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Preserving Steady-State in One-Dimensional Finite-Volume
Computations of River Flow

E. Bladé1; M. Gómez-Valentín2; M. Sánchez-Juny3; and J. Dolz4

Abstract: When using finite-volume methods and the conservative form of the Saint Venant equations in one-dimensional flow compu-
tations, it is important to establish the correct balance between the discretized flux vector and the geometric source terms. Over the last
few years various improvements to numerical schemes have been presented to achieve this correct balance, focusing on the capability to
simulate water at rest on irregular geometries �C-property�. In this paper it is shown that common schemes can lead to energy-violating
solutions in the case of steady flow. We present developments based on the Roe TVD finite-volume scheme for one-dimensional Saint
Venant equations, which results in a method that not only satisfies the C-property, but also preserves the correct steady flow when
stationary boundary conditions are used. We also present a totally irregular channel test case for the verification of the method.
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Introduction

Finite-volume methods are used to predict free surface water flow
because they respond well in the presence of shocks. Several
recent studies have presented solutions for treating source terms
so as to achieve the correct balance in the discretization of the
flux gradient. Important examples are Vázquez-Cendón �1999�
and Hubbard and García-Navarro �2000�. The first of these works
includes validation tests for both rapidly varied flow and quies-
cent flows to ensure that the correct balance is achieved between
the source term and the flux gradient �exact C-property�. The tests
presented in the second work also concern steady flow in a non-
prismatic rectangular channel. More recently, Burguete and
García-Navarro �2004� and Tseng �2004� examined the capability
of numerical schemes to converge to a nonquiescent steady state,
but their validation tests were performed on either rectangular
channels or channels with a constant cross section. Sanders et al.
�2003� used a MUSCL-type scheme for non-rectangular and non-
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prismatic channels and Vukovic and Sopta �2003� developed Roe
TVD schemes with the exact conservation property for the same
channel types.

Although it has been more than 25 years since Cunge et al.
�1980� demonstrated that some discretizations of the unsteady
flow equations are unable to converge to a steady state that satis-
fies the energy equation, the above-mentioned works did not con-
sider the convergence of the aforementioned finite volume
schemes to the correct energy-compatible steady state. In the
present work we describe and verify a new numerical method
based on the Roe TVD scheme with source term upwinding that
not only achieves the correct balance �C-property�, but also con-
verges to steady states that satisfy the energy equation for irregu-
lar geometry.

Numerical Scheme

The one-dimensional Saint Venant equations in conservative form
for irregular channels are

Ut + F�U�x = H

U = �A

Q
� ; F = � Q

Q2

A
+ gI1 � ; H = � 0

gI2 + gA�S0 − Sf�
�

I1 =�
0

h

�h − ��b�x,��d�; I2 =�
0

h

�h − ��
�b�x,��

�x
d� �1�

where U�vector of conserved variables; F�flux vector;
H�source term, A represents the wetted cross-sectional area; Q
the discharge; g gravity, S0 the channel slope, Sf the friction slope,
h the water depth and b the channel width. A finite-volume nu-

merical scheme for these equations can be written as
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Ui
n+1 = Ui

n −
�t

�x
�F

i+1/2
* − F

i−1/2
* � +

�t

�x
H

i
* �2�

where F* is the numerical flux and H* is the numerical expres-
sion of the integral of the source term on the finite volume.

Numerical Flux

The Saint Venant equations have a spatial dependence on the flux
vector that derives from the pressure term I1 as dI1 /dx
= ��I1 /�A���A /�x�+�I1 /�x. This yields the discrete form

g�I1,i+1/2 = c̃2��Ai+1/2� + g���I1�Ã�i+1/2 �3�

where the celerity is c̃=	�g��I1 /�A��x=const and ���I1�Ã�i+1/2
�variation of pressure forces between finite volumes for a con-

stant area Ãi+1/2. The flux difference can be written as �Hubbard
and García-Navarro 2000�

�Fi+1/2 = J̃i+1/2�Ui+1/2 + Vi+1/2 = 

j=1

2

�̃ j�̃ jẽ j + 

j=1

2

�̃ jẽ j �4�

where J̃�Roe approximation to the Jacobian matrix of F; �̃ j

�Roe averages of the wave strengths; �̃ j�eigenvalues of J̃i+1/2;
and ẽ j�its eigenvectors, as can be seen in Toro �1997�. V
�contribution of the irregular geometry while �̃ j is its decompo-
sition

V =
�F

�x
= � 0

� �I1

�x
�

A=const
�:�̃1 =

1

2c̃
g���I1�Ã�i+1/2:�̃2 = − �̃1 �5�

Therefore, the numerical flux of the Roe TVD scheme is

F
i+1/2
* =

1

2
�Fi + Fi+1� −

1

2�
j=1

2

�̃ j� jẽ j + 

j=1

2

�̃ jsign��̃ j�ẽ j�
+

1

2�
j=1

2

� j�̃ j� j�1 − ��̃ j

�t

�x
��ẽ j + 


j=1

2

� j�̃ jsign��̃ j�

	�1 − ��̃ j

�t

�x
��ẽ j� �6�

where � j�Harten and Hyman entropy fix as presented by Toro
�1997�; and � j�Minmod flux limiter as used by Alcrudo �1992�.

The works referred to above and other studies in the literature

use different formulations for c̃: c̃=	gÃ / B̃, where Ã= �Ai

+Ai+1� /2 and B̃= �Bi+Bi+1� /2; c̃= �ci+ci+1� /2, c̃2= �ci
2+ci+1

2 � /2.
and c̃=	g��I /�A�i+1/2. By substituting Eq. �6� into Eq. �4� it can
be seen that, for irregular channels, none of these expressions of c̃
reproduce the pressure force jump decomposition of Eq. �3�. In-
stead, this can be achieved by using the following expressions for
c2 and ���I1�Ã�i+1/2:

c2 = g
�I1,i+1 − I1,i� − ���I1�Ã�i+1/2

Ai+1 − Ai
; ���I1�Ã�i+1/2 = ��I1�Ã�i+1 − ��I1�Ã�i

�7�

These expressions maintain the physical meaning of celerity,
which is the variation of pressure forces in a cross section with
regard to the variation of the flow area in the same section. If
Ai+1=Ai, Eq. �7� cannot be numerically used, but Eq. �3� reduces

˜
to g�I1,i+1/2=g���I1�A�i+1/2 and any of the above definitions of
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celerity is possible. In such cases c̃2= �ci
2+ci+1

2 � /2 has been
adopted.

Source Term

The slope source term has an obvious balance with the flux vec-
tor, but this does not apply to the part of the source term due to
friction �Hubbard and García-Navarro 2000�. For the purposes of
the present work we consider Sf =0. As proposed by Vázquez-
Cendón �1999�, for the scheme to satisfy the exact conservation
property, H

i
* can be divided into two contributions at finite-

volume boundaries �as was done for F*� and decomposed on the

eigenvectors of J̃

H
i
* = H

i,i−1/2
* + H

i,i+1/2
* �8�

H
i,i−1/2
* =

1

2�
j=1

2


̃ j�1 + sign��̃ j��1 − � j�1 − ��̃ j

�t

�x
���ẽ j�

i−1/2

H
i,i+1/2
* =

1

2�
j=1

2


̃ j�1 − sign��̃ j��1 − � j�1 − ��̃ j

�t

�x
����ẽ j�

i+1/2

�9�


̃1 = −
1

2c̃
gÃ��z + �h� +

1

2c̃
g�I1; 
̃2 = − 
̃1 �10�

where z=z�x��channel bottom elevation.

Steady-State Preservation

In all steady flows Ui
n+1=Ui

n. Therefore, combining the general
Eq. �2� with Eq. �8� it follows

F
i−1/2
* − F

i+1/2
* + H

i,i−1/2
* + H

i,i+1/2
* = 0 �11�

In the case of zero bed friction, for a quiescent flow Q=0, �h
=−�z, and Sf =0. By incorporating these values into the expres-
sions for F* and H* and Eq. �11�, a direct operation yields ��z
+�h�i+1/2=0. Therefore, the numerical scheme verifies the exact
conservation property. The same flux vector and source term bal-
ance �11� must hold for steady, gradually varied flow. In this more
general case, by incorporating the expressions for F* and H* into
Eq. �11� we obtain

Q2

Ãi+1/2

�Ai+1 − Ai

Ai+1Ai
� = g��z + �h�i+1/2 �12�

Convergence to the correct steady state means that the energy
conservation equation must be satisfied between two cross sec-
tions, i and i+1, whenever there is no hydraulic jump

��z + �h�i+1/2 =
1

g
� Q2

2Ai
2 −

Q2

2Ai+1
2 � �13�

Finally, if Eqs. �12� and �13� are combined, it follows that Ã,
which is the cross-sectional area at the intercells, must be the
harmonic mean of the area of the neighboring cross sections

Ã =
2AiAi+1 �14�

Ai + Ai+1
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Validation: 1D Steady-State Preservation Test Cases

Bladé and Gómez Valentín �2006� performed validation tests of
the scheme presented here for unsteady flows. Results of the pro-
posed method for steady flow in an irregular trapezoidal channel

Table 1. Definition of the Irregular Trapezoidal Channel

Distance to
upstream �m�

Point coordinates �m�

Point 1 Point 2 Point 3 Point 4

0 �−3,10� �0,0.4� �2,0.4� �5,10�

1 �−3,10� �0,0.3� �3,0.3� �5,10�

2 �−3,10� �0,1� �2,0� �5,10�

3 �−3,10� �0,0� �2,0� �5,10�

4 �−5,10� �0,1� �1,1� �4,10�

5 �−1,10� �0,1� �1,0.5� �4,10�

6 �−3,10� �0,1� �0.5,1.1� �4,10�

7 �−3,10� �0,1� �1,1� �4,10�

8 �−3,10� �0,0.3� �3,0.3� �5,10�

9 �−3,10� �0,1� �2,0� �5,10�

10 �−3,10� �0,0� �2,0� �5,10�

11 �−5,10� �0,1� �1,1� �4,10�

12 �−1,10� �0,1� �1,0.5� �4,10�

13 �−3,10� �0,1� �1,1� �4,10�

14 �−3,10� �0,1� �1,1� �4,10�

Fig. 1. Comparison of the exact surface with th

Fig. 2. Comparison of the exact surface with the Roe TVD scheme
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are presented here and compared with other common schemes.
The trapezoidal channel proposed for the test case consists of a
13 m-long frictionless channel defined with 14 cross sections
shown in Table 1 �coordinates are distance to channel axis and
elevation�. The boundary conditions are a constant discharge of
2 m3 /s upstream and a water elevation of 2 m downstream. The
water surface profile of the exact solution can be calculated from
energy conservation �Eq. �13��. It is compared with the following
numerical schemes or variations:
1. A classical Roe TVD scheme with no spatial variation of

the flux vector �that is, without the second right-hand term

of expression �4�� and the arithmetic mean for Ã.
2. A Roe TVD scheme with spatial variation of F, as in Eq.

�4�, and the arithmetic mean for Ã.
3. The optimized Lax-Friedrichs scheme, based on a quasi-

conservative form of the equation, as proposed by Bur-
guete and García-Navarro �2004�.

4. A Roe TVD scheme with spatial variation of the flux vec-

tor, as in Eq. �4�, and the harmonic mean for Ã, as in Eq.
�14�.

Figure 1 shows the results for Case �a�: there are considerable
errors if no spatial dependence of the flux vector is taken into
account. Fig. 2 shows the results for Cases �b� and �c�, with
schemes that satisfy the exact C-property and produce very simi-
lar results, although in both cases the results differ from the exact

TVD scheme without spatial flux dependence

he arithmetic mean for Ã and the optimized Lax-Friedrichs scheme
e Roe
with t
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solution. Finally, Fig. 3 shows the ability of the Roe TVD scheme
as proposed in this work to converge to the exact solution.

Conclusions

The present work shows that some common and recent numerical
methods fail to converge to the correct steady state, even in the
absence of shocks. A correction of the discretized celerity in the
Roe TVD scheme is presented to take into account the spatial
dependence of the flux vector on geometry. This, together with
the harmonic mean to approximate the cross-sectional area at in-
tercells results in a method that produces solutions which are
compatible with the energy equation when applied to steady
flows.

Notation

The following symbols are used in this technical note:
A � wetted area of the cross section;

Ãi+1/2 � wetted area approximation at intercell i+1 /2;
Bi � channel surface width at cross section i;

B̃i+1/2 � approximation of B at intercell i+1 /2;
b � channel width;
c̃ � celerity approximation at an intercell;

ẽj � j component of the Roe averages of the
eigenvectors of A;

F � flux vector of the Saint Venant equations;
F

i+1/2
* � numerical flux at intercell i+1 /2;

g � gravity;
H � source term of the Saint Venant equations;

H* � numerical expression of the integral of the
source term on a finite volume;

h � depth;
I1 � pressure forces on the cross section;

I1�Ã � value of I1 for a wetted area value of Ã;
I2 � variation with distance of the resultant

pressure forces exerted by the river bed;

J̃i+1/2 � Roe’s approximation to the Jacobian of F at
intercell i+1 /2;

Fig. 3. Comparison of the exact surface with t
Q � discharge;
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Sf � friction slope;
S0 � river slope;
U � vector of conserved variables;

Ui
n � mean value of U over finite volume i at time

step n;
V � contribution of irregular geometry to the

numerical flux difference;
x � channel axis coordinate;
z � channel bottom elevation;

�̃ j � Roe average of the jth wave strength;


̃ j � jth coefficients of the decomposition of the
geometric source term in ẽ;

�Fi+1/2 � jump of F across intercell i+1 /2;
�t � time step;
�x � space increment;

�Ui+1/2 � jump of U across intercell i+1 /2;
� � Harten and Hyman’s entropy fix;
�̃ j � jth coefficients of the decomposition of

���gI1�Ã� in the ẽ vector base;

�̃ j � Roe averages of the j eigenvalue of A; and
� � flux limiter function.
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