is automatically satis®ed assuming a damage
surface of the form
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/d�1
2
sd 
 sd; q� � gd�1

2
sd 
 sd|����{z����}

Qd
1

� ÿ �xd
0 ÿ qd�ad�|��������{z��������}
xd�ad�P 0

�6 0 �3:15�

for a material parameter xd�0� � xd
0 > 0 (i.e. qd�0� � 0) and a function gd��� positively homogeneous of

degree 1. We recall that a positively homogeneous function of degree m P 1 is de®ned by

gd�kQd
1� � kmgd�Qd

1� 8 k 2 R� ) ogd

oQd
1

: Qd
1 � mgd; �3:16�

the Euler's theorem of homogeneous functions. In the case of interest (m � 1), we obtain after some
straightforward algebraic manipulations

Dd � 1
2
�sd 
 sd� : _dd � qd _ad � cdxd

0 P 0 �3:17�
given the Kuhn±Tucker condition (2.27).

3.1.1. An alternative characterization of the damage
The damage evolution equations (3.13)±(3.14) have been obtained, following the general framework

presented in Section 2, in terms of the damage surface (3.12) function of the fourth-order tensor
Qd

1 � 1
2
�sd 
 sd�. It is common, however, to characterize the damage of the material in terms of a damage

surface of the form

~/d�sd; qd�6 0 �3:18�
in terms of the stress tensor sd. The damage evolution equations for this case can still be obtained using the
principle of maximum damage dissipation as follows.

Consider the Lagrangian associated to the dissipation functional (3.11) and the constraint introduced by
the damage surface (3.18), that is,

Ld�sd; qd; cd; _ed; _ad� :� 1
2
sd � _ddsd � qd _ad ÿ cd ~/d�~sd; qd� �3:19�

for a Lagrange multiplier cd P 0 imposing the unilateral constraint ~/d6 0. The stationarity of the La-
grangian (3.19) for ®xed rates _dd and _ad of the damage variables leads to the evolution equations

_ddsd � cdn ~/d ; �3:20a�

_ad � cd o ~/d

oqd
�3:20b�

with the Kuhn±Tucker complementary conditions (2.27), where we have introduced the notation

n ~/d :� o ~/d

osd
: �3:21�

Clearly, the only component of the compliance rate a�ecting the dissipation functional (3.19) is the
compliance along the direction de®ned by the current damage stress sd. Hence, the relation (3.20) shows
that the principle of maximum dissipation in combination of a damage surface in terms of the stress sd

alone determines only this component of the compliance, leaving arbitrary the component in the direction
orthogonal (in stress space) to the current stress. A particular evolution equation for the compliance dd

satisfying the relation (3.20a) is given by

_dd � cd
n ~/d 
 n ~/d

n ~/d � sd
; �3:22�
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as long as n ~/d � sd 6� 0; see Remark 3.2 (2). Evolution equations of the form given by Eq. (3.22) can be found
in the works of Simo et al. (1993) and Govindjee et al. (1995) in the context of damage models based on the
evolution of the a total compliance.

The two di�erent expressions (3.13) and (3.22) can be reconciled by noting that the consideration of the
function

~/d�sd; qd� :� /d�1
2
�sd 
 sd�; qd� �3:23�

for a given function /d���, leads to the di�erential relation

d ~/d � n ~/d � dsd � o ~/d

oqd
dqd

� n ~/d 
 n ~/d

n ~/d � sd
: 1

2
dsd 
 sd � sd 
 dsd
� �|������������������{z������������������}

d�1
2
sd
sd�

� o ~/d

oqd
dqd

� d/d � o/d

o�1
2
sd 
 sd� : d

1

2
sd

�

 sd

�
� o/d

oqd
dqd

� o/d

o�1
2
sd 
 sd� s

d � dsd � o/d

oqd
dqd �3:24�

implying

n ~/d � o/d

o�1
2
sd 
 sd� s

d � sd o/d

o�1
2
sd 
 sd� ; �3:25�

and o/d=oq � o ~/d=oq. Hence, the evolution formulas (3.13) and (3.22) de®ne the same (maximum) damage
dissipation along the direction of the current stress sd. For future use and in general, we write the damage
evolution equation

_dd � cdNd
/ �3:26�

with N/d given by Eq. (3.13) or Eq. (3.22). The general relation

n ~/d � N/d sd � sdN/d �3:27�
is also satis®ed in both cases by Eq. (3.25). Given this relation, we can express the rate of the damage strains
as

_ed � dd _sd � _ddsd � dd _sd � cdn ~/d �3:28�
or, equivalently,

_sd � cd� _ed ÿ cdn ~/d� �3:29�
involving the current secant damage tensor cd � ddÿ1

. We note that the ``degrading strains'' (rates), referred
to in Section 1, correspond to the last term in Eq. (3.28). We conclude then that it is the ®rst term on the
right-hand side of Eq. (3.28), which is also active in unloading, which gives the recoverable character of the
damage strains ed.

The damage tangent associated to this generic quadratic damage mechanism is also obtained using the
Eqs. (2.51) and (2.55), leading to the expressions

(i) Damaged unloading:

cd
lu � cd; �3:30�
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(ii) Loading (persistent damage):

cd
lu � cd ÿ 1

Dd
cdn ~/d 
 cdn ~/d ; �3:31�

for

Dd � n ~/d : cdn ~/d � Kd o ~/d

oqd

� �2

|������{z������}
~Dd

; �3:32a�

where Kd :� d2Hd

dad2 ; �3:32b�

the hardening/softening tangent modulus. We note the nature of ~Dd as discussed in Section 3.1.1. The ®nal
global tangent is obtained using the general formula (2.69). We note again that the damage space basis Pd is
to be de®ned below for the cases of interest.

Fig. 2 sketches the linear response in unloading and reloading observed in a uniaxial tension test for the
quadratic damage potential considered herein when combined with a quadratic elastic potential. The re-
duced one-dimensional setting provided by this simple stress of state requires only the consideration of the
elastic sti�ness characterized by the Young modulus Ee and the damage compliance contribution charac-
terized by the scalar Dd � Edÿ1

. We can observe again in this ®gure the recoverable character of the damage
strain and the corresponding potential W d���. Similarly, the apparent axial sti�ness of the material upon
unloading (corresponding to the global tangent (2.69) for this case) can be obtained from this ®gure as
E � EdEe=�Ed � Ee�, showing the damage introduced by the considered formulation.

Remark 3.2.

1. Similar to the arguments presented in Remark 3.1, the constraint on the damage dissipation Dd P 0 is au-
tomatically enforced by starting directly from a damage surface of the form

~/d�sd; qd� � ~gd�sd� ÿ � ~xd
0 ÿ qd�ad�|��������{z��������}
~xd�ad�P 0

�6 0 �3:33�

for a positively homogeneous function ~gd��� of degree m, so that

o~gd

osd
� sd � n ~/d � sd � m~gd�sd�: �3:34�

Combining Eq. (3.11) with Eq. (3.22), we obtain after some straightforward algebraic manipulations

Dd � m
2

cd ~xd
0

�
ÿ 1

�
ÿ 2

m

�
qd

�
: �3:35�

Therefore, we conclude Dd P 0 for a homogeneous function of degree m � 2. For the case of a homogeneous
function of degree m � 1, a positive dissipation is also concluded if qd P ÿ ~xd

0; in particular, for the case of
a softening law qd P 0.

2. Regarding the formula (3.22) for the evolution of the damage compliance dd, we note that the denominator is
nonzero; in fact

n ~/d � sd > 0 for ~/d�sd; qd� � 0 and sd 6� 0; �3:36�
if ~/d de®nes a convex elastic damage domain in the space of damage stresses sd (qd � constant) including
the origin sd � 0, as it is usually the case. In fact, for the common case (3.33) with ~gd��� homogeneous of
degree m > 0, we have
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n ~/d � sd � m~gd�sd� � m ~xd�ad� > 0 �3:37�
as long as 06 ~xd�ad� 6� 0, i.e., when the elastic domain does not reduce to sd � 0 (or, in other words, when it
has not shrunk to the origin due to a softening of the material). In this situation,the relation (3.22) re¯ects
the physical fact dd !1 for a fully damaged material; note that cd ! 0 as needed in the expressions (2.51)
and (2.55) of the tangent.

3.2. Some existing models

The generic quadratic model developed in Section 3.1 is fully de®ned once the damage surfaces (3.23),
de®ning in the process the damage space (2.4) and the nature of the damage compliance (3.2), are de®ned.
With speci®c particular de®nitions of these surfaces, the considered general formulation encompasses the
models developed in Ortiz (1985) and Simo and Ju (1987a,b), and later considered in Hansen and Schreyer
(1994), Simo et al. (1993) and Govindjee et al. (1995) in the modeling of the damage in brittle materials,
concrete in particular. We show in the next sections that other existing stress-based damage models can be
obtained in this way. We consider for simplicity the case of a linear elastic material, i.e., with a quadratic
stored energy function

W e�ee� � 1
2
ee : Ceee �3:38�

for constant elasticities Ce, leading to the quadratic complementary energy function

ve�r� � 1
2
r : Der � 1

2
�r
 r� : De �3:39�

for De � Ceÿ1

.

3.2.1. An e�ective stress anisotropic damage model
The formulation of anisotropic damage models can be often found in the literature developed through

the introduction of the so-called damage tensors de®ning an e�ective stress tensor. Early examples are the
works of Cordebois and Sidoro� (1982) and Murakami (1983). In the context developed in Section 3.2, we
®rst note the secant relation

eÿ ep � ee � ed � De
� �Dd

�
r � De I

� � CeDd
�
r �3:40�

for the fourth-order identity tensor I. Hence, we can write

r :� Ce�eÿ ep� �Mÿ1r �3:41a�

for M :� I
� � CeDd

�ÿ1
; �3:41b�

and the e�ective stresses r. Numerous anisotropic damage models have been formulated through the
consideration of a general e�ective stress tensor M; we refer to Lemaitre and Chaboche (1978, 1985),
Cordebois and Sidoro� (1982) and Murakami (1983) among others.

It is instructive to formulate the resulting anisotropic e�ective stress model in its classical form, without
the explicit consideration of the damage strains ed. We ®rst note the relations

r � Ceee � Ddÿ1

ed ) r � C�eÿ ep|��{z��}
ee�ed

� for C :�MCe �3:42�

and with M de®ned in Eq. (3.41b). This last expression relates directly the stress with the reversible part of
the strain eÿ ep through the current (degraded) material tangent C. The thermodynamic framework pre-
sented in Section 2 can then be written equivalently, after some straightforward algebraic manipulations, as
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W � 1
2
ee : Ceee|�����{z�����}

W e

� 1
2
ed : Ddÿ1

ed|�������{z�������}
W d|�������������������{z�������������������}

W ed

�Hp�ap� � 1
2
�eÿ ep� : C�eÿ ep�|����������������{z����������������}

W ed

�Hp�ap�; �3:43�

in terms of the total e and plastic ep strains, as it is used extensively in the literature. In fact, this expression
of the total stored energy in combination with the second term of the stress/strain relation (3.42) leads to the
following expression of the total dissipation

D :� r : _eÿ _W � r : _ep � qp _ap|���������{z���������}
Dp

� 1
2
r : _Dr|���{z���}

Dd

for D :� Cÿ1 �3:44�

without the explicit consideration of the damage strains. The natural decomposition of the dissipation in a
plastic and a damage component, as it was the case for the framework considered herein (Eq. (2.10)),
becomes apparent.

We observe that the framework developed in this work identi®es directly an evolution for the e�ective
damage tensor M. Namely, using the evolution equation (3.26), we obtain

_M � ÿcdMCeN/d M �3:45�
for N/d given by Eq. (3.13) or Eq. (3.22) for a general damage function /d�1

2
�r
 r�; qd�6 0

or ~/d�r; qd�6 0, respectively. More importantly, this evolution equation is obtained in the thermodynamic
framework developed in Section 2 and, in particular, through the direct physical modeling of the damage
mechanism through the stress/damage strain relations characterizing it. This situation is to be contrasted
with usual ad-hoc characterizations of the evolution of the e�ective stress tensor commonly found in the
literature.

Remark 3.3. Having de®ned the e�ective stresses r in terms of the damage tensor M in Eq. (3.41), one may
consider the yield criterion Eq. (2.25b) in the e�ective stress space, that is,

/
p�r; qp�6 0 �3:46�

as it is commonly found in the literature (Hansen and Schreyer, 1994; Ju, 1989). This option, however, leads to
a nonsymmetric tangent.

3.2.2. An isotropic damage model
Damage models in the form of a scalar damage variable characterizing the isotropic damage of the

material can be traced to the pioneering work of Kachanov (1958). Isotropic damage can be characterized
by the consideration damage surface

/d�r; qd� � ve�r� ÿ xd
0

ÿ ÿ q
�
6 0 �3:47�

in terms of the elastic complementary energy function (3.39). An equivalent expression (using twice the
square root of ve) can be found in Simo and Ju (1987a,b). The threshold value to activate the damage is
denoted by xd

0 and evolves with the scalar hardening/softening variable q, given in terms of the conjugate
strain-like variable ad 2 �0;1� by Eq. (3.17) for the hardening/softening potential Hd�ad�. The appearance
of all the components of the stress r (not speci®c components rd � PdT

sd only) in the damage surface (3.47)
identi®es the associated damage space with the full space of symmetric tensors, that is,

Vd � S: �3:48�
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In this situation, we can choose ed � ed (and sd � rd � r), with no need to introduce the projections
fPd

agnd

a�1 in Eq. (2.6) (or, in other words, they are the identity). Similarly, we work with the global damage
compliance Dd � dd in this case.

The damage evolution equation (3.13) read in this case

_Dd � cdDe; �3:49�

_ad � cd �3:50�
for the elastic compliance De. For the particular case (3.39) involving a constant De, the damage evolution
equations (3.49) and (3.50) can be easily integrated to arrive at the expression

Dd �
Z

_Ddt �
Z

_addt De � adDe: �3:51�

The damage strains are easily obtained using Eq. (2.40) with the complementary function (3.6), leading
to

ed � Ddr � adDer � adee; �3:52�
thus resulting in the relations

ee � 1

�1� ad� �eÿ ep� � �1ÿ d��eÿ ep�; �3:53�

ed � ad

1� ad
�eÿ ep� � d�eÿ ep� �3:54�

after introducing the de®nition

d :� ad

1� ad
) d 2 �0; 1�: �3:55�

In this notation, we can write

Dd � d
1ÿ d

De; �3:56�

for the damage secant compliance Dd. The stress is given by

r � Ceee � �1ÿ d�Ce�eÿ ep� � �1ÿ d�r for r :� Ce�eÿ ep� �3:57�
with Ce � Deÿ1

. Relations (3.53) and (3.57) de®ne the classical concepts of e�ective strains and stresses,
respectively, in the isotropic case, as it can be found in the classical literature on the subject (see the
complete account in Kachanov (1986)). Eq. (3.57) is a particular case of the general anisotropic relation
(3.41), with M � �1ÿ d�I. In fact, the elastic potential (3.43) reads in this case

W � �1ÿ d�1
2
�eÿ ep� : Ce�eÿ ep� �Hp�ap� �3:58�

with the coupled plastic damage dissipation expressed equivalently as

D :� r : _eÿ _W � r : _ep � qp _ap|���������{z���������}
Dp

� _dY|{z}
Dd

for Y :� 1
2
�eÿ ep� : Ce�eÿ ep�; �3:59�

two expressions without an explicit reference to the damage strains ed, as found extensively in the literature.
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The damage tangent moduli Cd
lu given by Eqs. (3.30) and (3.31) reads in this case

(i) Damaged unloading:

Cd
lu �
�1ÿ d�

d
Ce: �3:60�

(ii) Damage loading:

Cd
lu �
�1ÿ d�

d
Ce

24 ÿ 1

r : Der� Kdd
�1ÿd�3

r
 r

35: �3:61�

Finally, the total tangent moduli

_r � Cepd _e; �3:62�
given by the general formula (2.69), reads in this case of a single isotropic damage mechanism

(i) Damaged unloading:

Cepd � �1ÿ d�Cep: �3:63�
(ii) Damage loading:

Cepd � �1ÿ d� Cep

24 ÿ 1

r : Der� Kdd
�1ÿd�4

r
 r

35 �3:64�

for the isotropic hardening/softening modulus Kd de®ned in Eq. (3.32b). The case of elastic damage is
recovered when Cep � Ce.

3.2.3. Smeared crack models and strong discontinuities
The modeling of cracking in concrete has been often formulated in the framework of the so-called

smeared crack models, especially in the context of ®nite element analyses. Representative early applications
of this approach can be found in Rashid (1968), Bazant and Cedolin (1979) and Rots et al. (1985) among
many others. Despite its popularity, the lack of a sound thermodynamic framework as opposed to con-
tinuum damage models has, perhaps, made this approach less attractive from the theoretical point of view.
We show in Section 3.2.3 that smeared crack models ®t perfectly in the thermodynamic framework of
continuum damage models encompassed by the simple generic quadratic model presented above.

For a given nucleation criterion (say Rankine's maximum stress criterion for brittle materials), a single
crack can be characterized by its normal direction, the unit vector n. The cohesive opening/closing of the
crack is then assumed controlled by the traction vector associate to n, that is,

T � rn: �3:65�
Let fm1 � n; . . . ;mndim

g denote an orthonormal Cartesian system in a general ndim dimensional setting (so
mi �mj � dij for i; j � 1; ndim). Denoting the corresponding components of the traction vector T by

sd
a � Ta :� ma � T for a � 1; ndim; �3:66�

the general damage surface (3.23) in terms of the reduced damage stresses sd corresponds in this case to a
damage surface in terms of the traction vector on the crack. These considerations identify the damage space
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Vd for the damage mechanism associated to a single crack. Namely, the projection matrices into this space
are given by

Pd
a � 1

2
ma� 
 n� n
ma� for a � 1; ndim �3:67�

(so Pd
1 � n
 n, in particular). The orthogonality relation (2.5) can be easily veri®ed. The damage strains are

then constructed by Eq. (2.4) in terms of the so-called crack strains ed, with nd � ndim in this case.
The damage evolution equation (3.26) reads in this case

_dd � cdN/d ; �3:68�
for the reduced crack compliance dd 2 Rndim�ndim , a rank two (not four) tensor in this case, with N/d given by
Eq. (3.13) or Eq. (3.22), in terms of a damage surface involving the components of the traction vector T.
We refer to Kroplin and Weihe (1997), among many others, for the determination of such damage surfaces
for the modeling of cracking in concrete.

The inviscid smeared crack models considered in this section in combination of strain softening are
known to lead to fundamental di�culties, the well-known pathological mesh dependence of the resulting
®nite element solutions in particular. To avoid these inconsistencies, we have presented in Armero (1997a,b)
an alternative formulation of this type of anisotropic damage models in the context of the so-called strong
discontinuities. This approach considers the limit solutions with a discontinuous displacement ®eld (Simo
et al., 1993; Armero and Garikipati, 1996). More recently, we have presented in Armero (1997a, 1999) a
multi-scale framework for the introduction of these solutions, or better the corresponding localized dissi-
pative mechanisms, in the large scale problem of the local continuum. The corresponding strains in the
small scale (a local neighborhood of a point x) are given

el � el � �n
 n�sdCx ; �3:69�
for the Dirac delta function dCx associated to the discontinuity surface Cx with unit normal n, with a regular
part of the local strain el (determining the stress r) and a jump displacement ®eld n across Cx. The de-
composition (3.69) ®ts along the developments presented in this section with ee � el and ed �
PdT

ed with Pd
a de®ned as in Eq. (3.68) and ed

a � nadCx (a � 1; ndim).
The damage potential W d��� is given in this case by

bW d�ed;Id� � eW d�n; eId�dCx ; �3:70�
for a set of localized internal variables Id � eIddCx . Taking the di�erential of Eq. (3.70), we obtain

d bW d � o eW d

on
� d�ndCx|{z}

ed

� � o eW d

o eId
� d� eIddCx|��{z��}

Id

� )
sd � oeW d

on ;

Qd � ÿ oeW d

oeId
;

8<: �3:71�

being both regular distributions. For the quadratic model (3.1), the relation (3.70) leads to dd � edddCx

and ad � eaddCx , with the secant relation (3.8) and the constitutive relation (3.10) reading in this case

n � eddsd �3:72a�

qd � ÿ ofHd

oead
�3:72b�

for a localized softening potential fHd�ead�.
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The dissipation (3.11) is then given by

Dd � 1
2
�sd 
 sd� :

_edd � qd _ead|�����������������{z�����������������}eDd

2664
3775dCx ; �3:73�

re¯ecting its localized nature. The damage evolution equation (3.26) read now

_edd � ecdN/d and _ead � ecd o/d

oqd
; �3:74�

for N/d de®ned as in Eq. (3.13) or Eq. (3.22), and a localized damage consistency parameter localized on Cx

(with cd � ecddCx ), satisfying similarly the Kuhn±Tucker loading±unloading conditions (2.27) and consis-
tency conditions (2.28). The damage surfaces /d are de®ned as considered above for smeared crack models,
but now resulting directly in the stress±displacement (3.72a) relations, with associated compliance edd. These
relations are directly introduced in the ®nite element solutions through a local enhancement of the ®nite
elements; we refer to the aforementioned references for complete details.

4. Concluding remarks

We have presented in this ®rst paper a general framework for the formulation of continuum damage
models in the in®nitesimal range. This framework is based on the kinematic assumption of the strains
decomposed in elastic, plastic and damage parts, similar to the elastoplastic decompositions of the strains in
plasticity models. The inclusion in this assumption of a general thermodynamic framework describing the
response of the material leads then to a complete characterization of the damage in the material. Most
notably, these considerations allow for a complete and independent characterization of the damage
mechanisms in contrast with more traditional approaches found in the literature based on the e�ective
stress concept through the evolution of the so-called ``damage tensors''. The resulting formulation leads
then to a very modular treatment of the damage e�ects in solids, requiring only the physically motivated
modeling of the strain/stress response associated to the damage mechanism independently of the overall
response of the solid. In addition, we have also shown that classical models, from isotropic damage models
to smeared crack models, ®t in the proposed formulation, thus giving a must needed uni®ed framework to
these existing approaches.

In conclusion, this work has identi®ed a framework leading to a physically motivated modeling of plastic
damage in materials with an e�cient numerical treatment. Even though the concept of damage strain used
herein can be found in the literature as noted in the introduction, most notably through the so-called ``crack
strains'' in the modeling of damage in concrete, their use in the formulation of continuum damage models
seem not to be widely spread. We believe that the highly modular structure of the proposed formulation
clearly justi®es its consideration, even in the case when the formulation reduces to existing models. This is
especially the case when developing numerical schemes for the integration of the resulting constitutive
models as we present in Part II of this work in combination with a simple plastic damage model of porous
metals. We intend to continue this work with the consideration of additional couplings between the dif-
ferent inelastic mechanisms (see Remark 3.3) as well as the extension of these ideas to the ®nite deformation
range.
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