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Abstract. The new generation of structural Eurocodes will include climate change adaption measures
in order to enhance the climate resilience of infrastructures across Europe. This paper discusses the
impact that climate change might have on reinforced concrete structures subjected to corrosion, and the
associated challenges of the standardisation of adaptation measures. A resilience-based framework is
proposed for the adaptation of structural codes to climate change-induced actions. Such an approach
aims to provide the required adaptive capacity to the new structures in order to be able to respond to
the uncertain future minimising the investment under unlikely scenarios. In that way, the strategy can be
summarised as a climate change-adapted design plus an in-design maintenance plan. Future actions,
such as mapping the future climate-related drivers of corrosion, the determination of the design values
of these drivers, and the prescription of maintenance activities, should be further investigated. Although
this paper focuses on the new structures that will be designed with the new codes, some of the insights
can be extrapolated to the existing structures.
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1 Introduction
The pressure imposed by climate change has reached all sectors within the European Com-
mission, which is now forced to take adaptation measures. In Union Innovation (2013), they
acknowledged action gaps in a context where late responses could result in non-affordable eco-
nomic, social, and environmental costs. Consequently, they proposed a road-map to include
climate change adaptation considerations where technical standards were identified as an effec-
tive strategy to enhance the climate resilience of infrastructures across Europe.

In the construction sector, the first generation of EN Eurocodes was launched in 2007 with
the aim to homogenise structural design within the Member States. The second generation of
Eurocodes is planned by 2023, which will reflect the new market needs (e.g., new materials and
construction techniques) and also the European commitment with the sustainable development
goals. Therefore, the second generation of Eurocodes is planned to incorporate the adaptation
of structural design to climate change.

Within the long list of impacts upon structures caused by climate change, corrosion has been
identified as a priority theme, as it has been estimated that the increased maintenance and repair
costs worldwide resulting from the acceleration of the corrosion process due to climate change
might be of hundreds of billions of dollars annually (Bastidas-Arteaga & Stewart (2015)).
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In this context, this paper discusses the adaptation strategy to be applied to the new genera-
tion of Eurocodes in relation to the corrosion of reinforced concrete (RC) structures. At present,
the structural corrosion is addressed in EC2 (2005).

It is noted that the impact of climate change on man-made systems has a large component
of uncertainty, given that the future climatic scenarios mainly depend on the evolution of the
global sociopolitical context. Therefore, including climate change adaptation measures in the
design phase of buildings and infrastructure is challenging because underestimating its impact
would result in significant societal consequences, whereas overestimating it would imply an
unnecessarily waste of resources. A resilience-based approach is proposed to address the issue,
where the adaptation measures included in the design phase should tackle part of the impact of
climate change, and during the service phase, upgrading mechanisms should be implemented to
guarantee the system is prepared for the non-accounted impact of climate change if the evolution
of climate change requires it.

Therefore, this work aims to provide an overview of the problem of corrosion induced by
climate change to better understand the need for a resilience-based approach to address the
standardisation process. The general framework proposed for the adaptation to climate change
by the new generation of structural Eurocodes is outlined and the associated challenges are
further discussed.

The remaining document is organized as follows; Section 2 provides an overview of the
impact of climate change in Europe on the main drivers of the structural corrosion, Section 3
presents the corrosion problem in the context of climate change. In Section 4, the need for a
resilient-based approach is discussed in the context of the standardising process. Finally, in
Section 5 some conclusions and future research lines are drawn.

2 Climate Change in Europe
The durability of RC structures is threatened by the increment of carbon dioxide (CO2) concen-
tration levels and climate change entailing variations in temperature and atmospheric humidity.
These three parameters are the principal environmental drivers of corrosion.

To study the expected variations of air temperature and relative humidity (RH), the Rep-
resentative Concentration Pathways (RCPs) proposed by IPCC (2014) are used. They are the
so-called RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, with RCP2.6 being closer to the
scenario aimed by the Paris Agreement and RCP8.5 relating to the business-as-usual scenario.
There exists a consensus amongst climatologists that RCP2.6 is naively optimistic, thus in prac-
ticality, the RCP4.5 is very often proposed as the potential optimistic scenario.

The definition of each scenario allows climatologists to determine the general atmosphere
patterns and oceanic circulation dynamics at the global scale. Then, through complex processes
of downscaling, climate changes at a regional level can be estimated with a significant level of
confidence for each scenario providing a horizontal resolution of up to 0.11o (about 12 km).

In Europe, it is clear that climate change will increase air temperature. The extent of the
variation will depend on the geographical location, period of the year, and scenario considered;
for instance, North Europe, which is the most affected area when analysing air temperature,
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Table 1: Variation of air temperature due to climate change in Europe. The level of agreement among climatic
models is given in brackets: L-low, M-medium, H-high, V-very high.

Area Winter Summer Autumn Spring
(DJF) (JJA) (SON) (MAM)

RPC4.5
North Europe 2o-8o (M) 0o-6o (H) 2o-6o (H) 2o-6o (M)
Central Europe 0o-4o (H) 0o-4o (H) 0o-4o (M) 0o-2o (V)
Mediterranean area 0o-4o (H) 2o-4o (H) 0o-4o (H) 0o-4o (H)
East Europe 2o-6o (H) 0o-4o (M) 0o-4o (H) 0o-4o (H)

RPC8.5
North Europe 4o-10o (M) 2o-6o (H) 2o-6o (H) 2o-8o (H)
Central Europe 2o-4o (V) 2o-4o (V) 2o-6o (H) 2o-4o (H)
Mediterranean area 2o-4o (V) 2o-6o (M) 2o-6o (H) 2o-4o (V)
East Europe 2o-6o (M) 2o-6o (H) 2o-6o (H) 2o-6o (H)

presents increments ranging between 4o-10o during the winter months (December to February)
under the RCP8.5, whereas the RCP4.5 provides increments of 2o-8o during winter. The range
of values is given by the use of different climatic models. Table 1 summarises the variation of
air temperature due to climate change in Europe.

The impact of climate change on the RH is smaller. Regardless of the climatic scenario
considered, only during the summer months (JJA), Europe might experiment reductions of up
to 10% of the RH.

It is noted that an important source of the uncertainty of the climate estimations is linked to
the uncertainty regarding the trajectory of greenhouse gas emissions (i.e., the RPC considered),
which depends on factors such as the economic and societal trends. In the present context,
this type of uncertainty cannot be reduced. Nevertheless, considering one or another scenario
might differ in billion of euros in the long term. This should be kept in mind when updating the
structural codes.

3 Impact of Climate Change-Induced Corrosion
3.1 Corrosion Mechanisms

RC corrosion refers to the phenomenon of the corrosion of the steel reinforcement of concrete
caused by the infiltration into the concrete members of carbon dioxide, which reduces concrete
pH till values below the steel passivisation threshold, and chloride, which reduces concrete
alkalinity. Both processes are affected by temperature and RH.

When studying the RC corrosion, the stage characterised by the ingress process of the CO2
and chloride ion into concrete is known as the initiation stage. In this stage, it is of interest to
determine the chloride concentration at the rebar level and also when the carbonation reaches
this level, that is, the carbonation depth.

Several studies have analysed the impact of climate change in the carbonation ingress process
when assuming different CO2 levels, RH, and temperature conditions. As shown in Table 2,
the estimated increments of the carbonation depths are up to 45% by 2100 under the RCP8.5
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Table 2: Effect of climate change on the carbonation and chlorine ion ingress processes in RC structures.
Ref. Location Assumptions Estimation Scenarios

Target Value Baseline Target
CARBONATION INGRESS PROCESS

Talukdar et
al. (2012)

Canada (a) increasing mean yearly tempera-
ture, (b) increasing duration of the hot
season, (c) constant RH over time,
and (d) increasing concentration of
CO2

carbonation depths of non-
pozzolanic, unloaded con-
crete structures

increment
of 45%

year 2000 A1FI, year
2100

Talukdar
& Banthia
(2013)

Mumbai, Lon-
don, New York
City, Sydney,
Toronto, Van-
couver

(a) time dependent temperature carbonation depths increments
between
27% and
45% (15
and 35 mm)

year 2000 A1FI, year
2100

Saha &
Eckelman
(2014)

Boston
metropoli-
tan area

(a) increasing temperatures, (b) in-
creasing concentrations of CO2

carbonation depths increment
of 40%

year 2000 A1FI, year
2100

Peng &
Stewart
(2014)

China (a) CO2 concentration, (b) local tem-
perature, and (c) RH variable over
time

carbonation depths increment
of 45%

year 2010 RCP8.5,
year 2100

Mizzi et al.
(2018)

Malta (a) increasing CO2 concentration,
and (b) increasing temperatures

carbonation depths for differ-
ent concrete grades

increment
up to 40%

RCP 2.6 RCP 8.5,
year 2070

CHLORINE ION INGRESS PROCESS
Saha &
Eckelman
(2014)

Boston
metropoli-
tan area

(a) increasing temperatures, (b) in-
creasing concentrations of CO2

chloride penetration depths increment
of 12%

year 2000 A1FI, year
2100

Xie et al.
(2018)

China (a) increasing temperatures chloride concentration at the
rebar level of offshore RC
bridges

increments
of 6%-15%

year 2000 RCP8.5,
year 2100

Khatami
& Shafei
(2017)

U.S. Midwest
region

(a) increasing temperatures, (b) de-
creasing, constant and increasing RH,
and (c) increasing surface chloride
concentration

chloride concentration at the
rebar level

increment
of 37%

RCP2.6,
year 2100

RCP8.5,
year 2100

scenario (or the equivalent A1F1 scenario given by the SRES, Nakicenovic et al. (2000)) when
comparing with the year 2000. It is noted that the results are very sensitive to local exposure
conditions (Talukdar & Banthia (2013)).

In the case of the impact of climate change to the chlorine ion ingress process, the studies
report more modest values, though still relevant, for the increment of chloride concentration
at the rebar level when comparing the 2000-year values to the RCP8.5 by the end of century,
reaching values around 15% (see Table 2). Khatami & Shafei (2017) report larger values, as
they introduce in their model an increment of use of de-icing salts as a consequence of the
observed consumption in the USA, which increased 200% in the last 25 years.

The second stage of the corrosion is known as propagation stage, which occurs once that
the corrosion of the reinforcing steel is initiated, and finishes with the loss of steel area, cover
cracking and spalling, and loss of the bond between steel and concrete. Whereas the initia-
tion stage dominates the service life of the structure, the propagation stage lasts only a few
years. For instance, Xie et al. (2018) report that the corrosion propagation stage of the offshore
RC structures in China designed according to MOHURD (2008) would last less than one year
considering future climatic conditions.
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3.2 Impact on Reliability and Service Life

As a consequence of climate change, both the reliability and service life of RC structures are
highly impacted. The extent of this impact depends on the geographical location, the struc-
tural codes used for design, and the climatic scenario considered. Table 3 summarises some
of the findings regarding the impact of climate change on the reliability and service life of RC
structures by the end of this century if the most pessimistic scenario, i.e., the business-as-usual
scenario, is considered. Even when the compound effect of the carbonation- and chlorination-
induced corrosion has not been studied yet, the enormous impact that climate change has on
structural durability cannot be ignored.

Table 3: Impact of climate change on reliability and service life of RC structures.
Ref. Location Assumptions Estimation Scenarios

Carbonation-induced Chloride-induced Baseline Target
M. G. Stew-
art et al.
(2011)

Australia (a) Increased CO2 levels, tem-
perature and humidity, (b)
different exposure classifica-
tions of the Australian code
AS3600 (2009)

Increment of damage risk
over 400% for inland arid or
temperate climates

Increment of
damage risk up
to 15%

year 2000 A1B &
A1FI, year
2100

Saha &
Eckelman
(2014)

Boston
metropolitan
area

(a) Structural design accord-
ing to ACI (2011)

Reduction of service life of
26 years. Penetration depths
in 60% of existing buildings
exceeding the recommended
cover thickness by 2050.

Reduction of ser-
vice life of 10
years

year 2000 A1FI, year
2100

Pakkala et
al. (2019)

Finland (a) Changes in ambient T, RH
and wind-driven rain, (b) dif-
ferent locations with respect
to the solar radiation

Increment of corrosion rates
of up to 200% during winter
in coastal areas facing to the
South

year 2000 A2, year
2100

Bastidas-
Arteaga
& Stewart
(2015)

Continental,
oceanic
and tropical
environments

(a) Increasing temperatures
and length of hot periods, and
(b) increasing RH

Lifetime reductions ranging
up to 18%

year 2000 year 2100

4 Structural Codes
4.1 Adaptation Measures

The limit state of RC corrosion should include two phenomena, the cracking of concrete due to
the sub-products generated by the corrosion and the reduction of effective steel cross-section,
both occurring during the propagation stage. While the first is more related to aesthetic issues
and the latter is linked to the structural integrity, the functionality of the structural member will
determine which of the two phenomena is more critical. Given that the integrity of a structural
member affected by corrosion will depend on the applied loads and structural configuration,
its study becomes very case-specific and difficult to be generalised. Thus, when defining stan-
dardised strategies to adapt to climate change, it is better to focus on the initiation stage, which
implies a larger portion of the structural service life and is less dependent on the applied loads
and structural configuration.

Structural codes worldwide share a similar rationale when addressing the problem of corro-
sion; they focus on structural durability. Figure 1 generalises this approach. There exist two
decision variables in regard to the structural design affecting the RC corrosion, that is, materials
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DECISION  VARIABLES 

CLIMATE CHANGE 

RC durability against corrosion

Design

Materials & 
composi�on

Typology 
& use

Control of 
produc�on

Cover

Environmental 
condi�ons

Geoloca�on Orienta�on

Maintenance / 
interven�ons

Figure 1: Rationale of structural codes to guarantee the structural durability against RC corrosion.

and composition and cover depth. Both of them are related, as the selection of a more dense
concrete allows for a reduction of the cover depth. To determine these values, aspects such as
typology and use, the control of production and the environmental conditions must be consid-
ered. Initially, the new environmental conditions given by climate change should be reflected
here.

Regarding the materials and composition, two possible solutions can be taken, either improv-
ing steel corrosion resistance, e.g., through low carbon, stainless or galvanised steel reinforce-
ment and glass-fiber reinforced polymer rebars, or improving concrete durability by increasing
the concrete grade, the water-cement ratio or applying concrete coatings. In addition, other con-
crete mixes, such as blended and alkali-activated (AA) cement, can be used that present higher
density matrices than the standard and commonly used Portland cement (PC). The structure
of their matrices reduces the permeability of the harmful substances. In addition, the AA slag
cement, where the slag substitutes part of the PC, presents higher resistance to corrosion and
its production generates lower greenhouse gas emissions than PC. Despite the slag cement has
been used in the USA for more than 100 years, the feasibility of replacing PC blinders should
be further investigated.

Nevertheless, it is estimated that the measures required to adapt to climate change, such as
increasing design cover by up to 8 mm or increasing concrete compressive strength by one
grade would imply an increment of 1-3% of the construction costs (M. Stewart et al. (2012)).
Other authors (Bastidas-Arteaga & Stewart (2016); M. Stewart & Bastidas-Arteaga (2019))
have addressed the cost-benefit analysis of increasing the cover thickness to 5 or 10 mm in
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different structural components under different climate scenarios. They conclude that in many
cases, this measure is not cost-effective. The factors affecting the efficiency of this type of
adaptation measures do not depend only on the structural typology and member size, but also
on the climatic conditions and the future discount rate.

Keeping in mind the impact that Eurocodes has in the economy of the State Members, stan-
dardising adaptation measures in a context of high uncertainty, where if the impact of climate
change is underestimated by considering very optimistic scenarios, it would result in a signifi-
cant reduction of the service life of new infrastructure and buildings, or if it is overestimated, in
unnecessarily expensive investment. Apparently, there is not a fair solution.

4.2 Resilience-Based Approach

In the last years, there has been a clear shift from the traditional risk-oriented approaches to
a perspective based on resilience. The need for a resilience-based approach has been made
evident in those cases where either, the lack of knowledge about the potential hazards or their
level of uncertainty was so large that the existing risk was underestimated. For that reason, the
problem of climate change along with its associated uncertainty is pushing decision-makers to
implement measures that boost resilience (Nogal & O’Connor (2018a); Val et al. (2019)). In
this point it is important to note that risk- and resilience-based approaches are not incompatible;
on the contrary, the latter complements the first one by adding a temporal dimension to the
problem (Nogal & O’Connor (2018b)) and proposing a number of strategies to increase the
preparedness level of the system and so allow for an adaptive response over time.

Therefore, to approach the issue of climate-change induced corrosion from a resilience-based
view, the adaptation measures should be twofold. On the one hand, the measures addressing
the impact of climate change that is certain should be implemented in the design stage, through
cost-effective measures. More sustainable concrete mixtures might play an important role in this
stage. On the other hand, the uncertain impact of climate change should be covered in a post-
design stage, that is, through maintenance. In that regard, Eurocodes should prescribe specific
maintenance in relation to climate change. It is clear that there is room for improvement in
terms of maintenance in the present standards, as they merely define maintenance, mentioning
that the structure will be adequately maintained.

Such an approach implies a number of challenges. The values of CO2 concentration levels,
temperature and atmospheric humidity associated with low values of uncertainty should be
determined based on the climate models for the end of the structural design life. Let’s call them
certain thresholds (CTs) of the corrosion drivers.

The maintenance strategies, which should be studied during the design phase, should state
the frequency of the maintenance activities in which the updated information regarding climate
change will be used to determine the short- and medium-term actions. Also at the design phase,
a number of potential actions should be included considering the future climatic scenarios along
with their economic cost. Finally, an economic program to face the potential structural upgrades
should be included to guarantee the economic viability of the project. It is noted that some of
the required maintenance interventions are usually less cost-effective than the measures adopted
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CTPresent
values

Uncertainty of Corrosion Drivers

Most uncertain
values

Design
values

Cost-effective
design Post-design adaptation

Figure 2: Representation of the design value of the corrosion drivers based on the cost-effectiveness of the adap-
tation measures and the uncertainty regarding the future value of the corrosion driver.

in the initial design. Therefore, the most cost-effective design should not cover only the CTs
of the corrosion drivers, but more uncertain values in order to minimise the life cycle cost (see
Figure 2). In other words, the new generation of Eurocodes should provide a design value of
the corrosion drivers that will be established based on both, the uncertainty regarding the future
value of the corrosion driver and the cost-effectiveness of the adaptation measures.

5 Conclusions
Beyond the geographical differences across countries, the main challenge of standardising “low-
cost and no-regret adaptation measures” (Union Innovation (2013)) in the context of structural
codes is posed by the uncertainty related to climate change, which mainly depends on the trajec-
tory of greenhouse-gas emissions. For this reason, a resilience-based strategy for coping with
climate change-induced corrosion has been suggested in this paper. Such an approach aims to
provide the required adaptive capacity to the new structures in order to be able to respond to the
uncertain future minimising the investment under unlikely scenarios. In that way, the strategy
can be summarised as a climate change-adapted design plus an in-design maintenance plan. It is
highlighted the need for an improvement of the structural Eurocodes in the area of maintenance.

Although the impact of climate change on temperature and atmospheric humidity is of inter-
est in the context of RC corrosion, the CO2 levels should be also considered. The maintenance
activities, which will be defined according to the on-going weather-related variables and CO2
emissions will further motivate countries to reduce their CO2 emissions in order to minimise
their medium and long-term investments. Note that whereas climate change is a global issue,
CO2 concentrations have an important local component, and thus, the proposed strategy will
penalize more heavily those areas producing a larger amount of CO2.

This paper has shown a general framework for the adaptation of structural codes to climate
change-induced actions under a resilience-based approach. Specific actions, such as mapping
the future climate-related drivers of corrosion, the determination of the design values of these
drivers, and the prescription of maintenance activities, should be further investigated.
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