
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020

Virtual Congress: 11–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

HIERARCHICAL PARALLELISM FOR TRANSIENT SOLID
MECHANICS SIMULATIONS

DAVID J. LITTLEWOOD1, REESE E. JONES2, NICOLAS M. MORALES3,
JULIA A. PLEWS4, ULRICH HETMANIUK5, AND JONATHAN J. LIFFLANDER6

1 Sandia National Laboratories
PO Box 5800, MS 1322, Albuquerque, NM 87185

djlittl@sandia.gov

2 Sandia National Laboratories
PO Box 969, MS 9161, Livermore, CA 94551

rjones@sandia.gov

3 Sandia National Laboratories
PO Box 969, MS 9158, Livermore, CA 94551

nmmoral@sandia.gov

4 Sandia National Laboratories
PO Box 5800, MS 0845, Albuquerque, NM 87185

japlews@sandia.gov

5 NexGen Analytics
412 N Main Street, Suite 100, Buffalo, WY 82834-1761

ulrich.hetmaniuk@ng-analytics.com

6 Sandia National Laboratories
PO Box 969, MS 9158, Livermore, CA 94551

jliffla@sandia.gov

Key words: Solid Mechanics, Contact, Finite Elements, Asynchronous Task Scheduling, GPUs

Abstract. Software development for high-performance scientific computing continues to evolve in re-
sponse to increased parallelism and the advent of on-node accelerators, in particular GPUs. While these
hardware advancements have the potential to significantly reduce turnaround times, they also present
implementation and design challenges for engineering codes. We investigate the use of two strategies to
mitigate these challenges: the Kokkos library for performance portability across disparate architectures,
and the DARMA/vt library for asynchronous many-task scheduling. We investigate the application of
Kokkos within the NimbleSM finite element code and the LAMÉ constitutive model library. We explore
the performance of DARMA/vt applied to NimbleSM contact mechanics algorithms. Software engineer-
ing strategies are discussed, followed by performance analyses of relevant solid mechanics simulations
which demonstrate the promise of Kokkos and DARMA/vt for accelerated engineering simulators.

1



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

1 INTRODUCTION

Recent advances in hardware for massively parallel scientific computing have yielded performance im-
provements through increased parallelism thanks to on-node accelerators, especially graphics process-
ing units (GPUs). Hierarchical parallelism, with one level of parallelism occurring between compute
nodes and the second level on-node via the GPU, is commonplace. These novel technologies enable the
simulation of large computational models and improve the outlook for once intractably expensive high-
fidelity approaches. Increasingly complex architectures, however, necessitate careful software engineer-
ing. Principal concerns include full utilization of GPU computational power, memory management, task
scheduling, load balancing, developer productivity, and long-term maintainability of source code.

In this work, we present two ongoing efforts to improve the design and implementation of finite element
analysis codes suitable for next-generation platforms. The first is the Kokkos software library for perfor-
mance portability [2]. Kokkos strives to provide an abstract API for critical programming elements such
as multi-dimensional arrays and parallel looping constructs. Code written to the Kokkos API is trans-
lated at compile time to a hardware-specific backend, enabling deployment of the same software across
a variety of architectures. The second strategy is asynchronous many-task (AMT) scheduling using the
DARMA/vt library. AMT is an alternative to procedural, MPI-based approaches in which programs are
defined in terms of tasks and data. Developers create tasks with well-defined interdependencies and data
structures utilized by these tasks. At run time, the AMT scheduler manages the execution of work for
available resources. This may include executing tasks asynchronously, or moving data among hardware
resources to optimize task execution.

We apply Kokkos and DARMA/vt to the NimbleSM C++ Lagrangian finite element code for explicit tran-
sient dynamics to optimize performance and improve software developer productivity. We first ap-
ply Kokkos to create a framework within NimbleSM in which the majority of data is managed with
Kokkos::View containers, and computationally expensive kernels are executed using the Kokkos::parallel_for

construct. We then focus on the use of Kokkos for constitutive model development, since constitutive
models are among the most complex, computationally expensive, and difficult-to-maintain routines in a
FEM code. We define a constitutive model interface that utilizes Kokkos for improved performance while
maintaining a design that is familiar to the applied mechanics community. Principal considerations in-
clude memory allocation, data transfer, and support for virtual object hierarchies. Lastly, we apply the
DARMA/vt library to improve the parallel scaling of contact mechanics algorithms. We focus on con-
tact because its computational expense evolves dynamically over the course of a simulation, making it
highly susceptible to load imbalance. Furthermore, kernels for contact mechanics are typically modular
relative to the overall FEM code, making them amenable to encapsulation and AMT management. The
DARMA/vt library enables asynchronous one-sided communication, virtualization, and dynamic load bal-
ancing for collision detection and contact enforcement, but comes at the cost of increased overhead due
to task management. The overall software design for NimbleSM is illustrated in Algorithm 1, in which
the most computationally expensive routines for calculation of the internal forces are implemented with
Kokkos, and routines specific to contact are implemented with DARMA/vt.

2



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

Algorithm 1 Pseudocode for NimbleSM explicit transient dynamics.
1: for each time step n do
2: Increment time tn+ 1

2 ← 1
2 (t

n + tn+1) and tn+1← tn +∆t

3: Update velocity vn+ 1
2 ← vn +(tn+ 1

2 − tn)an

4: for each d.o.f. i with a kinematic boundary condition do v
n+ 1

2
i ← prescribed value

5: Update displacement un+1← un +vn+ 1
2 ∆t

6: . Compute internal forces
7: Kokkos element.ComputeDeformationGradients()
8: Kokkos material_model.ComputeStress()
9: Kokkos element.ComputeNodalForces()

10: . Sum internal forces at MPI partition boundaries
11: parallel_communicator.VectorReduction(internal_force)
12: . Compute contact forces
13: DARMA/vt contact.ProximitySearch()
14: DARMA/vt contact.Enforcement()
15: . Communicate contact forces and sum with internal forces
16: parallel_communicator.CommunicateContactForces()
17: Compute acceleration an+1←M−1 fff n+1

18: Update velocity vn+1← vn+ 1
2 +(tn+1− tn+ 1

2 )an+1

19: if designated output step : io_system.WriteToFile()
20: end for

2 PERFORMANCE PORTABILITY WITH KOKKOS

Kokkos is a C++ library for performance portability across disparate hardware architectures [2]. It provides
application developers with a well-defined, stable API for a number of programming elements, most
importantly the Kokkos::View for data management, and programming constructs for parallelization such
as Kokkos::parallel_for. The power of Kokkos lies in its ability to map code from the abstract API to
an optimized, hardware-specific backend at compile time. In the case of data structures, Kokkos maps
multi-dimensional arrays defined by the application developer to specific memory spaces and layouts
for a given platform. When required, Kokkos provides the necessary utility functions to move data
between devices (e.g., CPU and GPU memory spaces). In the case of a Kokkos::parallel_for, Kokkos
maps application code to an execution model specific to the hardware: C-style for loops on serial CPUs,
OpenMP for hardware with multiple threads, or CUDA code in the case of GPUs, among others.

Our initial exploration of Kokkos for FEM solid mechanics codes focused on efficient utilization of
GPUs for explicit dynamics. As illustrated in Algorithm 1, code execution for explicit dynamics is
dictated by the velocity Verlet time integration scheme. Explicit dynamics simulations are comprised of
a large number of small time steps that do not require the solution of a global system of equations. The
computational expense of explicit dynamics is dominated by a small number of element and material-
point routines, for example the calculation of the deformation gradient and evaluation of the constitutive
model (refer to Kokkos annotations in Algorithm 1). To maximize performance, these routines were
written to the Kokkos API such that they can be translated to CUDA at compile time and executed on
GPUs at run time. An additional critical factor is data management. Our strategy was to utilize Kokkos
data structures such that all node, element, and material-point data are stored in device (GPU) memory
space and copied to host (CPU) memory space only when absolutely necessary, e.g., for communication
between MPI partitions or when writing output to disk.

Performance improvements resulting from the use of GPUs were investigated with the simulation of
wave propagation in a notched plate shown in Figure 1. The simulation utilized roughly five million

3



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

100 101 102

Number of MPI Ranks

103

Ti
m

e
(s

)

CPU Platform
CPU + GPU Platform

Figure 1: Wave propagation simulation utilizing Kokkos in the NimbleSM code. (left) Illustration of the velocity field, (right)
scaling results with and without GPU accelerators.

fully-integrated hexahedral elements and a neo-Hookean material model. A uniform initial velocity was
assigned to the entire domain, and a fixed displacement boundary condition was applied to the leading
end of the plate, resulting in a compression wave. The simulation was run using a range of MPI ranks on
two computing platforms. The first platform is a standard x86 compute cluster, and the second is a testbed
equipped with two Intel Tesla P100 GPUs. Programming to the Kokkos API enabled code portability;
the same NimbleSM code was used in both cases, but in the case of the GPU-equipped machine the
relevant program elements were compiled with a CUDA backend. Figure 1 illustrates the corresponding
performance improvements. Run times on the CPU-only platform are shown for 16, 32, 54, 128, and
256 ranks. In the case of the GPU-equipped testbed, run times are shown for 1 and 2 ranks, with each
rank having sole access to a GPU. While NimbleSM showed excellent scaling in both cases, the overall
run times differed by roughly 50×, i.e., matching the run time of a single rank with a single GPU on the
testbed required roughly 50 ranks on the CPU-only cluster.

2.1 Application of Kokkos to Constitutive Models

The promising results obtained using Kokkos in NimbleSM for the wave propagation simulation moti-
vated an in-depth study of the application of Kokkos to constitutive models. As discussed in Section 1,
constitutive models represent a large fraction of the overall computational cost in solid mechanics codes.

There are several important characteristics of constitutive models that must be taken into account in
the application interface design. The development of constitutive models requires particular subject
matter expertise, leading to a natural division among code teams, so a well-defined, simple Kokkos-
compatible software interface for the development of constitutive models is desirable. Yet the interface
and associated data structures must be carefully designed to preserve performance. Additionally, in a
given simulation a variety of constitutive models may be applied to specific subregions of the domain,
motivating the use of dynamic polymorphism which is a practical software development strategy to
maximize code reuse that has proven historically challenging on architectures such as GPUs [8].

The Library of Advanced Materials for Engineering (LAMÉ), a constitutive model library developed
under the umbrella of the Sierra/SM nonlinear finite element analysis package [10, 11], attempts to ad-
dress these considerations. LAMÉ is currently undergoing active development and refactoring to enable
execution in a platform-portable way, yet with minimal disruption to the hundreds of legacy models.

4



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

2.1.1 Interface design for portability and productivity

Writing portable algorithms with the Kokkos package is straightforward. Eking out GPU performance,
however, may require deep computer science understanding of data structure layouts, parallel looping
constructs, and discrete memory spaces, implemented via templates or traits specified at compile time.
Interfaces to material models are typically well defined, and the models themselves are developed by
engineers less experienced in computer science and more experienced in mechanics. For this reason, we
seek a material model interface that is free of Kokkos-specific constructs to support a simple process for
porting a constitutive model to a GPU platform and allow developers to focus on the physics and core
calculations of the constitutive model.

Although the desired programming interface is simple from the perspective of the constitutive model
developer, NimbleSM and other FE simulators that execute these models organize their data in paral-
lel, Kokkos-enabled data structures. Through Kokkos, NimbleSM and Sierra/SM prescribe Kokkos::View

data array layouts in memory. Management of such data structures between application and Kokkos-
indifferent library adds design complexity. In particular, a lack of attention to memory access patterns
and data duplication may cause severe disparities in performance across heterogeneous platforms, espe-
cially GPUs.

The LAMÉ library adopts a flexible interface with no explicit notion of data layout in memory, nor
explicit invocation of Kokkos constructs, instead relying on specially designed C++ types, such as scalars,
tensors, and vectors, to access quantities for material-level computation, rather than copy into legacy
pointer-based, layout-specific data structures. The material interface data access pattern is designed to
encapsulate data layout dictated by the mechanics code (in this case NimbleSM) and seamlessly translate
it to tensor T (i, j), vector v(i), or scalar s quantity comprehension.

To collect performance data on a hybrid CPU–GPU architecture, we employed a large finite element
simulation with a neo-Hookean elastic model with 8-node, fully-integrated hexahedral elements. The
problem had 4.32× 106 elements and 5.29× 106 nodes, of which 7.83× 104 elements and 15.65×
104 nodes were on the GPU-accelerated portion of the machine. Figure 2a demonstrates the difference
in GPU performance between an implementation which creates temporary data copies for coalesced,
pointer-style access for material-level calculations versus one in which field data access interface objects
(tensor, vector, scalar comprehension) are used. Internal force computation includes material stress
calculation, which is approximately equal in either case, while other costs, including data duplication,
are considerably higher in the copy case. Eliminating data duplication and working on in situ field data
leads to a 23% reduction in simulation runtime.

2.1.2 Polymorphism and data synchronization with Kokkos

Constitutive models in solid mechanics problems present an opportunity to exploit dynamic or runtime
polymorphism. However, heterogeneous architectures such as GPUs complicate the execution of virtual
functions, while standard data structures for managing polymorphic types, such as smart pointers, simi-
larly are not conducive to use on GPUs. Thus, we employ a simple Kokkos-compatible pointer to manage
allocation of objects in heterogeneous virtual memory. This entails both (a) allocation of space on the
GPU for the object, and (b) destruction and freeing of allocated memory at the appropriate time.

In general material models may utilize multiple levels of virtual object hierarchies, for instance, incorpo-

5



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

No copy Copy
0

25

50

75

100

125

150
R

un
tim

e
(s

)
Internal force
Other

(a)

CPU GPU
0.00

0.01

0.02

0.03

0.04

0.05

R
un

tim
e

(s
)

Elastic Neohookean
J2 Plastic, linear

J2 Plastic, user

(b)

Host/device sync Recompute
0

20

40

60

80

100

R
un

tim
e

(s
)

Other
Internal force
Stress
Gradients
Virtual allocation
Field data sync

(c)

Figure 2: LAMÉ performance results. (a) Overall simulation timings: copying data into the material interface vs. accessing
data without temporary copy. (b) Material evaluation cost through a virtual interface. 1,024,000 total material points; CPU
data collected on 4 MPI ranks × 4 OpenMP threads, Intel Xeon Gold 6130; GPU data collected on one Nvidia Volta 100. (c)
Overall simulation timings: field synchronization and memory reallocation for virtual objects vs. recomputation to alleviate
synchronization cost and consolidated allocation of virtual objects.

rating user-defined routines to advance state data and prescribe behavior under given loading conditions.
Figure 2b demonstrates standalone Kokkos LAMÉ model execution on both CPU MPI+OpenMP and
GPU execution environments comparing three different models: an elastic model (incorporating only
one virtual function call and no material state information), a J2 plasticity model with linear hardening
behavior (one virtual call, with material state information), and a J2 plasticity model with a user-defined
hardening model (additional virtual function calls for user-defined hardening, with material state in-
formation). The GPU execution represents a speedup of about 10× relative to CPU execution on the
compute node, while the relative cost of materials with or without state data remains fixed between CPU
and GPU execution. On the other hand, the additional virtual function call required in the user-defined
J2 plastic model incurs almost no computational overhead relative to the simple linear J2 plastic model.

Because GPU memory allocation is quite slow relative to computation, memory allocated on the GPU can
be reutilized when polymorphic objects need to be synchronized or updated during the course of a simu-
lation. Using preallocated memory pools in GPU accelerator memory via the Kokkos::kokkos_malloc<>()

routine, virtual objects may be reinstantiated as needed, finessing the cost of destroying then reallocating
memory. Another complexity of working with GPUs is the explicit synchronization of host (CPU) and
device (GPU or other accelerators) memory. This cost is exacerbated in constitutive model computations,
which in general require large amounts of data at each integration point in a finite element mesh, such as
state data and gradients of nodal fields. However, significant cost savings can be achieved by judiciously
recomputing fields.

Performance improvements from leveraging recalculation of material point quantities to avoid synchro-
nization and reinstantiation of objects in preallocated memory are demonstrated in Figure 2c. Synchro-
nizing the minimal subset of data between CPU and GPU in this example problem results in a 65%
reduction in field synchronization costs, while reuse of preallocated memory for virtual objects on the
GPU similarly decreases the cost of overall object allocation by 64%.

6



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

3 ASYNCHRONOUS MANY-TASK SCHEDULING WITH DARMA/vt

While Kokkos enables the utilization of on-node accelerators for evaluation of computationally expensive
kernels, it does not address the complementary issue of overall resource management on heterogeneous
architectures. A prime example is load balancing. Kokkos allows units of work to be executed efficiently
on a GPU, but does not ensure that network communication, CPU calculations, and GPU calculations
are coordinated effectively. In a worst-case scenario, work may be assigned to a small set of compute
resources, while other resources sit idle. Figure 3 shows an example of how load imbalance can have a
negative impact on performance. In this figure, almost all ranks are idle, while one rank performs most
of the work. Ideally, work should be distributed evenly among the ranks.

Figure 3: Resource utilization for a simulation exhibiting isolated contact. Blue lines indicate contact computations, while red
represents non-contact portions of the simulation. Each rank is a separate entry on the y-axis.

AMT (asynchronous many-task) scheduling is a programming model and runtime framework that aims
to improve resource utilization and developer productivity. This is achieved by defining programs, or
elements of programs, purely in terms of tasks and data. In this way, application developers are freed to
focus on the development of tasks, for example the software implementation of a physics model, while
aspects of the code such as global data management and parallel communication are the responsibility
of the AMT runtime.

We performed a preliminary investigation of the application of the DARMA/vt AMT library to contact
mechanics in NimbleSM. Contact mechanics are a natural target for AMT scheduling because the ex-
pense of contact can vary wildly over the course of a simulation and is often isolated to small regions of
the computational domain. Unlike the evaluation of material-point quantities such as stress, evaluation of
contact forces do not load balance with static spatial or material decompositions. The primary drawback
of bulk-synchronous models is their lack of dynamism and adaptability to conditions varying across time
steps, difficulty in addressing different computational load configurations (such as the optimal computa-
tional load distribution among MPI ranks of contact and the remainder of the mechanics), and difficulty
in implementation of one-sided communication and asynchronous tasks. These downsides can be reme-
died through the use of distributed asynchronous multi-tasking models. Distributed AMT models are
available in programming models and libraries such as Charm++, Legion, and DARMA/vt [4, 9, 1, 7].
Examples of previous work for distributed AMT applied to contact include work by Ni, et al., [9] with
initial work using asynchronous data structures done by Harmon, et al. [3]. In the separate field of bulk-
synchronous performance-portable contact, Lebrun-Grandié, et al., [6] have developed the open-source
ArborX. Their focus is on both efficient on-node and off-node parallelism with Kokkos and MPI.

7



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

3.1 DARMA/vt Background

DARMA/vt is a framework for AMT that supports asynchronous one-sided communication through the
use of messages and handlers. Messages can be addressed to an individual rank via the sendMsg command,
causing the handler to be executed on the destination rank. Similarly, broadcast and reduce operations
are also supported. Another abstraction that DARMA/vt supports is is multi-dimensional, sparse or dense
indexable collections that are overdecomposed over MPI ranks. With this abstraction, physics domains
can be decomposed into multi-dimensional collections that naturally break down the simulated domain.
The runtime system manages the mapping of collection elements to MPI ranks which it can migrate at
runtime to improve the load distribution. With the collection API, users can call sendMsg to a particular
collection element index causing a handler to be executed on the rank where the collection element
currently resides. The system manages a distributed table and caching mechanisms to efficiently deliver
messages to these overdecomposed entities.

This approach is advantageous for several reasons. First, the mapping (and remapping) of collection
elements to ranks is handled by the runtime rather than the user, simplifying the development of scal-
able codes. This leads to advantages such as automatic instrumentation-based load balancing where
the runtime can monitor tasks being executed by collection elements and use this database to apply a
variety of highly scalable load-balancing techniques that migrate collection elements dynamically to im-
prove execution time and reduce communication across ranks. Second, writing a problem in terms of
overdecomposition provides a more natural mechanism to represent the problem domain, which pro-
vides performance portability; instead of being locked into a bulk synchronous, MPI rank-decomposed
program representation, overdecomposition gives the runtime system the flexibility to rearrange exe-
cution depending on architectural characteristics or even runtime aberrations, such as a hard failure.
Furthermore, representing the domain with finer-grained tasks enables the runtime scheduler to tune
the ordering of task execution giving the runtime greater control over application performance. Finally,
DARMA/vt supports co-scheduling with MPI communication and the migration of per-rank data struc-
tures to overdecomposed collections. This allows one portion of a code to use traditional MPI methods
for communication and computation, then switch to a distributed AMT approach using DARMA/vt.

3.2 Application of DARMA/vt to Contact Mechanics

A particularly challenging area for traditional bulk-synchronous programming models in solid mechanics
simulations is collision detection (CD) and the element ghosting required for the modeling of contact.
There are two main difficulties that traditional programming models encounter.

First, the collision detection problem is in itself dynamic. Distributed hierarchical CD approaches usually
use preliminary stages of culling to determine which elements should be migrated/ghosted onto which
MPI ranks. Later stages then perform a detailed search on-rank. However, this assignment of elements to
ranks is not possible to determine in advance (although there are methods of near-time prediction using
results from previous time steps). Bulk-synchronous approaches then require synchronization between
ranks to arrange for a communication of elements. Asynchronous one-sided communication approaches,
such as that found in DARMA/vt, on the other hand can send a message as soon as the early culling is
complete. The asynchronous nature of this message allows the destination rank to perform work (such
as handling other messages or performing early culling) without waiting for and synchronizing with the
sending rank. This advantage becomes more noticeable with increased overdecomposition factors. If a

8



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

collection of contact entities (called a patch) are subdivided into smaller patches, the actual work done
per task becomes more fine-grained. This allows improved utilization of ranks processing search tasks,
as the latency before a rank fires off its ghosting messages is reduced.

The second shortcoming of bulk-synchronous models is the difficulty of distributing load across ranks.
A fundamental property of contact problems is that the required work is proportional to the number of
contact interactions. However, the concentration of contact points can be unrelated to the decomposi-
tion of elements for the non-contact portion of the simulation. This can cause severe load imbalance
where some ranks are stalled, waiting for busier ranks to complete their calculations. In some extreme
instances, load imbalance can be so severe as to exceed the on-node memory of a rank, causing program
termination. Therefore, it is important that compute models for contact be able to adjust computational
load with ease. DARMA/vt is particularly useful for this task, given the migratable nature of a collection
of elements. Additionally, using asynchronous tasking, memory overloading problems can be avoided.
If a patch is migrated to a rank, it can be discarded after the particular contact task it is associated
with is completed. This technique works since the granularity of the problem is per-task. In short, AMT
techniques such as DARMA/vt can provide advantages when overcoming many of the computational chal-
lenges associated with contact. Additionally, the MPI interoperability of DARMA/vt allows us to switch
between MPI and tasking frameworks according to the work being performed.

The DARMA/vt implementation for contact operates in four phases: tree-building/bounding box con-
struction, distributed broadphase, midphase, and narrowphase closest-point projection with enforcement.
Tree-building and bounding box construction calculate the overall bounding box of each patch. The
bounding box itself is a configurable k-axis discrete oriented polytope (k-DOP) [5]. The broadphase
binary collision tree is computed on the patch level of granularity using a top-down approach splitting
the computed k-DOPs. Next, the broadphase culls patches in parallel over each rank. The goal of this
phase is to determine which patches need to be migrated by ghosting. Each patch collection element tests
collision against a local copy of the broadphase tree. This culling step excludes any patch that is not in
the probable-collision step. After a hit in the broadphase tree, a ghosting message is generated for both
sides of the collision containing element data for that patch. A ghosting message being received triggers
the midphase, where a further culling of element bounding boxes is performed. This cull operates locally
by generating a tree using a top-down approach per-element. Then, a narrowphase functor is triggered
for each colliding element bounding volume. The final step, narrowphase and enforcement, calculates
primitive collision detection and closest point projection of triangular facet collision entities to nodes.
Once the gap (relative signed distance) is determined, the penalty force for the contact is computed. The
last part of this step is communicating the penalty force back to the original MPI ranks in order to include
the contact force in the force assembly (refer to Algorithm 1).

We carried out a preliminary investigation of the performance of our prototype. Although load-balancing
is not yet part of the prototype, we hope to understand the basic performance characteristics of the
AMT approach. These experiments were performed on two input datasets representing different contact
profiles. The first dataset, sphere/plate contact, involves a sphere colliding with a wall. This case results
in a limited area of contact as only a few elements are in contact. The second dataset, cubes contact,
exhibits contact between eight cube objects. In this contact scenario, each cube has three faces in contact,
meaning one half of surface facets and nodes are in contact. Figure 4 shows the sphere/plate contact
problem FEM mesh and contact submodel with FE faces decomposed into triangular facets. Note that
contact entities are present only on object surfaces, which contributes to the disparity in load balancing

9



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

Figure 4: FEM mesh (left) and contact entities (right).

between contact and non-contact routines.

In our experiments, we computed the parallel efficiency of our approach along with timing data for both
search and enforcement. Parallel efficiency E indicates the full utilization of parallel cores; it measures
the ratio of ideal parallel time (sequential time tseq divided by the number of processors p) to the actual
parallel time t(p): E = 1

p
tseq
t(p) . The closer the efficiency E is to 1, the closer the parallel efficiency is to

ideal. Our experiments were performed on up to 16 compute nodes of a Dual Socket Intel E5-2683v3
2.00GHz CPU cluster, each node having 28 total processors with 256 GB of DDR3 RAM. We mapped
one DARMA/vt rank to each physical core, yielding 28 ranks per compute node.

50 100 150 200 250 300 350 400 450
Num Ranks

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy
(E

)

Search
Enforcement

1026×101 2×102 3×102 4×102

Num Ranks

100

101

102

103

104

Ti
m

e
(s

)

Search
Enforcement

Figure 5: Efficiency plot of our approach on a strong-scaling sphere/plate contact problem. Our approach shows that search
efficiency stays above around 70% up to about 200 ranks, but dips after that. The timing data clearly shows that search is the
most expensive part of our implementation on this problem.

Figure 5 shows the results of our contact scheme on the sphere/plate contact problem. Our results
show reasonable scaling up to 448 ranks on 28 compute nodes. In our timing experiments, we show a
vast difference between the search and enforcement portions of the code due to a large overhead in our
search implementation. This indicates that although the tasking model can avoid scaling issues related
to singular contact points, the overhead issues associated with the implementation need to be addressed.

Figure 6 shows the results of the DARMA/vt contact scheme on the cubes contact problem. These results
show that our current implementation struggles for smaller problems. One possible explanation is the
relative impact of overhead; the problem uses a total of 130,952 contact entities, significantly less than
the sphere/plate contact problem which has 606,546 entities. With considerably less work to do, overde-
composition becomes more of a hindrance than help, since the overhead cost is per overdecomposed
task.

10



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

100 200 300 400
Num Ranks

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy
(E

)

Search
Enforcement

102

Num Ranks

10−2

10−1

100

101

102

103

Ti
m

e
(s

)

Search
Enforcement

Figure 6: Efficiency plot of our approach on a strong-scaling cubes contact problem. On this smaller problem, we see more
difficulties with scaling. This is likely because of the overheads initially observed in the sphere/plate contact problem.

Future work on the application of DARMA/vt to contact mechanics will focus on the use of AMT to
improve load imbalance through the dynamic redistribution of work among available resources and in-
vestigating the reduction of task overhead. We are also interested in hybrid Kokkos/distributed memory
approaches. Work presented in Section 2 describes the advantages to using frameworks such as Kokkos
for on-node parallelism and the ArborX library [6] shows the direct application of Kokkos for efficient
contact search. It would be possible to use ArborX kernels in the midphase/narrowphase portion of our
contact search. In the future, a detailed comparison of all three methods, the ArborX MPI method, a
hybrid method, and the DARMA/vt method would yield interesting insights into the problem of efficient
and performance-portable contact.

4 CONCLUSIONS

In this work, we addressed software engineering challenges associated with next-generation computing
hardware. We first explored the Kokkos package for performance portability. Kokkos provides an abstrac-
tion layer between the application code and a number of platform-specific backends, allowing developers
to write code once and deploy it across disparate architectures. The NimbleSM solid mechanics code and
LAMÉ constitutive model library were used to demonstrate the effectiveness of Kokkos for improving the
performance of explicit dynamics simulations on computing platforms equipped with GPUs. A software
interface for constitutive models was created to exploit high-performance heterogeneous architectures
while maintaining an accessible code design for developer productivity. The use of GPU accelerators via
Kokkos resulted in performance improvements of 10×, or more, relative to CPU-only platforms.

We then investigated the potential of AMT scheduling to improve the performance of contact mechanics
algorithms. Contact is particularly amenable to AMT because it evolves dynamically over the course
of a simulation and results in severe load imbalance with typical partitioning schemes. The DARMA/vt
library was utilized within NimbleSM to manage collision detection, contact enforcement, and parallel
synchronization of contact forces. DARMA/vt supports asynchronous one-sided communication, virtual-
ization, dynamic load balancing, and interoperability with MPI bulk-synchronous portions of the code.
Evaluation of several test problems indicated that DARMA/vt has the potential to improve the scaling of
contact mechanics, particularly when contact occurs in isolated regions of the computational domain.
Additional work is required, however, to address the overhead expense currently associated with our
DARMA/vt contact implementation.

11



David Littlewood, Reese Jones, Nicolas Morales, Julia Plews, Ulrich Hetmaniuk, and Jonathan Lifflander

ACKNOWLEDGMENTS

This work was funded by the Advanced Technology Development and Mitigation and Computational
Systems and Software Engineering elements of the U.S. Department of Energy’s Advanced Simulation
and Computing program. Sandia National Laboratories is a multi-mission laboratory managed and oper-
ated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Admin-
istration under contract DE-NA0003525. This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government. SAND2021-2224 C.

REFERENCES
[1] J.C. Bennett, M.T. Bettencourt, R.L. Clay, H.C. Edwards, M.W. Glass, D.S. Hollman, H. Kolla, J.J. Lif-

flander, D.J. Littlewood, A.H. Markosyan, S.G. Moore, S.L. Olivier, J.A. Perez, E.T. Phipps, F. Rizzi, N.L.
Slattengren, D. Sunderland, and J.J. Wilke. ASC ATDM level 2 milestone #6015: Asynchronous many-task
software stack demonstration. Report SAND2017-9980, Sandia National Laboratories, Albuquerque, NM
and Livermore, CA, 2017.

[2] H.C. Edwards, C.R. Trott, and D. Sunderland. Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns. Journal of Parallel and Distributed Computing, 74(12), 2014.

[3] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. Asynchronous contact mechanics. In
SIGGRAPH 2009 papers. Association for Computing Machinery, 2009.

[4] L.V. Kale and S. Krishnan. Charm++: A portable concurrent object oriented system based on C++. In
Proceedings of the Eighth Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’93. Association for Computing Machinery, 1993.

[5] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Transactions on Visualization and Computer Graphics, 4(1),
1998.

[6] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S.R. Slattery. ArborX: A performance portable geo-
metric search library. ACM Transactions on Mathematical Software, 47(1), 2020.

[7] J.J. Lifflander, P. Miller, N.L. Slattengren, N. Morales, P. Stickney, and P.P. Pébaÿ. Design and implemen-
tation techniques for an MPI-oriented AMT runtime. In 2020 Workshop on Exascale MPI (ExaMPI). IEEE,
2020.

[8] D.J. Littlewood and M.R. Tupek. Adapting material models for improved performance on next-generation
hardware. Memorandum SAND2017-5873, Sandia National Laboratories, Albuquerque, NM and Livermore,
CA, 2017.

[9] X. Ni, L.V. Kale, and R. Tamstorf. Scalable asynchronous contact mechanics using Charm++. In 2015 IEEE
International Parallel and Distributed Processing Symposium, 2015.

[10] W.M. Scherzinger and D.C. Hammerand. Library of Advanced Materials for Engineering – LAME. SAND
Report 2007-5515, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2007.

[11] SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.58 User’s Guide. SAND Report 2020-10045,
Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2020.

12


