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Summary. A continuation anisotropic adaptive algorithm to solve elliptic PDEs is pre-
sented. The p-laplacian problem and the Stokes equation are considered. The algorithm
is based on an a posteriori error indicator justified in [7] and [10]. The goal is to produce
an anisotropic mesh such that the relative estimated error is close to a preset tolerance
TOL. A continuation method is used to decrease TOL. Numerical results show that the
computational time is considerably reduced when using such a continuation algorithm.

1 INTRODUCTION

The use of adaptive algorithm to solve PDEs can reduce considerably the computational
cost for a given accuracy. Often the adaptive algorithm is based on a posteriori error
estimates. In [9, 11, 2] an adaptive algorithm based on different error indicators can be
observed.

The goal of this paper is to present in detail the adaptive algorithm and in particular a
strategy which has the goal to reduce the computational cost. Error indicators, discussed
in [7, 10] are presented for the p-Laplacian like problem and Stokes problem respectively.
Two different approaches of our adaptive algorithm are discussed.

The outline is the following. In Section 2 the algorithm is presented. In section 3 the
two model problems are introduced together with the respective error indicators. Section
4 is devoted to numerical experiments. Finally in Section 5 a conclusion is presented.

2 A Continuation Anisotropic Adaptive Algorithm

We present a Continuation Anisotropic Adaptive Algorithm in dimension d = 2, 3 to
solve elliptics PDEs. First we introduce an Anisotropic Adaptive Algorithm, applications
of which can be found in [1, 8, 11, 2]. Let Ω ⊂ Rd be a polygonal domain, for any
0 < h < 1 let Th be a conforming triangulation of Ω̄. We denote, for p ≥ d and for
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s = 1, . . . , d, u ∈
(
W 1,p

0 (Ω)
)s

a solution of the considered partial differential equation and
uh the continuous piecewise linear approximation. In what follows when s = 1 u : Ω→ R
is solution of a p-Laplacian problem and when s = d, u : Ω→ Rs is a solution of a Stokes
problem. We note the local error indicator

η2
K =

(
η2

1,K + · · ·+ η2
d,K

)1/2
, with η2

i,K = ρ2
Kλ

2
i,Kri,KGK(u− uh)ri,K (1)

so that
∑

K∈Th η
2
K is an error indicator for the error in a norm (or quasi-norm) || · ||.

Vectors ri,K represent the stretching directions of triangle K ∈ Th and λi,K the respective
magnitudes (λ1,K ≥ · · · ≥ λd,K), see details in [3, 4]. The residual quantity ρK depends
on the considered equation and finally

(GK(u− uh))ij =
s∑

l=1

∫
∆K

∂(ul − (uh)l)

∂xi

∂(ul − (uh)l)

∂xj
i, j = 1, . . . , d.

In practice post-processing techniques, as Zienkiewicz−Zhu (ZZ), can be applied to ap-
proximate ∂ul

∂xi
[14, 15, 16]. Note that, for i = 1, . . . , d, the quantity η2

i,K represents the
error in direction ri,K .

The goal of the adaptive algorithm is to build sequence of meshes possibly having large
aspect ratio such that a relative estimated error is close to a given, preset, tolerance TOL,
i.e.

0.75TOL ≤


∑
K∈Th

η2
K

||uh||p


1/p

≤ 1.25TOL. (2)

While adapting, the following main goals are considered

• Equidistribute the error in all stretching directions of each triangle. In numerical
experiments performed for example in [9, 2] this approach is suggested.

• Align the stretching directions ri,K for i = 1, · · · , d with the eigenvectors of GK(u−
uh). In Lemma 4.1 of [3], this choice is justified.

A sufficient condition for (2) to hold is to require that for each K ∈ Th the local error
is equidistributed

L
NK

≤ η2
K ≤

R
NK

, (3)

where we define NK the number of triangle K ∈ Th, L = 0.75pTOLp||uh||p and R =
1.25pTOLp||uh||p. In order to insure (3), we require for each K ∈ Th and for i = 1, . . . , d

L2

dN2
K

≤ η2
i,K ≤

R2

dN2
K

. (4)

To update the mesh, a mesh generator (BL2D [5] if d = 2 and MeshGems [12] if d = 3)
is used. Below an Anisotropic Adaptive Algorithm is presented.
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Algorithm 1 : Anisotropic Adaptive Algorithm

Data: TOL, starting mesh T 1
h

k ← 1
while (2) not satisfied do

Solve problem on T k
h

Compute error indicator
for i = 1, · · · , d do

if η2
i,K ≤ L2

dN2
K

then

λi,K ← 1.5λi,K
else if η2

i,K ≥ R2

dN2
K

then

λi,K ← λi,K/1.5
End
Align direction ri,K with ith eigenvector of GK(u− uh)

End
Update the mesh with an anisotropic mesh generator: T k+1

h

k ← k + 1
End
T final
h ← T k

h

Output: Final mesh T final
h

In the spirit of the Anisotropic Adaptive Algorithm introduced, we present now the
Continuation Anisotropic Adaptive Algorithm. The idea is to set TOL = 2NTOLgoal,
where N ≥ 1, run the Anisotropic Adaptive Algorithm and decrease N by 1 until the
desired tolerance TOLgoal is reached. Hereafter the Continuation Anisotropic Adaptive
Algorithm is presented.

Algorithm 2 : Continuation Anisotropic Adaptive Algorithm

Data: TOLgoal, N >= 1, starting mesh T 1
h

T final
h ← T 1

h

for n=N,. . . ,0 do
TOL = 2nTOLgoal

T final
h ← Anisotropic Adaptive Algorithm(TOL,T final

h )
End
Output: Final mesh T final

h

3 Two model problems

We present two model problems on which we test our adaptive strategy: a p-Laplacian
like problem (s = 1, d = 2, p = 3) and Stokes problem (s = 3, d = 3, p = 2). Let Ω ⊂ Rd

for d = 2, 3 be a polygonal domain. Given µ ≥ 0 and f : Ω → R, we are looking for
u : Ω→ R solution of the following problem

3
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
−∇ · ((µ+ |∇u|p−2)∇u) = f in Ω,

u = 0 on ∂Ω,
(5)

where |·| denotes the Euclidian norm in Rd. For any 0 < h < 1, a conforming triangulation
Th of Ω̄ having triangles K of diameter hK ≤ h is considered. Let uh be the continuous
piecewise linear approximation on triangles K ∈ Th with zero value on the boundary ∂Ω
obtained by finite element method. We consider the following quasi norm error [13, 7]

||u− uh||p :=

∫
Ω

|∇(u− uh)|2(µ+ |∇(u− uh)|+ |∇u|)p−2.

Consider u ∈ W 1,p
0 (Ω) solution of the variational problem arising from (5). As stated in

[7] the following error indicator, where the constant C is independent of µ, u, the mesh
size and the aspect ratio, can be derived

||u− uh||p ≤ C
∑
K∈Th

η2
K (6)

and where η2
K is given by (1) with

ρK = ||∇ ·
(
(µ+ |∇uh|p−2)∇uh

)
+ f ||L2(K) +

1

2λ
1/2
2,K

||[(µ+ |∇uh|p−2)∇uh · n]||L2(∂K). (7)

Here n stands for the unit outer normal to triangle K, [·] denotes the jump across the
edges of K ( [·] = 0 if ∂K ⊂ ∂Ω).

As a second model problem, Stokes equation is considered. Given µ > 0 and f : Ω→
Rd, we are looking for u : Ω→ Rd and r : Ω→ R such that

−µ∆u+∇r = f in Ω,
div(u) = 0 in Ω,

u = 0 on ∂Ω.
(8)

Consider again for any 0 < h < 1, a conforming triangulation Th of Ω̄. Let uh and rh be
the continuous piecewise linear approximation on triangles K ∈ Th with zero value on the
boundary ∂Ω obtained by finite element method. Let p = 2, under the same notations
previously discussed, in [10] the error indicator

∑
K∈Th η

2
K for the H1 semi-norm

||u− uh||2 := ||∇(u− uh)||2L2(Ω) (9)

defined by (1) with

ρK = || 1
µ

(f −∇rh) + ∆uh||L2(K) +
1

2λ
1/2
2,K

||[∇uh · n]||L2(∂K).

is discussed.
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4 Adaptive algorithm experiments

Results showing the sharpness of the error indicators presented can be observed in
[7, 10]. Our goal is to demonstrate the benefits of the continuation adaptive algorithm.
In particular we will compare algorithms 1 and 2. Consider problem (5), Ω = (0, 1)2 and
let f be such that the exact solution is given by u(x1, x2) = tanh(x1−0.5

0.1
) and µ = 0. Set

TOLgoal = 0.0078125 and choose a starting mesh of size 0.1−0.1. We run algorithm 1 for
140 iterations. Choosing N = 7 we run also algorithm 2. The tolerance is divided by two
each 20 iterations for a total of 140 iterations. In Figure 1 we present the obtained results.
Both algorithms give similar final meshes, the number of vertices is considerably close and
the solution obtained have comparable accuracy. However algorithm 1 requires an higher
number of vertices along first iterations. For this nonlinear problem we reported the total
number of Conjugate gradient iterations (sum for each Newton method step). The first
approach increases considerably the CPU time. This is due to the higher refinement of
the mesh at initial iterations. Algorithm 2 is clearly the fastest and best option.

Motivated by Aluminium Electrolysis [6] Stokes problem (8), is solved in a flat domain.
Let Ω = (0, 1)× (0, 1)× (0, 0.1) and f be such that u(x, y, z) = [x3(1− x)3y2(1− y)2(1−
2y),−x2(1−x)2y3(1− y)3(1− 2x), 0]T and r(x, y, z) = xy− 0.25. We set TOLgoal = 0.125
and consider a structured starting mesh of size 0.1− 0.1− 0.05. We run algorithm 1 for
140 iterations. We set N = 7 and perform 140 iterations of algorithm 2, dividing the
tolerance each 20 iterations. In Figure 2 the obtained results can be observed. Similar
conclusion as the previous two dimensional experiment can be done. In Figure 3 a cut
of the obtained mesh, when algorithm 2 is applied can be observed. In the industrial
problem the necessity of the continuation algorithm is even more clear. When algorithm
1 is applied, an increase in computational time can be observed and adaptation is not
possible.

5 Conclusion

We presented two possible versions of adaptive algorithm based on an a posteriori
error indicator for a p-Laplacian like problem and a Stokes problem. The goal of the
algorithms is to construct a mesh having a normalized error indicator near to a given
tolerance. Numerical experiments show the benefit of a continuation algorithm on the
preset tolerance parameter. The CPU time is considerably reduced and the benefits in
industrial problems with complex geometries are important.
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