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ABSTRACT

This paper establishes a comprehensive analysis of a coupled system of
nonlinear Hadamard-type fractional differential equations subject to gen-
eralized nonlocal integral boundary conditions. The distinct logarithmic
kernel of the Hadamard derivative makes this framework particularly
suitable for modeling scale-invariant processes and ultraslow diffusion
phenomena. The existence and uniqueness of solutions are rigorously
investigated using fixed point theory: Banach’s contraction principle
ensures uniqueness, while the Leray-Schauder nonlinear alternative guar-
antees existence under more general growth conditions. Furthermore, the
system is proven to be Ulam-Hyers stable, ensuring that approximate solu-
tions remain close to exact solutions, which is crucial for the robustness of
the model in practical applications. The theoretical findings are effectively
validated through two detailed numerical examples, demonstrating the
applicability of the established results to different classes of nonlinearities.

1 Introduction
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Systems of fractional differential equations (FDEs), which involve derivatives of non-integer
orders, have garnered significant attention due to their ability to model complex, real-world phe-
nomena exhibiting memory and hereditary properties. These systems have been effectively applied
across various fields, including physics, engineering, and biology. For instance, in viscoelastic materials,
fractional differential equations accurately describe stress-strain relationships, capturing both elastic
and viscous behavior [1]. In control systems, fractional-order controllers offer enhanced flexibility and
robustness compared to traditional integer-order controllers, leading to improved system performance
[2]. Furthermore, the application of fractional calculus has expanded to advanced areas such as the
study of systems with electrical screening effects using fractional quantum mechanics [3] and the

analysis of nonlinear fractional dynamics with kicks [4].
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Recent research has substantially expanded the scope of fractional differential systems into more
sophisticated modeling and control paradigms. In drug therapy, the authors investigate a coupled
system for drug therapy using piece-wise modeling, focusing on existence and uniqueness of solutions
through fixed point results. Numerical solutions are obtained via Newton interpolation, with graphical
representation using real values and fractional orders to demonstrate the model’s dynamics [5].
In bio-mathematics, a novel model for alcohol consumption dynamics with complications, using
conformable fractional order derivatives, explores its existence, uniqueness, stability, and numerical
solutions through fixed point theory and graphical analysis [6].

The versatility of fractional differential equations in modeling such diverse and intricate systems
underscores their importance in addressing complex real-world problems. Recent advances have
further extended to trajectory controllability problems for complex fractional systems, including Hilfer
fractional stochastic pantograph equations with random impulses [7] and higher-order Riemann-
Liouville fractional stochastic systems via integral contractors in new Banach spaces [8]. Studies
on the partial approximate controllability of systems with conformable derivatives in Hilbert spaces
have also been explored [9]. Furthermore, applications in thermoelasticity and opto-elasticity have
emerged, with analytical solutions developed for time-fractional heat order in magneto-photothermal
semiconductor media with Thomson effects and initial stress [10], and investigations of fractional
coupled nonlocal-microstretch effects on thermo-opto-elastic wave propagation in semiconductor
media under photothermal and strong magnetic excitations [11].

Among the various fractional operators, the choice of derivative is crucial and depends on the
specific physical context. The Caputo derivative is widely used for its ability to handle standard
initial conditions with physical interpretations, making it suitable for many engineering applications.
The Hilfer derivative generalizes both the Riemann-Liouville and Caputo derivatives, offering an
intermediate perspective that is useful in certain viscoelasticity and relaxation processes. In contrast,
the Hadamard-type fractional derivative offers a distinctive approach, defined using a logarithmic
kernel (log(¢z/7))* ! instead of the power-law kernel (1 — t)*"' used by Caputo and Riemann-Liouville
operators [12,13].

The primary advantage of the Hadamard derivative lies in its scale-invariance or dilational sym-
metry, making it naturally suited for problems on semi-infinite domains and for modeling processes
characterized by ultraslow diffusion and logarithmic creep. For example, while a Caputo derivative
might model a material that creeps as #*, a Hadamard derivative can model one that creeps as (log 7)°,
which is observed in the mechanical behavior of certain polymers, sedimentary rocks, and geological
formations where the decay of memory effects follows a logarithmic rather than power-law pattern
[14,15]. This unique capability makes the Hadamard fractional derivative an indispensable tool for
a more precise modeling of systems with complex, non-linear dynamics that evolve logarithmically
in time.

Fixed point theory is a fundamental mathematical framework that plays a crucial role in analyzing
differential equations, particularly in establishing the existence and uniqueness of solutions [16].
By identifying points that remain invariant under specific mappings, fixed point theorems provide
the necessary conditions to ensure that differential equations have solutions that are both existent
and unique. For instance, the Banach fixed-point theorem, also known as the contraction mapping
principle, is instrumental in proving the existence and uniqueness of solutions to ordinary differential
equations by demonstrating that a contraction mapping on a complete metric space has a single
fixed point [17]. Similarly, the Schauder fixed-point theorem extends these concepts to more general
settings, facilitating the analysis of solutions in partial differential equations. The application of fixed

https://www.scipedia.com/public/Manigandan_et_al_2026 2


https://www.scipedia.com/public/Manigandan_et_al_2026

M. Manigandan, M. Awadalla, R. S. Shanthi and S. Trabelsi,
Qualitative analysis of nonlinear systems involving hadamard-type

S I P E D I A fractional derivatives with nonlocal boundary conditions and stability properties,
Rev. int. métodos numér. calc. diseno ing. (2026). Vol.42, (1), 27

point theory thus provides a robust methodological approach for addressing complex problems in
differential equations, ensuring that solutions can be systematically identified and analyzed [18-21].

Nonlocal boundary conditions in fractional differential equations account for influences that
extend beyond a single point, reflecting the inherent memory and long-range interactions in complex
systems. This approach allows models to capture broader spatial or temporal effects, leading to more
accurate and realistic descriptions of physical, biological, and engineering phenomena [22]. However, it
is important to acknowledge the potential limitations of such nonlocal conditions. They can introduce
significant complexity into both the theoretical analysis and the numerical resolution of the problems.
From a theoretical standpoint, establishing the existence and uniqueness of solutions often requires
more sophisticated techniques and stricter assumptions compared to local boundary conditions. From
a numerical perspective, the nonlocal terms necessitate the computation of integrals over the domain,
which can be computationally expensive and may require specialized quadrature methods to handle
possible singularities, especially in the context of Hadamard integrals with logarithmic kernels.

Stability analysis of fractional differential equations is crucial for understanding how solutions
respond to perturbations, which is vital in accurately modeling systems with memory and hereditary
properties. The Ulam-Hyers stability concept, originating from Ulam’s 1940 problem and Hyers’
subsequent 1941 solution, provides a framework for assessing the robustness of solutions to func-
tional equations, including those of fractional order [23]. This stability criterion examines whether
approximate solutions remain close to exact solutions, ensuring the reliability of mathematical models
in practical applications [24]. Recent studies have applied Ulam-Hyers stability to various classes
of fractional differential equations, demonstrating its effectiveness in establishing the robustness of
solutions.

Several recent works have investigated systems related to our current study. In [25], the authors
examined the existence and uniqueness of the given system

Do) + (1, (1) = In, te(l,e),
"D2gy (1) + T,(t, ¢(1) = In,, te(l,e),
V(1) =?(1) =0, 0<j<n-2,

ple) =aw(§), w(e)=Dbp(v), §&,ve(l,e),
where a, b are two variables with 0 < ab(log v)¢~'(log&)2! < 1, 0,, 0, € (n—1, n] are two real numbers
and n > 3,11, T1, € C([1, €] x (=00, 4+00), (=00, 4+00)), In,, I, > 0 are constants, and "D, "D are
the Hadamard fractional derivatives of fractional order.
In [26], the authors utilized Darbo’s fixed point theorem to investigate the conditions for the

existence and uniqueness of solutions to hybrid Caputo-Hadamard fractional sequential differential
equations.

[C'Do + TCHD?]( 5 ) = I1,(1), te&=[le,

@(t,5(0)
s(1)
@(t,s(1)

. o Y| _, o Y| _,
=7 Newsen) |77 \eson) |77

where 0, € (1,2], t € £ = [a,e], 1 < a < e, "D is a Caputo-Hadamard fractional derivative of
order 9;,¢ : £ x R — R\ {0} and I, : £ — R are continuous functions, and t is a real number.
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In 2022, the authors proved the existence and uniqueness of solutions for the nonlocal boundary
value problem [27].
Do)+ At,9) =0, 0<p, <¢, te]cd],
p(0) = ¢'(c) = 0,¢(d) = Ke(p),
where “D;! is the Caputo derivative of order p,;, A : [¢,d] x R — R is continuous function g € R.

Recently, AE Taier Taylor et al. [28] explored the existence results for a nonlocal boundary value
problem involving Caputo-type Hadamard hybrid fractional integro-differential equations.

Iy (1,p (1))
() =0, o(e) = ulp),

where "D is the Caputo-type Hadamard fractional derivative of order.

_sm 92 (t,
[CH'D@l (4"“) it h ”1,,(#7(0)) — H(t,0(1), 0<o <1,

The Present Work: System under Investigation

In this paper, we investigate the following coupled system of nonlinear Hadamard fractional
differential equations with nonlocal integral boundary conditions:

(D) = T1,(t, 0(1), (1), 1 <t<e1<po <2,
D2w (1) =IL(t,0(0),w (1), 1 <t<el <, <2,

S Y e(s)
1 gﬂ(l) = 0, Ty)/] (10g E) Tds—l—32<p(e) = 33, Y > 0,1 <v<e, (1)

20, [ (s
w(l) =0, —1/ log£ ()ds—i—ﬁmw(e):mg, 0>0,1<y <e,
! @) J, s s
where D, D% are the Hadamard fractional derivatives of order g, and p,, respectively, IT,, IT, :
[1,¢] x R x R — R are given continuous functions, and 3,, 3,, 20,, 20,, 3,, 20, are real constants with
appropriate conditions to ensure the non-resonance case.

The originality of our work lies in addressing this specific coupled system (1) with several novel
aspects:

e The consideration of a fully coupled nonlinear system with cross-dependencies, analyzed using
the Hadamard derivative for its advantages in scale-invariant problems.

e The incorporation of generalized nonlocal boundary conditions involving Hadamard inte-
grals, maintaining mathematical consistency with the differential operator. While these con-
ditions enhance physical realism, we acknowledge the associated analytical and computational
challenges.

e A comprehensive analysis that seamlessly integrates existence (via Leray-Schauder), uniqueness
(via Banach), and Ulam-Hyers stability into a unified framework.

The structure of the document is as follows: Section 2 introduces the key concepts of fractional
calculus relevant to this study, along with an auxiliary lemma related to the linear versions of the
problem (1). The main results are discussed in Section 3, while Section 4 focuses on the stability
analysis using the Ulam-Hyers technique. An illustrative example is provided in Section 5, followed by
a discussion on the practical significance of our findings in Section 6. The paper concludes in Section 7
with a summary and directions for future research.
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2 Preliminaries

Definition 1: //2] The Hadamard derivative of a fractional order q for a function g : [1,00) — R is
characterized as follows:

1 dy [ t\m-a-1g(s)
a = — -—_ 1 - — - 1 = 1
Dig(t) Foi—a (tdt) /1 ( og S) S s, n <q<n,n=|[q]+

Definition 2: / /2 ] The Hadamard fractional integral of order q for a given function g is expressed as

1 ¢ ty -1
Tg(t) = Tq)/ (log 3) @ds, q> 0.

Lemma 1:[12] Let ¢ € C", ([a, T],R). Then

n

”I(HDW) ) =0® - Z G (I”E)n_j :

J=1

here C;([a,ﬂ,R) = {(p o, T]—> R: 6" "¢ € C([a,T],R)}.

Lemma 2: Given $,, 9, € C([1, ¢], R), the unique solution of the problem

[Derp(t) =H,(1), 1 <t<el<p <2,
Dg2w(t) :yj2(t)> 1 <t< e,l < 0 = 25
v -1
o =0, 2= O%EY YO st 3@ =3 v >0 1<v<e (2)
F%) - N s »
Tl (s
(1) =0, Tﬁl‘)/l (log%) —ds+ W (@) =W, V>0 <y <e,
is given by

3 — 3279, (v) — 3,79, (e)

o(t) = T, (t) + (log 1" : (3)
| 3+ Firgy (ogvy e
and
200, — W, 17+ — 0,7
o (1) = T26,(0) + (log L 29(w) — W IR0, () (4)
W, + ey (log ) e
Proof: Taking the fractional integral of Hadamard sense for both sides of (2) yields
e(t) =I99,(t) + ¢, (log )™ + ¢, (log )1, Q)
@ (1) = I2H,(t) + d\(log )" + dy(log )2, (6)

since 1 < 0,,0, <2, ¢; = d, = 0 is an implication of first boundary condition, and

v -1 (1 01-1
IQl(p(U) — IV+91~6I(U) + L (log E)y ﬂ ds

r'y).J, s s
I' (o)) _
=7 §,(v) + ¢,(————(ogv) "o,
(V) 1F(V+Q1)( gv)
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2 d (" (. ¥) " dogs»
Iow (y) = T"°00) + 755 | (log;) — s

I"(0,) -
— I17+Q2 ) | 1 ) ].
:(y) +d T+ o) +Qz)(0g1ﬂ)

The second boundary conditions implies

3279, (v) + 3101%(1@% vyttt 4 3,709, (e) + 3,y = 35,
9-+o I'(02) v+oy-1 o —
200,272 5,(¢) + W d, T+ 0y (logy)" """ 4+ 20,7°29,(e) + W,d, = 2,
and
r
3101%(102{ U)y+gl_1 + 3.0 = 33 — 3,279, (v) — 3,2 9, (e),
r

mldlmﬂ(—%(log V) et 4 Wod, = W — W20, () — WrI?29H,(e),
then

C (31&(10@3 U)HQF1 + 32) =3, — 3127 9H,(v) — 3,2°°9,(e),

I'(y +o01)
r
4 (30, 5 o ) +20) = 2 — W) — W),

which gives

_ 3 = 3L H,(v) — 3.I° 9 (e)

C
R

and

d = W, — W, I+ 2H, () — mzzng)z(e)
| =

2, + T (log y) "

r'(®+op)

By replacing the values of ¢, ¢,, d,, and d, into Egs. (5) and (6), we derive Egs. (3) and (4), thereby
concluding the proof.

Based on Lemma 2, the integral solution for the problem described in Eq. (1) can be expressed as,

L s e, m ()
o) = F(Ql)/l (log ) s .

(log’c)al‘1 { / y+g1 VT (s, (), w(s))
A, P F(y + Ql) s

et T (5, 9 (9), ZU(S))
F(Ql) s

}, te[l, e, 7
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and
@ (t) = (1ogf) R ACIORIOV
I'(0,) P
(log—t)gz—l Ign3 —/ ( ) 27 TL(s, o(s), @ (s)) s
a r@+o) -
gz UL (s, (s), w(s))
F(Qz) e } , te[le], ®
where
= M y+eo1—1
A1—32+F(y+gl)(10gu) ,
and
g T
AZ_QII2+F(I9—|—Q2)(Ing) 0O

3 Main Results

We define an operator Q = {p(t)|¢(t) € C([1, e])} endowed with the norm ||¢|| = max{|p(t)|,t €
[1,e]}. Obviously (Q, || - |]) is a Banach space. Also let P = {w (V)| (t) € C([1, ¢])} endowed with the
norm ||o || = max{|@ (t)|,t € [, ¢]}. The product space (Q x P, ||(p, @ )]||) is also Banach space with
norm [[(¢, @)|| = [lell + [l ||

Based on Lemma 2, we introduce the operator 7 : @ x P — Q x P defined by

om0 = (70 m0)
where
Tl(<p,w)(t):;/ (1ogf) (5.9, ()
F(Ql) 1 Ky
+ {3 / ot s 9, @)
A ’ F(V +Q1) B

F(Ql)/ e w(j)’w“)) } e[l e, )

and
B t t or—1 Hg(S,(/)(S),@'(s))

PO mO =505 (10 ) - ds

. (ogye” [% / ( ) * L. 0(0). o)
A, F(19+Q2) s

92 T (s, W(S),ZU(S)) ]
F(Qz) s ’

e[l,e]. (10)
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For simplicity, we let

N { 31(log )’ 3, } 3 an
'eo+1) A (T'y+o0+1D) TI'(o+1) A
and
S i{ 2, (log y)™* 2 } + 2 (12)
roe.+1) M| TF@+o+1D) e+ 1) A’
M, = min{l — (M5, + M,p,), 1 — M3, + M,0,)}, 2, 0, >0 (i =1,2). (13)

In our first main result, we employ Banach’s contraction mapping principle to establish the
uniqueness of the solution. This theorem is particularly suited for our purpose as it provides a direct
and constructive method for proving the existence of a unigue solution under Lipschitz continuity
conditions. The Lipschitz condition, while a standard assumption, is a natural and manageable
constraint for a wide class of nonlinear functions, and it ensures that the solution not only exists but
is also stable with respect to the initial data and parameters.

Theorem 1: Let IT,, IT, : [1, e] x R? — R be continuous functions defined on[1, e] x R* — R and suppose
that there exist constants m;,n;,i = 1,2 such that for all t € [1,e] and ¢, w; e R,i =1, 2,

IT1,(t, @1, 02) — I1, (4, @y, @) | < my |, — | + M|, — @3

and

ITL(t, @1, 02) — L, @, @,)| < nylg) — @] + na|@, — @)

Furthermore, assume that the condition
M, (my + m,) + M (n, + 1) < 1,
holds, where M, and M, are defined by (11) and (12 ), respectively. Under this assumption, the boundary
value problem (1) has a unique solution.

The Lipschitz conditions are central to this analysis. They allow us to control the growth of the
nonlinearities I, and I, and are fundamental for ensuring that the operator T defined later is a
contraction on the Banach space. The subsequent condition M, (m, +m,) + M, (n, +n,) < 1 is a sufficient
criterion that guarantees the contraction mapping principle is applicable.

Proof of Theorem 1: Define sup IT,(t,0,0) = N, < oo and sup,,, [1»(t,0,0) = N, < oo Next we show

1e0.1]

that 7B, C B,, where B, = {(¢p,@w) € Q x P : |[(¢, w)| < r}, with
. NM, + N,M,
1 =M, (m +m,) — M,(n, + nz)-

https://www.scipedia.com/public/Manigandan_et_al_2026 8
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For (¢, @) € B,, we have

te[l.e]

Ti(p,@)(t) < maX[

A,

F(Ql)

<l | (1 )
_te[le] I'(o0))

(log ! ———L—/U v
* A, {33 I'(y +o1) ./, ( s

I'(e)
(log !

S

{3 /' lenuwmww)
’ F(V + 01) s

Ql UTTL (s, <p(s),ZU(S)) ”

S

(lo ’5) -G, 96).m(6)

(I (s, 9(5), () — Ti(s,0,0)| + [T, (s, 0, 0D
N

y+eop—1

(IT, (s, (), w (5)) — I1,(s,0,0)| + [I1,(s,0,0)])
X ds

F(Ql)

<{F(Q1 )+ {

< Ml[(m] + my)r + Nl].

Hence,

A

@l FL(s, 0(5), @ (5) — I11(s5,0,0)| + |TT, (s, 0, O)I)

: ]

3 (log V)7t 3, 3,
F'y+o+1) I+ 1)} }(mlllwll + my| ||| + N))

ITitp, @)1 < M [ (my +myr + N,

similarly,

Wm%wmmsM4m+mw+M]

As a result,

1T (@, @)l <r.

Now for (¢,, @), (¢, @) € Q x P, and for any t € [1, ¢], we get

|7T(§02, w,)(t) — 77(@1, o) (V)|

B tem[l“(@l) (

rWHGM@mm%H@%@mwn
A

”Ql FTLS, @2(), D2(8) — T (5, 1 (9). ()]

(log par-! {3 /
A, ’ FW+m s

F(Ql)

a1 T (s, 2(8), @2 () — T (s, @, (), wl(S))I H
S 2
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1 i { 31 (log v)rte 32

3,
<) + = _ + _
‘{F<gl+1> AT +a+D r<gl+1>} Al}[m"% i+ e =

SMl[mlH(Pz_WlH +m2||w2_wl||:|a

= MLy + ) llg — @il + Nl — a1

and consequently, we obtain

171 (@2, @) (V) — Ti (@1, ) (DN < My(my +my) (@ — o1l + |y — @ |]). (14)
Similarly,
17:(p2, @) (V) — Ta(er, ) (O] < ML, + n2) (|l — @1l + |l — @ ). (15)

It follows from (14) and (15) that
17 (@2, ) (V) — T (@1, ) (O] < [M,(m; + my) + My(ny + 1))l — @1l + |y — @ |]). (16)

Since M, (m, +m,) +M,(n,+n,) < 1, thus, T is identified as a contraction operator. Consequently,
by applying Banach’s fixed point theorem, 7 is guaranteed to have a unique fixed point, which
corresponds to the unique solution of problem (1). This concludes the proof. [J

While Banach’s theorem is powerful for establishing uniqueness, it requires the nonlinearities to be
Lipschitz. To address problems where the nonlinearities may have more general growth, we now utilize
the nonlinear alternative of Leray-Schauder. This topological method is well-suited for establishing
the existence of solutions without requiring the operator to be a contraction. It relies on establishing
a priori bounds for all possible solutions, thus providing a more general framework for existence
when the stricter conditions of Banach’s theorem are not met. Other topological methods, such as
Krasnoselskii’s fixed point theorem, could be considered for problems where the nonlinearity can be
decomposed into contractive and compact parts, but the Leray-Schauder alternative offers a direct
path for our coupled system under growth conditions.

Theorem 2: Suppose there are real constants x;, p; > 0 for (i = 1,2) and %, > 0, py > 0, such that Vo, € R
where (i = 1,2), the following holds:

ITL (£, @1, @2)| < 2 + 111 | + 2|0,

ITL (%, @1, )| < po + pil@i| + pal@s].

In addition, it is assumed that
My, + Moo, <1 and Mx, + M,p, < 1,

where M, and M, are defined by equations by (11) and (12 ), respectively. It follows that the boundary
value problem (1) possesses at least one solution.

The growth conditions in Theorem 2 are less restrictive than the Lipschitz conditions of Theorem 1.
They allow the nonlinear functions I1, and I, to grow linearly with the state variables ¢ and @, which
encompasses a broader class of potential applications. The subsequent inequalities M,x, + M,p, < 1
and M, + ML p, < 1 are crucial as they ensure the necessary a priori bounds can be established for the
application of the Leray-Schauder alternative.
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Proof of Theorem 2: First, we demonstrate that the operator 7 : @ x P — Q x P is completely
continuous. Using the continuity of the functions IT, and II,, it follows that the operator 7T is
continuous. Then, there exist positive constant £, and £, such that,

It o), )] = L,
[T (t o), m (B)] < L.

Then for any (p, @) € Q x P, we get

“Wn@wnwmn
ﬂ%)”‘mo/( ) s

+®yﬂlp / %wwnmmmwmn
™ ’ Fw+m s
mwncwmwmn
- DIyl rena, a7
( —) —ds
Hw
(logt)gl‘l { 3 /U vyrte-t ]
—— 13- ———— [ (log— ~d
* |A| R I(Ogs) e
Ql 1 1 }
S
F(Ql)
which 1mphes that
1 1 31(10g U)HQI 32 l 33 }
T (o, <L|——+ — + — LM,
Tig. @l L%@+1) MTora+D Ta+h] 4
similarly
1 1 [ 2, (og )"+ 20, 207, }
2\¢, = »Cz . 1< - —_— ([ = ﬁzMz-
1726, m)| < {m2+n+ FT0totD) Teih| &

From the inequalities above, it can be concluded that the operator 7 is uniformly bounded. Next,
we prove that T is equicontinuous. Let t,,t, € [1, ¢] with t; < t,. Then we have

I 71 (@2, @) (41) — Ti (@1, ) (L)l

1 4 A E 6\ 1
/ (log —1) —ds—/ (log —2) —ds
1 s N 1 N N

<
~ I'(a)

(logt)er~" — (log t;) { 3 /” vy rte-1 ]
+ B log — —ds
[A] ’ 'y +o)J, ( gS) N

01 -1 1 }
S
F(Ql)
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1 4 tl)‘”_l 1 ‘2( tz)‘""_l 1 ' £ 6\ 1
< lo —ds—/ lo —ds +—/ (lo —) —ds
(o) / ( o8 ERu A s T Tl ), U85) s
(logt,)a~" — (log )41~ [ 3 / vyrte-t 1
+ - og — —ds

™ Y L(y+o)l ( g s

|
ds

Analogously, we can obtain

1 7:(@, @) (1) — To (1, 1) ()]

F(Ql)

t 0r—1 th ¢ Qz*ll
< : / (log E) lds—/ (log —2) —ds
F(QZ) 1 N N 1 N S

t 0r—1 1
/ log— —ds
F(QZ) 4 S S

1 _ 1 P+oy—1
n (logty)™" — (logt,)?2~ / (Og ) 1 s
[A,| F(l9 + 0>)

W, [¢ eye 1
log - —dst|.
" F<gz>/. (lo23) 5 S} ‘
Note that the right hand side of the above two inequalities tends to zero independently of (¢, @) €
Q x P ast, — t,. Therefore, it follows by the Arzela-Ascoli theorem that t is completely continuous.
E={(p,m) e QxP|(p,m)=AT(p,w),0 <A <1},

is bounded. Let (p, w) € &, then (¢, w) = AT (¢, @ ). For any t € [1, e], we have
o) = ATi(p,@)(), @) = rAT(p,@)(H).

Then
31(logv)r*a 32 } 3s }
lp(®)] < {—F( -1 {F(y+Q1 g + Fo+ 1) (00 + 2 ll@ll + 2|l |])
and
1 1 [ 20,(logyr)’+e 2, 20,
Iw(t)lf{m _{F(ﬁ—l—gz—i-l) Tlont 1)}+ }(po+plll<ﬂ||+szIZU||)

Hence we have
loll < M, (x + s llell + 2l ),
and

ol =M, (oo + pillell + ol ],
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which imply that
loll + llo || < (Mix, + M) + (M, + Mop) o]l + (M2, + M, p,) || |

Consequently,
My + M, po

<
(@, @)l < M.

For any t € [0, 1], where M, is defined by Eq. (13), it follows that £ is bounded. Therefore, by
Leray-Schauder’s nonlinear alternative, the operator 7 is shown to have at least one fixed point. As a
result, the boundary value problem (1) is guaranteed to have at least one solution. The concludes the
proof. O

4 Ulam-Hyers Stability

This section is dedicated to the stability analysis of the proposed system. We begin by stating a
precise definition of Ulam-Hyers stability for our coupled system (1).

Definition 3: /25 ] The coupled system of Hadamard fractional differential Fq. (1) is said to be Ulam-
Hyers stable if there exist real constants C, > 0, C, > 0 such that for every €, > 0, ¢, > 0 and for every
pair of functions (¢, @) € C([1,¢e],R) x C([1, e], R) satisfying the following inequalities:

[m@up(z) — L (4 o), w(1)] < e,

forall z € [1, ], (18)
|D2w (1) — T, (1, (1), @ (1)] < €,

there exists a solution (¢*, w*) of the original system (1) such that

Ingo—so I < Ciey, (19)

lo — @ < Ge..

The constants C,, C, are called the Ulam-Hyers stability constants for the system.

This definition formalizes the concept that any “approximate solution” (i.e., a pair of functions
satisfying the system to within a small error €) must be close to an “exact solution” of the system. The
stability constants C,, C, quantify the robustness of the system, indicating how much an approximate
solution can deviate from an exact one.

To prove the Ulam-Hyers stability of our system, we first establish an important remark that
connects the inequality (18) to a perturbed differential system.

Remark 1: 4 pair (p,w) € C([1,¢e],R) x C([1, e], R) satisfies the inequalities (15) if and only if there
exist continuous functions Q,, Q, € C([1, e], R), which depend on ¢ and @, respectively, such that
Q1D <€, (@] <6, forallzell,e],

and the following perturbed system holds:

ID%(:) = T1,(1, (1), @ (1)) + Q, (D),

(20)
Dew (1) = IL(t, (1), w (1) + Qs(0).
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Theorem 3: Assume that the conditions of Theorem 1 hold. Then, the coupled system of nonlinear
Hadamard fractional differential Eq. (1) is Ulam-Hyers stable.

Proof: Let €, €, > 0 be given, and let (¢, @) be a pair of functions satisfying the inequalities (18). By
Remark 1, there exist functions Q,(#), Q,(¢) with |Q,(?)| < €, and |Q,(?)| < ¢, for ¢ € [1, ¢], such that
the perturbed system (20) is satisfied.

Following the same methodology used to derive the solution (7) and (8) for the original system,
the solution of the perturbed system (20) can be expressed as:

(1) = / ( )Ql I (s, @ (s), w(s)) + QI(S)
(o))

N (log r)er~ [ L 3 / o X)WI-] Hl(s,go(S),tU(S))JrQl(S)dS
Al L(y +o01) S

o L (s, 9(9), @ (9)) + Qi) ]
F(Ql) § ’
and

w (1) =

( ) L (s, 0(s), w(s)) + Q)
r( )

01 ¥ P+oy—1
. (log) [m W, / (log v ) (5. 9(), @ () + (s)
A, '@ +o0.) /s s N

Q2 UL (s, (8), w (5)) + Qz(s) ]
F(Qz) §

Let (¢*, @ *) be the unique solution of the original system (1) guaranteed by Theorem 1. Then, by
the linearity of the solution operator and using the bounds |Q,(?)| < €, and |Q,(?)| < €,, we obtain

the following estimates:
1 1 rtel
_( 3 (logv) n 3> ):|€1 = Mie,,
ANl'y+aoa+D T@+D
1 (maog ye W, )}
Fe:+1H M \T@+e:+D T+

Taking the supremum over ¢ € [1, e], we conclude that

lp() — " (D] < [m

» = Mhe,.

o (1) — " (D] < [

le — ¢l <M, and |lo — o < Me,.

Therefore, by Definition 3, the system (1) is Ulam-Hyers stable with explicit stability constants
C, =M, and C, = M. This completes the proof. [

5 Illustrative Examples

In this section, we provide two comprehensive examples to validate the theoretical results
established in Theorems 1 and 2. The first example demonstrates the application of the uniqueness
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result (Theorem 1), while the second illustrates the existence result (Theorem 2) under different growth
conditions.

Example 1
Consider the coupled system (1) with the following specific parameters:
3 3 1
leza QZ_E, sza 31:1’ 52:19 33:4: V:2,
1‘/‘—3 W, =1, W, =1, W, =2 1//—5
- 23 1 — 4 2 — 1y 3 — 4 - 2
Let the nonlinear functions be defined as:
1 o] I .,
IT Za 5 = 1 A )
0T = T e T TR
I, (¢ ) ! sin2m ) + @ + :
P, W) = —— b4 —_— + -
AL ¢ 307 T 160+ @) 2

We will verify all conditions of Theorem 1 (the Banach contraction principle) step by step.
Step 1: Continuity.

The functions I1, and I1, are compositions of continuous functions (polynomial, trigonometric,
and rational functions where the denominator is never zero on [1, e] x R?). Therefore, I1,,I1, € C
([1,¢] x R, R).

Step 2: Lipschitz Conditions.
For any ¢, ¢,, w,, @, € Rand ¢ € [1, ¢], we have:

1 i 7 1 ., .
w,)| < — + —|sIin” w; — sIn” w,
| 41422 |1+ lo)l 14|l 32' :

[T, (2, @1, woy) — I1,(2, 2,

=

1
4‘32|901_§02|+3—2'2|7D'1_w'2|

1
< =l — o] + — | — @,

36 16

K b ‘<
L+x] 141y~

The inequality |x — y| was used. Similarly,

| | ||

1 . . 1
[T, (7, @1, 1) — I, (2, @y, @,)| < E| sin(2w¢,) — sin(2r,)| + E 1 o] - 1+ o]

1
= 307 27 lpr — @o| + Elwl — |
1
= 1—6|(01 — | + Elwl — @]
Thus, the Lipschitz constants are:
1 1 1 1
m, = — n, = — n = — n, = —.
T3 16 16 T 6
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Step 3: Calculation of Constants.
We now calculate the constants A, A,, M, and M, defined in (11) and (12).

Ay =3+ %(log pyra-t =1 4 Fr(g) (log2)' ~ 1 + O‘Sglﬂ -0.693147 ~ 1.6142,
A, =, + fgr—%(log yyret =1 4 %(log 252~ 1+ % - (0.916291)* ~ 1.3720.
M, = ; L ( 3i(logv)ta n 3, ) i
oo+ A \I'y+a+D) T+D A,
1 1 1- (log2)? 1 4
- 2.5 + 1.6142 ( '3 + F(Z.S)) 1.6142

0.480453
~ 0.886227 4+ 0.6195 (—

+ 0.886227) +2.4780 ~ 1.1739.

1 1 (20, (log )" 200, 205,
M= ——— + — +—
I'e,+1) A\ 4+0,+1) e, + 1) A,
1 N 1 1- (log2.5)° N 1 2

T (2.5 @ 1.3720 '4.5) 'Q2.5) 1.3720
0.769031

11.6317

~ (0.886227 4 0.7289 ( + 0.886227) + 1.4578 ~ 1.2384.

Step 4: Verification of the Contraction Condition.

We now check the core condition of Theorem 1:

1 1 1 1
M, (m, + m,) + M,(n, +n,) = 1.1739 (% + E) + 1.2384 (R + E)

= 1.1739(0.02778 4 0.0625) + 1.2384 (0.125)
=1.1739-0.09028 + 0.1548 ~ 0.1059 + 0.1548 = 0.2607 < 1.
Since the contraction condition is satisfied, all hypotheses of Theorem 1 are fulfilled. Therefore,
the boundary value problem (1) with the given data has a unique solution on [1, ¢].

Example 2

Consider the same system (1) and parameters as in Example 1, but with different nonlinearities
that exhibit polynomial growth:

1 1 1 1 1
(¢, @) = Efﬂ + 55 cos(w)+e’, IL(ty w)= 30 sin(g) + %w + 3

We will show that Theorem 2 (the Leray-Schauder alternative) applies.
Step 1: Growth Conditions.
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For any ¢, w € R and ¢ € [1, e], we have:
1

1 1
I, (¢ < — — 1+1=—|p|+0+1.04

1 1 1 1
IT,(¢ < —-14+—= - =0+ = 0.2333.
L@ g, @)] = o5 - 1T+ S5l ]+ 3 +t5l@l+

Thus, the growth constants are:
1
10°
Step 2: Verification of Theorem 2 Conditions.
Using the constants M, ~ 1.1739 and M, ~ 1.2384 from Example 1, we check the conditions:
M, + M,p, = 1.1739 - 0.1 + 1.2384-0=0.11739 < 1,
M, + M,p, = 1.1739 - 0 + 1.2384 - 0.05 = 0.06192 < 1.

1
w, = 0; 0o =02333, p,=0, p,=—.

Xy = 1.04, X = 20

Since both conditions are satisfied, it follows from Theorem 2 that the boundary value problem
(1) with this second set of nonlinearities has at least one solution on [1, ¢]. These examples conclusively
demonstrate the applicability of our main theorems to distinct classes of nonlinearities, validating our
theoretical framework.

6 Discussion and Practical Significance

The theoretical findings of this work—existence, uniqueness, and Ulam-Hyers stability—carry
significant implications for both mathematical theory and practical applications. This section discusses
the broader context, practical relevance, and limitations of our results.

6.1 Practical Significance of Theoretical Guarantees

The primary practical contribution of this research lies in the rigorous guarantees it provides for
the coupled system (1). The proof of a unique solution ensures that the mathematical model is well-
posed. For scientists and engineers, this means that for a given set of inputs, parameters, and boundary
conditions, the outcome is predictable and deterministic. This is a fundamental prerequisite for using
the model for simulation, control, or design purposes in applied fields.

Furthermore, the demonstration of Ulam-Hyers stability is equally crucial for practical applica-
tions. This property guarantees that small perturbations in the model’s formulation—which inevitably
arise from measurement errors, parameter uncertainties, or numerical approximations—Ilead to only
proportionally small deviations in the solution. This robustness validates the use of numerical methods,
as it ensures that computed solutions will remain close to the true, unknown solution of the model,
thereby justifying the computational effort.

6.2 Advantages of the Hadamard Framework and Nonlocal Conditions

Our choice of the Hadamard fractional derivative, defined with a logarithmic kernel, is not
merely a mathematical generalization. It is particularly advantageous for modeling physical processes
exhibiting scale-invariance or ultraslow diffusion. Such behaviors are observed in the transport through
fractal and porous media [14] and the long-term rheological response of complex materials like
polymers and geological formations [1 5], where memory effects decay logarithmically in time.
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The nonlocal boundary conditions, incorporating Hadamard-type integrals, enhance the model’s
physical realism. They are adept at representing scenarios where the state at a boundary point is
influenced by the cumulative effect of the system’s state distributed over an internal region. This
is relevant for modeling phenomena with long-range interactions or hereditary properties, such as
in certain heat conduction problems with memory effects or population dynamics with nonlocal
interactions.

6.3 Limitations and Numerical Challenges

While the nonlocal conditions and the Hadamard operators increase the model’s sophistication,
they also introduce significant complexities. A primary limitation is the increased analytical and
computational cost associated with handling the logarithmic kernels and integral boundary conditions.
The evaluation of Hadamard integrals, which possess weak singularities, requires careful numerical
treatment, often necessitating specialized quadrature rules that can be computationally intensive
compared to methods for local problems.

Furthermore, the sufficient conditions for uniqueness and existence derived in our theorems,
while general, may not be necessary. There could be a class of problems outside the scope of our
Lipschitz or growth conditions that still admit solutions. The potential for multiple solutions under
different conditions, or when our contraction condition is violated, remains an open question for
future investigation.

6.4 Broader Applications and Future Outlook
The framework established here is not confined to a single physical context. It can be adapted to
model various real-world phenomena, including but not limited to:

e Anomalous Transport: Ultraslow diffusion in highly heterogeneous or fractal porous media.

e Viscoelasticity: Stress relaxation in complex materials where the creep compliance follows a
logarithmic law.

e Systems Biology: Dynamics of biological systems with memory and nonlocal interaction effects.

Future research will focus on overcoming the current limitations. This includes developing efficient
numerical algorithms tailored for Hadamard fractional operators and nonlocal conditions, extending
the analysis to include more general fractional derivatives (e.g., the Hilfer-Hadamard derivative), and
investigating the controllability of such systems for potential applications in engineering control theory.
By addressing these challenges, the theoretical foundation laid in this work can be fully leveraged for
solving complex problems in science and engineering.

7 Conclusion

This research has established a comprehensive theoretical framework for analyzing a coupled sys-
tem of nonlinear Hadamard fractional differential equations subject to nonlocal boundary conditions.
The primary objectives were to investigate the existence and uniqueness of solutions and to examine
the stability of the system.

Our main contributions can be summarized as follows:

e We successfully derived sufficient criteria for the existence and uniqueness of solutions. The
uniqueness was established using Banach’s contraction principle, while the existence result
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was obtained via the Leray-Schauder nonlinear alternative, thus covering a broad class of
nonlinearities.

e We proved that the system is Ulam-Hyers stable. This crucial finding ensures that approximate
solutions remain close to exact solutions, guaranteeing the robustness of the model against small
perturbations and validating future numerical simulations.

e The theoretical results were substantiated through detailed illustrative examples that verified all
the assumptions of our main theorems, demonstrating their practical applicability.

The novelty of this work is multifaceted. Firstly, we analyzed a coupled system with fully nonlinear
interaction terms, which is more general than many previously studied single-equation models.
Secondly, we incorporated generalized nonlocal boundary conditions involving Hadamard-type integral
operators, which maintain mathematical consistency with the derivative operators and model more
complex physical scenarios than standard local conditions. Finally, we provided a unified analysis that
seamlessly integrates existence, uniqueness, and stability within a single framework for this class of
problems.

Building upon this foundation, several avenues for future research present themselves:

e Generalized Operators: Extending the analysis to include more complex fractional operators,
such as the Hilfer-Hadamard or v -Hadamard fractional derivatives, to model an even wider
range of processes.

e Advanced Numerical Schemes: Developing and implementing efficient computational methods,
such as spectral methods or adaptive quadrature rules, to solve these challenging integro-
differential equations numerically.

e Controllability Analysis: Investigating the trajectory controllability of fractional systems involv-
ing Hadamard derivatives, which would have significant implications for engineering control
theory.

e Application-Specific Models: Applying this theoretical framework to develop and analyze
concrete models in fields like thermodynamics of complex materials, anomalous transport in
porous media, or systems biology.

In conclusion, this study provides a rigorous and robust mathematical foundation for a significant
class of fractional differential systems. The results not only advance the theoretical landscape of
fractional calculus but also pave the way for reliable applications in modeling complex physical
phenomena characterized by memory, nonlocality, and scale invariance.
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