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Abstrat
Rok�ll dams are nowadays often preferred over onrete dams beause of their eonomiadvantages, their �exible design and thank to the great advane ahieved in geosienesand geomehanis. Unfortunately their behavior in ase of overtopping is still an openissue. In fat very little is known on this phenomenon that in most ases leads to theomplete failure of the struture with atastrophi onsequenes in term of loss of livesand eonomi damage.The prinipal aim of the present work is the development of a omputational methodto simulate the overtopping and the beginning of failure of the downstream shoulder ofa rok�ll dam. The whole phenomenon is treated in a ontinuous framework.The �uid free surfae problem outside and inside the rok�ll slope is treated using aunique Eulerian �xed mesh formulation. A level set tehnique is employed to trak theevolution of the free surfae. The traditional Navier-Stokes equations are modi�ed inorder to automatially detet the presene of the porous media. The non-linear seepageis evaluated using a quadrati form of the resistane law for whih the Ergun's oe�ientshave been hosen.The strutural response of the solid skeleton is evaluated using a ontinuum visousmodel. A non-Newtonian modi�ed Bingham law is proposed for the simulation of thebehaviour of a granular non-ohesive material. This approah has the possibility ofonsidering a pressure sensitive resistane riterion. This is obtained inserting a Mohr-Coulomb failure riterion in the Bingham relation. Due to the large deformation of themesh during the failure proess, a Lagrangian framework is preferred to a �xed meshone: the Partile Finite Element Method (PFEM) is therefore used. Its spei� featuresmake it appropriate to treat the rok�ll material and its large deformations and shapehanges.



Finally a tool for mapping variables between non-mathing meshes is developed to allowpassing information between the �uid �xed and the dam moving meshes.All the numerial results are ompared with experiments on prototype rok�ll dams.



Resumen
Hoy en día las presas de esollera resultan a menudo una eleión preferible respeto alas tradiionales presas de hormigón por su menor impato eonómio y, sobretodo, porsu mayor �exibilidad de diseño graias a los grandes avanes alanzados en geoieniasy en geomeánia.Sin embargo, desafortunadamente su omportamiento frente a un sobrevertido siguesiendo un aspeto desonoido y muy difíil de analizar. Cuando el nivel de agua superala oronaión, en la mayoría de los asos se produe la rotura ompleta de la presa ononseuenias atastró�as tanto en términos de perdida de vidas humanas omo entérminos eonómios.El prinipal objetivo de este trabajo es el desarrollo de un método omputaional quepueda simular el sobrevertido y el prinipio de la rotura del espaldón aguas abajo deuna presa de esollera. Todo el fenómeno se trata on modelos ontinuos.El problema de �ujo en super�ie libre tanto fuera omo dentro de la esollera se trataon una únia formulaión usando un método Euleriano de malla �ja y una ténia delevel set para trazar la evoluión de la super�ie libre. Se han modi�ado las lásiaseuaiones de Navier-Stokes de manera que se detete automatiamente la preseniade un medio poroso. La �ltraión no lineal se evalúa mediante una ley de resisteniauadrátia en la ual se han empleado los oe�ientes de Ergun.La respuesta estrutural se evalúa usando un modelo ontinuo visoso. Se proponeuna versión modi�ada de la ley de Bingham para �uidos no Newtonianos que permitesimular el omportamiento granular no ohesivo de la esollera. La diferenia de esteenfoque onsiste en la posibilidad de onsiderar un riterio de resistenia que sea funiónde la presión. Esto se obtiene insertando un riterio de fallo de Mohr Coulomb en larelaión de Bingham. Debido a las grandes deformaiones a las que se ve sometida



la malla durante el proeso de rotura se ha preferido usar un método Lagrangianorespeto a uno de malla �ja: el Métodos de Elementos Finitos y Partíulas (PFEM). Susaraterístias lo haen apropiado para simular la esollera y sus grandes deformaionesy ambios de forma.Finalmente se ha desarrollado una herramienta para interpolar datos entre mallas nooinidentes para permitir la transferenia de informaiones entre el modelo �uido demalla �ja y el modelo de la presa on malla en movimiento.Todos los resultados numérios se han omparado on experimentos hehos sobre presasprototipo.
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C : stabilized damping matrix in the element-based formulation
K : stabilized sti�ness in the element-based formulation
M̃ : mass matrix in the edge-based formulation
K̃ : visous, onvetive and Dary operator in the edge-based formulation
G̃ : gradient operator in the edge-based formulation
∇̃ : weak gradient operator in the edge-based formulation



D̃ : divergene operator in the edge-based formulation
β, δ : stability parameters of Bossak method
φ : level set funtion
Dp : diameter of the sieve at whih the p% of the material pass;
g : gravity;
b : body fore;
t : tension;
Re : Reynolds number;
k : permeability or intrinsi permeability;
K : permeability oe�ient;
fd : Dary-Weisbah frition oe�ient;
rH : hydrauli radius;
e : roughness;
θ : shape oe�ient;
i : hydrauli gradient;
i : pressure drop;
h : nodal dimension;
hel : element dimension;
(·)n : (.) at time step n;
(·)k : (.) at iteration k;
(·)h : (.) in the �nite element spae;





Chapter 1IntrodutionThe rehabilitation of existing dams and their safety analysis are nowadays open �elds ofresearh. In fat in many ountries the design riteria of these strutures have reentlybeen reviewed with the intention of inreasing safety level faing an exeptional �ooding.This is justi�ed onsidering that many dams and dikes exhibit now a higher potentialto experiene overtopping during exeptional �ood events. Climate hange induedby global warming is, for instane, one of the main auses that might lead to moredevastating �ooding than ever [128℄.While in a onrete dam, an over�ow does not easily a�et the integrity of the struture,in an embankment dam in most ases it ompromises the dam body [64℄. If a dam ordike fails, loss of life and eonomi damage are diret onsequenes of suh event. Earlywarning is therefore ruial for saving lives in �ood-prone areas. That is the reasonwhy an inreasing interest is rising on the study of rok�ll and earth�ll dams, termedembankment dams, during extreme phenomena.The analysis of the possible onsequenes of an aidental overspill is still impossibleor very impreise and the neessary eonomial measures for solving the problem arethen ine�ient. An appropriate omputational method will help to redue the eonomiimpat of the investments in dam safety and in emergeny plans for embankment dams.The possibility of studying the behavior of water throughout and over the dam in aseof sudden hange of upstream onditions and of his e�et on the rok�ll is urrentlylimited by the absene of a suitable numerial tool. It should simulate the suddendynami hange in the seepage and �ow ondition and predit the subsequent onset andevolution of breahing in the rok�ll slope. The urrent work aims to give a ontribution



2 Introdutionto this �eld, reating and validating a new omputational method of general appliabilityfor simulating, with a unique formulation, the �ow throughout and over the dam whilefailure ours together with the dam strutural response.1.1 Embankment damsIn reent years tehnology on embankments dams has developed sensibly due to theadvanes in soil mehanis knowledge and in all related sienes. This, ombined withthe evident eonomi advantage of onstrution, make often this kind of struture a moreappealing hoie than the traditional onrete dams [64℄. The design of embankmentdams is in fat very �exible and makes use of di�erent shapes and materials, thatan often be found in situ. The tallest dams in the world are embankment dams (i.e.Rogún dam (335m) or Nurek dam (300m)) and their number exeed that of the lassialonrete dam struture [64℄.Nevertheless the vulnerability of embankment dams to overtopping still remains theirweakest point. In fat, aording to the ICOLD bulletin [64℄, this is their prinipalor seondary ause of failure in 31% and 18% of ases respetively. In onrete dams,on the ontrary, the e�ets of an over�ow usually does not ompromise the strutureintegrity and the auses of failure should be found in other reasons, often onnetedwith problems in the foundations.Several examples of dam failures as a onsequene of overtopping an be found in theliterature. Usually the auses of the over�ow are an extreme meteorologial event, oftenaompanied by malfuntioning of the spillway apaities.By far the most atastrophi dam disaster ever happened was the failure of the Banqiaodam (see Figure 1.1). It was a 118 m high embankment dam built in the early 1950. Itwas designed to support the one-in-1000-years-�ood. Nevertheless in 1975, due to theTyphon Nina the one-in-2000-years-�ood was reahed and Banqiao dam failed (followedby the failure of other 62 dams of the same basin). 62 000 people died beause of the�ood and around 145 000 beause of famine and epidemis. This event is, for damengineering, what Chernobyl and Bhopal have represented for the nulear and hemialindustry respetively [128℄.Among others, the failure of the Tous dam in Valenia should be mentioned. In Otober1982, a tsunami of 20 million of m3 of water �owed through the Comunidad Valeniana(Figure 1.2). In that ase the ause of the exeptional �ooding was a partiular mete-
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Figure 1.1: Image of Banqiao dam. Image taken from [1℄.

Figure 1.2: Image of Tous dam after the overtopping of Otober 19th, 1982.



4 Introdutionorologial ondition alled �gota fria� whih onsists of a old high-altitude depressionsurrounded by warm air with high moisture ontent that leads to extremely heavy rainfall in the hinterland of the Mediterranean oast of Spain.These and many other similar historial events demonstrate that when the water exeedsthe rest of the dam, the onsequenes an be atastrophi. An exeptional �oodingompromises seriously the struture, leading, in almost all ases, to its failure. Nev-ertheless the breahing formation is a relatively slow proess. It is never an explosivesudden failure. Chanson in [30℄ for example, reported that in the ase of the Glashüttedam (Figure 1.3), the omplete failure of the struture ours 4 hours later the begin-ning of the overtopping. In the ase of the Teton dam the reservoir was drained afterapproximately 12 hours.

Figure 1.3: Glashütte embankment dam (Germany). Image taken from [30℄.When the water overpasses the rest of the dam a seepage proess begins in the down-stream slope that leads to its progressive saturation. The �rst breah usually appearsat the toe of the dam, where the resistane is lower. Aording to Toledo [122, 123℄, twoare the main mehanisms that ompromise the rok�ll:
• Mass sliding or loss of stability of a part of the downstream region due to the landslide. This is the predominant failure mehanism when the downstream slope isvery steep. The saturation of the rok�ll leads to a redution of e�etive stressesthat, together with seepage, indue the formation of a failure irle that abruptlyrumbles. This phenomenon usually a�ets the whole width of the dam as an beobserved in Figure 1.4(a).
• Super�ial dragging of rok�ll partiles. When the downstream slope is �at (1V :
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3H for instane) this is the predominant failure mehanism. The water oming outfrom the toe of the dam drags away the super�ial roks. It leads to the formationof hannels in the downstream slope (see for instane Figure 1.4(b)).

(a) Mass sliding failure. (b) Super�ial dragging failure.Figure 1.4: The images show two experiments arried out at the UPM laboratories. Onthe left an example of mass sliding failure (initial slope 1V : 1.5H) whereas on the rightthe failure is mainly due to super�ial dragging of partiles (initial slope 1V : 3H).These two mehanisms usually at in a ombined way depending on the failure proessevolution [122℄.The lay ore represents an additional barrier before the omplete failure of the struturewhen the protetion given by the rok�ll is no longer present (see Figure 1.5 for a typialross setion of a rok�ll dam). Its failure an be the onsequene of surfae erosion orof mehanial frature of the same under the pushing of the water retained upstream.
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Downstream toeUpstream toeFigure 1.5: Shemati ross setion of a rok�ll dam.1.2 The XPRES and E-DAMS projetsIn the last years the Spanish Ministry of Siene and Innovation has been fundingthe XPRES [127℄ and E-DAMS [53℄ projets, a joint work between the Polytehni



6 IntrodutionUniversity of Madrid (UPM), the Centre for Hydrographial Studies of CEDEX and theInternational Centre for Numerial Methods in Engineering (CIMNE).The prinipal aim is the study of beginning and evolution of the breah aused by anovertopping on rok�ll prototype dams both from a physial and numerial point ofview.UPM and CEDEX team have a wide experiene on this topi and their e�ort hasbeen addressed to reah a better haraterization of the failure in funtion of a seriesof parameters. These are for examples, the downstream slope, the impervious systemadopted, the material used for the experiments and so on.Their extensive experimental ampaign onsists of more than 100 experiments. Furtherinformation an be found in Chapter 5 of the present work and for more details on thetopi, the onsultation of [21, 76℄ is reommended.All the experiments have been performed in three �umes of di�erent dimensions shownin Figure 1.6.

(a) Small hannel.0.4m width, 0.6mheight, 12m long. (b) Medium hannel.1.0m width, 1.1mheight, 16m long. () Large hannel. 2.48mwidth, 1.4m height, 13.7mlong.Figure 1.6: UPM and CEDEX experimental hannels used for XPRES and E-DAMSprojets.
The experimental data in terms of bottom pressure distribution and evolution of theseepage line, have been largely used in this work to validate the numerial approahof the .. ode during its development. Some examples of validation are presented inChapter 5.



Objetives 71.3 ObjetivesThis work faes the problem of the numerial simulation of the overtopping and begin-ning of failure in a prototype rok�ll dam.This leads to the development of two di�erent numerial tools:1. A �uid ode to simulate a free surfae �ow in a variable porosity medium in orderto aurately predit the hydrodynami fores ating on the rok�ll slope;2. A oupled �uid-struture analysis ode to simulate the beginning of failure in aseof overtopping.The idea is to solve both problems (seepage and unset and evolution of failure), usinga ontinuous approah and to integrate an Eulerian �uid model with a Lagrangianstrutural one. This is done in order to minimize the omputational e�ort for the�uid alulation and to have a Lagrangian tool whih an naturally following the largedeformation of the rok�ll slope.Three are the main developments to be done in this work in order to ahieve its obje-tives:
• A free surfae �uid model able to take into aount the presene of a porous media.It should work with any variable inoming disharge ondition.
• A strutural model to simulate the behaviour of a rok�ll slope in presene (ornot) of variable hydrodynami fores.
• A oupling tool to integrate the previously mentioned models and to simulatethe whole transitory phenomenon of failure of a rok�ll slope due to exeptional�ooding.The assumption of a Newtonian inompressible visous �uid is taken for the �ow ofwater. The solution system is a modi�ed form of the traditional Navier-Stokes equations.The e�et of porosity is impliitly taken into aount using the Dary veloity as avariable of the problem and adding the orresponding extra term in the momentumequations. This term takes into aount the seepage fores.For the study of the �uid behavior in a variable porosity medium an Eulerian approahwith a �xed mesh is hosen. A level set tehnique is used for the traking of the evolutionof the free surfae.



8 IntrodutionA Non-Newtonian onstitutive law is used to simulate the behaviour of a rok�ll slope.A Bingham plasti with a variable yield threshold is proposed to aurately identifythe beginning of failure of the slope material, aording to a Mohr Coulomb failureriteria. The Partile Finite Element Method (PFEM) is the tehnique used for thestrutural analysis. Its Lagrangian approah is a key feature to aurately follow thelarge distortion of the slope in ase of failure.The presene of water should be taken into aount in terms of variable hydrodynamifores. The problem is always fully drained sine the pores an be onsidered interon-neted aording to experimental results.The oupling of the two models is done in an expliit staggered way by projetinginformation between the Eulerian and the Lagrangian models. For that purpose a toolto projet information between non-mathing meshes is developed.The objetives of this work an be onsidered ful�lled when the experiments on theprototype rok�ll dams arried on by UPM and CEDEX an be reprodued.All the algorithms presented in this work have been implemented in Kratos [47, 48℄, aframework for developing �nite element odes for multiphysis problems.1.4 Layout of the doumentThe layout of the doument is the following:Chapter 2. The physial problem of seepage in rok�ll is desribed and the non linearform of the resistane law governing the phenomena is hosen. A brief overviewof the state of the art is presented. The governing equations are derived and thenumerial formulation is presented in detail. Two di�erent Eulerian approahesare desribed, a traditional element-based approah and an edge-based one. Inboth ases the level set tehnique is used to trak the evolution of the free surfae.Chapter 3. The behaviour of the rok�ll material is treated as a non-Newtoniangranular �uid. After an overview of traditional non-Newtonian materials, a regu-larized Bingham model is presented. This lassial approah is modi�ed to takeinto aount the variability of the yield stress in a granular non ohesive mate-rial. A Lagrangian kinematial desription is adopted and PFEM is used for thestrutural analysis.Chapter 4. The governing equations of the monolithi oupled problem are presented



Layout of the doument 9and the balane equation of the �uid and struture models are derived The ou-pling is performed in a fully staggered way using a tool to manage the transferof informations between the two models. This is done using an algorithm thatallows the data mapping between non mathing meshes, desribed at the end ofthe hapter.Chapter 5. The ode is validated by reproduing experiments arried out by UPMand CEDEX using either 2D and 3D models. Di�erent prototype dam models areonsidered in the examples.Chapter 6. The summary of the ahievements is desribed and the main points of thefuture researh work are outlined.Appendix A. The main features of Kratos Multiphysis are brie�y presented.





Chapter 2The �uid problemIn this hapter the numerial algorithm developed for the simulation of the free surfae�ow in presene of a variable porosity medium is desribed.First, a brief overview of the traditional studies of �ux in porous media is performed inorder to hose a suitable resistane law for the problem of interest. The balane equationsare obtained and two solution strategies are adopted for their numerial treatment. Anelement-based formulation and an edge-based approah are studied and implemented.The hoie of a �xed mesh method leads to the need of traking the evolution of thefree surfae. The level set tehnique adopted for this purpose is desribed in the lastpart of the hapter. The hapter �nishes with a series of examples that aim to hekthe orret behavior of the presented algorithms.2.1 IntrodutionThe lassial approahes of �uid �ow in porous media are not appliable for the analysisof the water motion within the rok�ll of a dam. Traditionally water is onsidered inslow motion or as a stationary load [130℄. On the ontrary in the ase of an overtopping,the possibility to follow the rapid transition of the water level in the downstream slopeis a key point for the identi�ation of the beginning of the failure mehanism.On the other hand, the typial problem of evaluating the saturation level of the poresloses its importane in the ase studied, due to the large dimension of the granularmaterial. Under these irumstanes, in fat, the pores an be onsidered always inter-onneted and the problem fully drained [122℄.



12 The �uid problemAording to traditional studies of �ow in porous media [117, 122℄, at a miro levelthe �ux between the roks is assimilated to �ow in pipes. This analogy is used for thederivation of the resistane law used for the alulation of the hydrauli gradient1 dueto seepage. The well known Dary law is not appliable to the analyzed problem. Inthe following setions it is explained how to obtain a suitable resistane law to be usedin the balane equations.It should be pointed out that a key point for the omplete simulation of the hydro-dynami e�et of an overtopping is the apability of the ode for simulating at one,not only the seepage, but also the �uid �ow upstream, downstream and over the dam.For that purpose the balane equations are derived onsidering the �ow inside a generiporous material. The key point is represented by the fat that they automatially redueto the lassial Navier-Stokes equations when porosity is equal to one; that is when noporous medium is present. The resistane law is inserted in the balane equation as well.Its ontribution goes to zero out of the granular material. A similar approah has beenused by Nithiarasu and oworkers [88�90℄ to study the natural and fored onvetive�ux in a avity �lled by a variable porosity medium.The easy de�nition of a ontrol domain and of spatial variables (like for instane theporosity, de�ning the presene of a granular material), indues to hoose an Eulerian�xed mesh approah. Moreover this kinematial framework is also more e�ient allowingan easier parallelization of the ode.This hoie leads to the need of hoosing a level set tehnique for traking the evolutionof the free surfae.Two di�erent solution strategies are presented in the hapter, an element based and anedge based approah. After a omparative analysis of both methodologies, the latter ishosen for being implemented in 3D and being oupled with the strutural ode.
2.1.1 Flow in rok�ll materialThe �ux in porous media is traditionally studied using the empirial relation that Daryobtained in 1856. Studying the �ow of water through a sand-�lled olumn he disoveredthat the pressure drop (i) and the veloity of water inside a porous material (u) are1The hydrauli gradient is the measure of the variation of the hydrauli head for unit length [58℄.



Introdution 13linearly related. This observation leads to the formulation of the well known Dary law,
i =

µ

k
u. (2.1)where µ is the water dynami visosity and k is the permeability of the porous media[12℄.Relation 2.1 was derived studying the unidiretional �ux in sand at low Reynolds num-bers. On the ontrary,in the ase of �ux through rok�ll material, the loal �uid ve-loities were observed not to be linearly related to the pressure drop. In fat it wasexperimentally proved that over ertain average dimension of the partiles, equation 2.1is not anymore valid.Many authors have deeply studied this aspet with essentially two objetives:- Disover the range of validity of Dary's law (equation 2.1).- De�ne an alternative resistane law2 in ase equation 2.1 is not anymore valid.Remark 1. Veloity u in equation 2.1 is by de�nition the Dary veloity, i.e. the �uidveloity averaged over the total ontrol volume Ω (often alled marosopi veloity orunit disharge being the disharge per unit volume), whereas the �uid veloity u isaveraged over the empty part of Ω (alled ΩE). Their relation is stated by the Dupuit-Forhheimer equation [87℄:

u = nu (2.2)where n is the porosity that, by de�nition 3 is
n :=

ΩE

Ω
. (2.3)See Figure 2.1 for a graphial explanation.2Equation 2.1 and all the alternative non linear formulations that are presented in the next setionsare ommonly alled resistane laws beause they measure the resistane made by the porous matrixto the �uid �ow.3 Equation 2.3 is by de�nition the volumetri porosity nv whereas in Figure 2.1 a ross setion ofthe ontrol volume is onsidered and a setional porosity na := AE/A should be de�ned like the ratiobetween the area of pores and the total ross setion area. Consequently, a lineal porosity an be alsode�ned as the ratio between the length of pores over the total length (nl := lE/l). Fortunately Bearsin [12℄ demonstrated that in a porous medium this distintion is unneessary being

nv = na = nl.
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Darcy velocityFluid velocityFigure 2.1: Graphial desription of �uid veloity u (averaged over the empty volume
ΩE) and Dary veloity u (averaged over the total ontrol volume Ω).Remark 2. Permeability k introdued in 2.1, also alled intrinsi permeability, ismeasured in squared meters (m2) and is de�ned as

k :=
n3D2

p

5(1− n)2θ
(2.4)where Dp is an equivalent diameter of the porous material4, whereas θ is a shape oef-�ient of the partiles. It is important to stress that the Dary's law an also be foundin the form

i =
1

K
u.where K is the permeability oe�ient, often alled simply permeability as well, whihrepresents the hydrauli ondutivity and has the dimension of a veloity (m/s). In thisase i is not any more the pressure drop i (measured in Pa/m), but it represents thehead loss per unit length, that is the hydrauli gradient and it is dimensionless.2.1.2 Analogy between �ow in porous media and pipes �owIt is generally aepted to onsider the �ow in the pores of rok partiles essentiallysimilar to �ow in a pipe network but with a more ompliated on�guration [117, 122℄.All the empirial formulae to evaluate the pressure drop due to frition in pipes have beenused and adapted to get similar empirial relationships in the ase of porous material4Dp is the diameter of the sieve at whih the p% of the material passed.



Introdution 15[50, 79, 125℄.Some brief reall of �ow in pipesThe Dary-Weisbah formula is traditionally used for the evaluation of the hydrauligradient i in pipes (only in a seond time it was adapted to be used in open hannel�ows). It states
i =

fd
4 rH

u2

2g
; (2.5)where fd if the Dary-Weisbah frition oe�ient, rH is the hydrauli radius5 (in pipesof diameter D is rH = D/4), g is the gravity aeleration and u is the veloity.In general fd is funtion of the Reynolds number6(Re) and of the roughness of the pipe(e). It is demonstrated [58℄ that:- In laminar regime fd is a funtion of Re only,

fd =
64

Re
.- In turbulent regime fd is onstant

fd = const.- In the transition regime
fd = fd(Re, e).Above explanations imply that the hydrauli gradient, using equation 2.5, an be al-ulated as follow- For laminar regime
i =

64µ

2gD2
pρ

u. (2.6)- For turbulent regime
i =

const

2g Dp
u2. (2.7)5The hydrauli radius is de�ned as the ratio between the �uid area and the wet perimeter.6The Reynolds number is the dimensionless oe�ient that, being the ratio between inertia andvisous fores, quanti�es the relative importane of eah one for a given �ow [58℄. It is de�ned as ρu l

µwhere ρ is the �uid density and l is a harateristi length (in pipes it oinide with the diameter).



16 The �uid problemTherefore in ase of laminar regime, the relation between the hydrauli gradient andveloity is linear (like it is in Dary's law), whereas in turbulent regime it beomesquadrati. Hene, as a preliminary onlusion, the possibility to lassify whether theregime of the �ux is turbulent or laminar seems to be very important to de�ne the rangeof validity of Dary's law. Even though, as explained in the next setions, this is notthe only aspet to be taken into aount.De�nition of the range of validity of Dary's lawMany di�erent approahes are present in literature on the appliation of the Dary-Weisbah relation to �ow in porous media to de�ne the range of appliation of Dary'slaw. The deep analysis of eah of them is not relevant for the aim of this work andthe onsultation of [79, 122℄ is reommended for a more omprehensive understandingof the topi. Nevertheless some important aspets that led to the de�nition of di�erentresistane law are reported here to fully introdue the problem.The main issue is related to the de�nition of the Reynolds number Re in a porousmaterial. In fat the following aspets have to be taken into aount:- Whether to take the veloity of equation 2.5 equal to the Dary veloity (u) or tothe �uid veloity (u). This hoie leads to a di�erent de�nition of the Reynoldsnumber
Re(u) =

u l

ν
=

nu l

ν
= nRe(u); (2.8)(equation 2.2 has been used).- How to de�ne the harateristi length l in equation 2.8. Some authors prefer tohose an equivalent diameter Dp (often the hoie is D10 or D50). In fat it iseasier to measure the granular dimension than the dimension of the pores. Othersde�ne l ≈ rH arriving to express l as a funtion of the permeability k.- Finally it is important to remember that equation 2.5 is one of the most popular,but not the only possible hoie for the alulation of the hydrauli gradient [50℄.Di�erent hoies lead to di�erent values of Re. Nevertheless all authors agree that thebeginning of appearane of turbulene is for values of Re in the range 60 − 150 (not

2000 like in pipes).



Introdution 17Many authors think that the range of validity of Dary's law oinides with the laminarregime, onsidering that turbulene appears at lower Re for higher Dp. Neverthelessaording to [122℄, the experimental results put in evidene that:- The transition between the linear and the non linear relation between i and u isgradual (di�erently from the transition from laminar to turbulent regime in pipes);- The starting point of non-linear behavior appears for Re ∈ [1 − 10] whereas tur-bulent phenomena appear for Re ∈ [60− 150].Following [122℄, Sheideger justi�es the �rst aspet with the o-presene of a laminarregime in the thinner �porous hannels� and a turbulent one in the thiker ones. Onthe other hand, non-linearity is often attributed to the presene of inertial fores thatare usually small but an be important for low Re in omparison with the visous one.Considering that inertia fores are proportional to the square of veloity, a quadratirelation between veloity and pressure drop is justi�ed.In Figure 2.2 some lassi�ation of the range of validity of Dary law are shown. Formore details on how they are obtained the onsultation of [79, 122, 125℄ is reommended.

(a) E. Prinz diagram (taken from [77℄). (b) J. Bear diagram (taken from [12℄).Figure 2.2: Range of validity of Dary law in its linear form.2.1.3 Resistane lawsForhheimer was one of the �rst authors in proposing in 1901 a quadrati resistane lawlike



18 The �uid problem
i = αu+ βu2; (2.9)where onstants α and β depend only on the harateristis of rok�ll material. Alter-natively Prony in 1804 and Jeager in 1956 proposed an exponential law like

i = γuη; (2.10)where γ and η depend on the �ow ondition, the harateristis of the porous mediumand the �uid.Both the quadrati and the power relationships are based on experimental results al-though some theoretial basis have been provided for their justi�ation [79℄. Nowadaysboth equations 2.9 and 2.10 are aepted and widely used. In reent years almost alle�orts have been addressed in determining the α and β or γ and η onstants.In fat in some of the formulae the oe�ients depend on physial parameters of therok�ll material only, suh as the size of the partiles, porosity and the partile shape(following [122℄ this is the ase of Ergun (1952), Wilkins(1956), MCorquodale (1978),Stephenson(1979), Martins (1990) and Gent (1991)). In other ases, the oe�ients de-pend on the experimental value of the hydrauli ondutivity. Sine building prototypesfor estimating these parameters an be very expensive, it is often easier and heaper tohoose one of the �rst group of formulae.A omprehensive overview of the di�erent models an be found in [79, 122, 125℄.Seletion of the seepage model: Ergun's orrelationIn the previous paragraphs an overview of the state of the art of seepage models hasbeen presented. In order to hoose the suitable non-linear resistane law to be used inthis work, some additional remarks should be done.- The objetive of the model is to develop a tool to simulate the free surfae �owthrough the rok�ll and outside of the same, so an essential requirement for theresistane law is that it should automatially go to zero when n = 1.- The quadrati form of the resistane laws is easier to implement than the expo-nential one;Colleting the previous onsiderations, a quadrati form of the non-linear resistanelaw is adopted and the Ergun's de�nition of the onstant oe�ients is hosen [57℄.



Continuous form 19Therefore, the pressure drop is
i = E1u+ E2u

2; (2.11)Following Ergun theory and alling Dp the average diameter of the granular material(Dp ≡ D50), E1 and E2 oe�ients are de�ned like
E1 = 150 · (1− n)2

n3
· µ

D2
p

; (2.12)and
E2 = 1.75 · (1− n)

n3
· ρ

Dp
; (2.13)De�ning the permeability shape oe�ient θ = 30 of equation 2.4, the permeability kan be alulated as a funtion of n and Dp

k =
n3D2

p

150(1− n)2
. (2.14)The �nal form of the resistane law hosen in this work is then:

i =
µ

k
u+

1.75√
150

ρ√
kn3/2

u2. (2.15)It is interesting to observe that the linear part of equation 2.15 is equivalent to theDary's law
2.2 Continuous formOne the resistane law has been hosen, the balane of linear momentum and theontinuity equation for an inompressible �uid an be derived. The prinipal objetiveof the present approah is to de�ne a unique set of balane equations governing both thefree surfae �ow and the seepage problem. In other words the governing equations haveto be able to reprodue the free surfae �ow in a variable porosity medium (onsideringthe open air as a porous medium with porosity n = 1).An approah similar to the one presented in the following setions, an be found inhapter 5 of the 5th edition of [132℄. This methodology is largely used for the treatmentof heat transfer in a �uid saturated porous media [8, 88, 89, 124℄.



20 The �uid problem2.2.1 Variables of the problemThe unknowns of the problem are:- u, �uid Dary veloity (see equation 2.2 for its de�nition).- p, �uid pressure;Other parameters are:- ρ is the �uid density. In the present work water is treated as an inompressible�uid with onstant density over the whole �uid domain, regardless of the preseneof a porous medium.- µ is the �uid dynami visosity.- n is the porosity (see equation 2.3 for its de�nition). In the most general ase itis a funtion of spae and time:
n = n(x, t); (2.16)In the present work, aording to experimental analysis, the variation of porosityin time, within the �uid solver, an be negleted, onsidering only its variationin spae. Nevertheless it should be remarked that porosity does hange in timeaording to the strutural deformation of the porous material, whih will beexplained in hapter 3 and has been onsidered in the oupled problem desribedin hapter 5.Therefore, as a �uid variable, n is only funtion of the spatial oordinates
n = n(x); (2.17)The �uid is onsidered here as a ontinuum and the presene of a porous matrix isimpliitly taken into aount via the porosity n as will be explained in se 2.2.3.2.2.2 Constitutive law. Water as a Newtonian inompressible�uidThe water is treated as a Newtonian inompressible �uid. In general a �uid at rest doesnot present shear stresses and the Cauhy stress tensor takes the form σ = −pI. The



Continuous form 21tangential stresses are non zero in a �uid in motion and the stress tensor beomes
σ := −pI+ τ (2.18)where τ is the deviatori part. The latter is linearly related to the strain rate tensorthrough visosity whih is assumed to be onstant.Therefore the stress tensor for a Newtonian �uid is

σ := −pI+ 2µ∇su; (2.19)where µ is the dynami visosity and
(∇su)kl :=

1

2

(
∂uk

∂xl
+

∂ul

∂xk

)

; (2.20)is the symmetri part of the veloity gradient [51, 132℄. It should be observed thatequation 2.19 does not take into aount the possible presene of a porous medium. Amore general form of the same will be derived in the next setions in order to have arelation that holds both for the ase of free �uid and of �ow in rok�ll material.2.2.3 Modi�ed form of the Navier-Stokes equationsIn order to take into aount the �ow in a variable porosity medium, some modi�ationsshould be introdued in the traditional form of the Navier-Stokes equations. The mod-i�ed system of solution equations is derived here imposing ontinuity and onservationof linear momentum within a �xed ontrol volume.In the following setions a balane on a �nite volume is �rst arried out and broughtlater to the in�nitesimal form.Remark 3. It is important to stress that it is always used a ontinuous approah totreat the �uid in the whole domain regardless of it is inside or not the porous media.Continuity equationLet us onsider a 2D square �nite ontrol volume dxdy as the one plotted in Figure2.3, and let's de�ne dxdy = n dxdy as the empty part of it, that is the portion of thisvolume that an be oupied by the �uid (see the de�nition of porosity at equation 2.3).



22 The �uid problem

Figure 2.3: Balane of onservation of mass in a disrete volume dx dy. dxdy = n dx dyis the empty volume where the �uid an irulate.Imposing the ontinuity of the �uid �eld veloity u = [u, v] over the �uid ontrol domain
dxdy, yields

ρ

(

u+
∂u

∂x
dx

)

dy − ρudy + ρ

(

v +
∂v

∂y
dy

)

dx− ρvdx+
dρ

dt
dxdy = 0; (2.21)Considering that the �uid is inompressible, equation 2.21 an be rewritten as

∂u

∂x
dxdy +

∂v

∂y
dxdy =

∂u

∂x
dxdy +

∂v

∂y
dxdy = 0.

(2.22)where the de�nition of the Dary veloity u = [u, v] (equation 2.2) has been used.Therefore the ontinuity equation is
∂u

∂x
+

∂v

∂y
= 0; (2.23)that an be rewritten as

∇ · u = 0; (2.24)



Continuous form 23Momentum equationThe balane of linear momentum in the i− th diretion is
ρ
dui

dt
dxdy − ∂σij

∂xj
dxdy − ρf ext

i dxdy = 0; (2.25)where f ext are the volumetri fores and the sum over j spatial index is supposed.Observing Figure 2.4 and remembering that the onstitutive equation 2.19 is
[

σx τxy

τxy σy

]

= −
[

p 0

0 p

]

+ 2µ

[

∂u/∂x 1/2 (∂u/∂y + ∂v/∂x)

1/2 (∂u/∂y + ∂v/∂x) ∂v/∂y

](2.26)

Figure 2.4: Balane of onservation of linear momentum in a disrete volume dx dy.
dxdy = n dx dy is the empty volume where the �uid an irulate.the balane equation in x-diretion beomes
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ρ
∂u

∂t
dxdy + ρu

∂u

∂x
dxdy ++ρv

∂u

∂y
dxdy

−∂σx

∂x
dxdy +

∂τxy
∂y

dxdy − ρbxdxdy + D̂xdxdy = 0;
(2.27)where the D̂x represents the x omponent of the hydrauli gradient due to seepage, e.g.the resistane law disussed in Setion 2.1.3 (i.e. equation 2.15). Its matriial form willbe detailed at the end of this setion. In equation 2.27 the de�nition of material timederivative has been impliitly taken into aount (ρdui

dt
= ρ

∂u

∂t
+ ρu

∂u

∂x
++ρv

∂u

∂y

).Substituting dxdy = n dxdy into equation 2.27 and inserting the de�nition of Daryveloity gives
ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ n

∂p

∂x

−2µ∂
2u

∂x2
− µ

(
∂2u

∂x∂y
+

∂2v

∂x2

)

n− ρbxn+ nD̂x = 0;
(2.28)This expression holds for any in�nitesimal domain dxdy.Finally, alling Dy = nD̂y, and using the same proedure in the other spatial dimensionleads to analogous results. In summary the equation of balane of linear momentum iswritten as

ρ∂tu+ ρu · ∇u + n∇p− 2∇ · µ∇su− ρbn +D = 0; (2.29)where ∂tu =
∂u

∂t
. In equation 2.29 D is the matriial form of the resistane law 2.15or, what is the same, the Dary term. It represents the dissipative e�ets due to theinteration between the solid and the �uid part. Details of this term an be found inSetion 2.1.3. The matriial form of the non-linear Dary's law 2.15 is

D =
nµ

k
u+

1.75√
150

ρn√
k

|u|
n3/2

u. (2.30)
Remark 4. Let us de�ne the Ergun oe�ients E1 and E2 per unit density as

E1 = 150 · (1− n)2

n2
· µ

D2
pρ

; (2.31)



Weak form 25and
E2 = 1.75 · (1− n)

n2
· 1

Dp
. (2.32)These expressions will be useful in the next hapter espeially during the explanationof the stabilization tehniques.Remark 5. A more general form of the onstitutive equation of water an be nowformulated as

σ := −npI + 2µ∇su. (2.33)This equation automatially redues to equation 2.19 if the porosity is equal to one (i.e.the free surfae �ow problem is onsidered).2.3 Weak formEquation 2.24 and 2.29 represent the modi�ed form of the Navier-Stokes problem. Theytake into aount the presene of a porous medium and redue to the lassial NavierStokes equations when the porosity is n = 1 (free �uid �ow). The equations to be solvedare therefore
ρ∂tu+ ρu · ∇u+ n∇p− 2∇ · µ∇su

−ρbn + E1u+ E2|u|u = 0 in Ω, t ∈ (0, T );

∇ · u = 0 in Ω, t ∈ (0, T ).

(2.34)where Ω ⊂ R
d (where d is the spae dimension) is the �uid domain in a time interval

(0, T ).The boundary and initial ondition of the previous problem are:
u(x, 0) = u0(x) in Ω;

u(x, t) = g(x, t) on ∂ΩD , t ∈ (0, T );

n · σ(x, t) = t(x, t) on ∂ΩN , t ∈ (0, T );

(2.35)where σ is de�ned by equation 2.33 and ΩD and ΩN are the Dirihlet and Neumannboundary respetively.Remark 6. Note that n indiates the outer unit normal vetor whereas n is de�ned inequation 2.3 and indiates the porosity.



26 The �uid problemThe weak form of equations 2.34 is derived next using a Galerkin formulation. A mixed�nite element method is obtained, that is the approximation of both the veloity ompo-nents and the pressure (and their respetive weighted funtions) need to be introdued.The weak form of equation 2.34 is
∫

Ω

wρ∂tudΩ +

∫

Ω

wρu · ∇udΩ+

∫

Ω

wn∇pdΩ

−
∫

Ω

w∇ · 2µ∇sudΩ+

∫

Ω

w(E1u+ E2|u|u)dΩ−
∫

Ω

wρnbdΩ = 0 ∀w ∈ V;
∫

Ω

q∇ · u = 0 ∀q ∈ Q;

(2.36)
where, for a �xed t ∈ (0, T ), u is assumed to belong to the veloity spae V ∈ [H1(Ω)]dof vetor funtions whose omponents and their �rst derivatives are square-integrable,and p belongs to the pressure spae Q ∈ L2 of square-integrable funtions. w and qare veloity and pressure weighting funtions belonging to the veloity and the pressurespaes respetively. Integrating by parts the pressure and onvetive terms, alling
Γ = ∂Ω gives

∫

Ω

wn∇pdΩ = −
∫

Ω

np∇ ·wdΩ+

∫

∂Ω

w · npndΓ;
∫

Ω

w∇ · 2µ∇sudΩ = −2
∫

Ω

∇w : µ∇sudΩ+

∫

∂Ω

w · (2µn · ∇su)dΓ;
(2.37)where n is the outer normal vetor (see remark 6). Substituting relations 2.37 intoequations 2.36 and onsidering the Neumann boundary ondition, the system to besolved beomes

∫

Ω

wρ∂tudΩ +

∫

Ω

wρu · ∇udΩ−
∫

Ω

np∇ ·wdΩ

+2

∫

Ω

∇w : µ∇sudΩ +

∫

Ω

w(E1u+ E2|u|u)dΩ

−
∫

Ω

wρnbdΩ−
∫

∂ΩN

w · tdΓ = 0 ∀w ∈ V;
∫

Ω

q∇ · udΩ = 0 ∀q ∈ Q;

(2.38)
Let Vh be a �nite element spae to approximate V, and Qh a �nite element approxima-



Element-based approah: monolithi solver 27tion to Q. The problem is now �nding uh ∈ Vh and ph ∈ Qh suh that
∫

Ω

whρ∂tuhdΩ+

∫

Ω

whρuh · ∇uhdΩ−
∫

Ω

n ph∇ ·whdΩ

+2

∫

Ω

∇wh : µ∇suhdΩ+

∫

Ω

wh(E1uh + E2|uh|uh)dΩ

−
∫

Ω

whρnbdΩ−
∫

∂ΩN

wh · thdΓ = 0 ∀wh ∈ Vh;
∫

Ω

qh∇ · uhdΩ = 0 ∀qh ∈ Qh;

(2.39)
In the next setions the two di�erent solution strategies developed in the present workare desribed:
• An element-based solver;
• An edge-based solver;The traditional �nite element (i.e. element-based) approah implies a loop over theelements in order to realulate all the elemental ontributions at eah iteration of eahtime step. In the alulation of the elemental ontributions a gather/satter proedure,from nodal to elemental to nodal information is needed in order to build the global solu-tion system together with an assembling solution proedure. Löhner [81℄, demonstratedthat these indiret addressing operations are very time onsuming and an be reduedusing an edge-based data struture. Nevertheless, the simpliity and the auray of anelement-based formulation makes it a very attrating hoie. Advantages and drawbaksof both tehnologies are detailed in the following pages.2.4 Element-based approah: monolithi solverA traditional element based approah is presented here. Equations 2.39 are solved usinga monolithi sheme. Namely veloity and pressure are alulated at the same time.The nodal degrees of freedom (veloity u and pressure p) form the vetor of unknowns ofthe solution system. The Navier-Stokes equations are stabilized with an ASGS tehniquepresented in Setion 2.4.1 and a partiular form of the generalized α time integrationshemes is used: the Bossak method, as explained in Setion 2.4.3. The linearization isahieved with a quasi Newton method using a residual based approah and a preditormulti-orretor sheme.



28 The �uid problemRemark 7. All the material variables (density ρ, dynami visosity µ, porosity n andaverage diameter D50) that appear in the solution equations have to be understood aselemental variables although, for reason of simpliity, the upper index el will be omitted.A short remark should be made on the evaluation of elemental porosity of boundaryelements. Porous nodes are haraterized by n < 1 whereas non-porous ones have n = 1.In the present work a dominant porosity approah is used: if the element has one nodewhih is non-porous, then the elemental porosity is n = 1. This an be done beauseporosity is assigned on geometri entities that are then meshed inserting nodes on theboundary of the objets (�gure 2.5 shows a graphial example). This will lead to anerror in ase of variable geometry of the porous material. For instane, this is the aseof the oupled problem treated in Chapter 4 where this error is aepted.

(a) Geometrial Entities (b) Nodal porosity () Elemental porosityFigure 2.5: De�nition of elemental porosity with a dominant porosity riteria.2.4.1 Stabilized formulationThe instabilities onneted with the onvetion term in a onvetion-dominated problemand the violation of the inf-sup ondition are the two well known auses of instabilityof the numerial solution of the Navier-Stokes equations. The �rst problem is induedby the Galerkin approximation itself, whose trunation error appears in the form ofa negative di�usion operator. This lak of di�usion leads to serious osillations whenonvetion dominates. This is measured by the mesh Pélet number (Pe) that is an non-dimensional oe�ient expressing the ratio between onvetive and di�usive transport.Considering u the onvetive veloity and h the dimension of the mesh, the solution



Element-based approah: monolithi solver 29presents a lak of di�usion if
Pe :=

uh

2µ
≥ 1;i.e. when onvetion dominates over di�usion [51℄.The seond reason of instability is onneted with the hoie of the �nite element spaefor pressure and veloity.In order to better understand the origin of this kind of instability it is onvenient toreall the lassial stationary Stokes problem

−ν∆u +∇p = b;

∇ · u = 0;
(2.40)that, in matrix form, beomes

[

K G

D 0

] [

u

p

]

=

[

F

0

] (2.41)where K = −νL ← −ν∆ is the visous operator (being L the Laplaian), G is thedisrete gradient operator, D is the divergene operator (D = GT ) , u is the vetor ofnodal veloities, p is the vetor of nodal pressures and F is the external fore vetor.The zero matrix on the lower diagonal position of the system matrix, derived from theimposition of the inompressibility onstrain, leads to some restritions in the numerialsolvability of the problem. It an be shown that the solution of system 2.41 exists and itis unique (i.e. the global matrix 2.41 is non-singular) if the kernel7 of matrix G is zero.In fat from the �rst equation it is possible to get u = K−1(F −Gp) that substitutedin the seond equation leads to
(DK−1G)p = (DK−1F);where DK−1G is symmetri, being K symmetri, but it is positive de�nite only if

ker G = 0. In the latter ase the pressure matrix is non singular and the value of p anbe alulated and substituted in order to evaluate u [51℄.Ladyzhenskaya - Babu�ska - Brezzi demonstrated that both the ontinuous and thedisrete spae of veloity and pressure (see Setion 2.3 for their de�nition) annot bearbitrarily hosen but they have to satisfy the so alled inf-sup (or LBB from the initials7 The kernel of a matrix A is de�ned as kerA := {q | q ∈ R
d and Aq = 0}.



30 The �uid problemof the authors) ondition. It states that a stable �nite element solution uh,ph to theStokes problem exists if it is ensured that
∀ ph ∈ Qh ∃ uh ∈ Vh suh that β||ph|| ||uh||H1 ≤ b(ph,uh); (2.42)or equivalently

inf
ph∈Qh

sup
uh∈Vh

b(ph,uh)

||ph|| ||uh||H1

≥ β; (2.43)where b(, ) is the bilinear form b(ph,uh) = −
∫

Ω
ph∇ · uhdΩ and || || is the L2 normwhereas || ||H1 is the H1 norm [9, 16℄.There are several pairs of pressure veloity interpolations that allow the satisfationof 2.43 like for instane the Q1/P0 element (ontinuous bilinear veloity, disontinuousonstant pressure), or the Q2/P1 multiquadrati veloity, pieewise linear pressure or,among the ontinuous pressure interpolations, the so alled mini-element (P1 + /P1)for example, with a linear veloity enrihed with an internal bubble and linear pressure.More details an be found in [10, 42, 51, 106℄.Unfortunately the simplest element, the P1/P1 (pieewise linear veloity and pressure),whih is used in the present work for pratial reasons, does not satisfy the inf-supondition and a stabilization tehnique is neessary to �xed both sort of instability.A wide range of stabilization tehniques an be found in literature. One of the �rst ideasto overome numerial osillations on onvetion dominated problems, was to introduedi�usion on the diretion of the stream lines. This led to the lassial and extensivelyused streamline-upwind/Petrov-Galerkin (SUPG) method by Brooks and Hughes [17℄.A generalization of SUPG for Stokes �ows was proposed by Tezduyar [120, 121℄: thepressure-stabilizing/Petrov-Galerkin (PSPG). In this ase the stabilization term varieswith the Reynolds number. In the zero Reynolds number limit, the PSPG stabilizationterm redues to the SUPG one. Another, more general, stabilization approah wasproposed by Hughes [63℄ (the Galerkin least-squares or GLS). He found out a wayto use an equal order interpolation for veloity and pressure for the Stokes problemfor inompressible �uids just adding the pressure gradient in the stabilizing terms in aSUPG-like strategy. The GLS method for time dependent problems uses both spae andtime �nite elements disretization leading to a spae-time �nite element formulation ofthe problem.So far all the stabilization tehniques presented require the addition of some arti�ialdi�usion term. As an alternative Oñate derived the stabilization terms using a Finite



Element-based approah: monolithi solver 31alulus (FIC) approah based on imposing the balane equations over a �nite domain[92, 93, 97, 101℄. This approah allows to reinterpret the stabilization terms as anintrinsi and natural ontribution to the original di�erential equations, instead of aorretion term introdued at disrete level. With this natural stabilization approahmany of the already existing stabilization tehniques an be reinterpreted in a morephysial manner.A popular family of stabilization methods is derived by the so alled subgrid sale (SGS)approah, introdued by Hughes in [62℄. His novel idea is to split the unknowns (u) intoa part that an be represented by the �nite element mesh (uh) and another part thataounts for the unresolvable sale (ũ), that is for the variation of the unknown thatannot be aptured by the �nite element mesh. This orresponds to a splitting of thespae V into the spae of the �nite elements (Vh) and the subgrid spae (Ṽ) as
V = Vh ⊕ Ṽ ; (2.44)Among the di�erent SGS methods, two are the hosen tehniques used in this work:- The Algebrai Sub-Grid Sale stabilization (ASGS) that has been implemented inthe element based formulation;- The Orthogonal Subgrid Sale (OSS) tehnique that has been employed to stabilizethe edge-based equations (see Setion 2.5.1).The main di�erene between these two tehniques is that in ASGS the whole residualis used to approximate the sub-sales whereas in OSS only its orthogonal projetion isused.Typially, stabilized methods add to the left hand side of the disrete residual of theproblem (i.e. the disretized weak form), a term of the form

r̃(uh,wh) =
∑

el

∫

Ωel

Pel(wh)
T τ elRel(uh)dΩ; (2.45)where the so alled intrinsi time, τ el is an algorithmi parameter with dimension oftime, Pel(wh) is a ertain operator applied to the test funtion (it will be de�ned lateron) and Rel(uh) is the residual of the di�erential equation to be solved. The upper index

el in equation 2.45 indiates that the ontribution is element-wise and will be omittedlater on for the sake of simpliity.



32 The �uid problemLet us introdue the stabilized form of equation 2.39 using an ASGS tehnique.Referring to equation 2.45 Table 2.1 an be obtained. α ∈ [0, 1] is an input parameterto ontrol the in�uene of dynami ontribution, h is the element length8. The upper-indexes m and c refer to the momentum and the ontinuity equation respetively
Momentum equation

Pm(wh) uh · ∇wh +∇qh

τ1

(
α

∆t
+

4ν

h2
+

2|uh|
h

+ E1 + E2|uh|
)−1

Rm(uh) ∂tuh + uh · ∇uh − ν∆uh + n∇ph + E1uh + E2|uh|uh − nbContinuity equation
Pc(wh) ∇ ·wh

τ2
µ

ρ
+

h|uh|
2

Rc(uh) ∇ · uhTable 2.1: Stabilizing elemental terms in the ASGS method.
Therefore the stabilized problem beomes:
∫

Ω

whρ∂tuhdΩ +

∫

Ω

whρuh · ∇uhdΩ−
∫

Ω

n ph∇ ·whdΩ

+2

∫

Ω

∇wh : µ∇uhdΩ +

∫

Ω

wh(E1uh + E2|uh|uh)dΩ

−
∫

Ω

whρnbdΩ−
∫

∂ΩN

whthdΓ +
∑

el

∫

Ωel

τ1Pm · RmdΩ = 0 ∀wh ∈ Vh;
∫

Ω

qh∇ · uhdΩ+
∑

el

∫

Ωel

τ2Pc · RcdΩ = 0 ∀qh ∈ Qh;

(2.46)
8The element length is de�ned as the edge of a regular triangle in 2D (or of a regular tetrahedronin 3D), insribed in the irumferene (sphere in 3D) that irumsribes the element itself.



Element-based approah: monolithi solver 332.4.2 Disretization proedureCalling u and p the vetor of nodal veloities and pressures respetively, system 2.46 inits matriial form is expressed as
[

M 0

0 0

]

·
[

u̇

ṗ

]

+

[

K G

D 0

]

·
[

u

p

]

=

[

F

0

] (2.47)where the orrespondene between the blok matries of 2.47 and the ontinuum formof the solution equation 2.39 an be seen in Table 2.2. Every blok matrix is obtained, asusual, from the assembling of elemental ontributions. Eah node has as many degreesof freedom as the spae dimension (nsd) plus 1. That is the upper left elemental blokmatrix (K) has dimensions nsd × nsd and G is a nsd × 1 matrix (onsequently D is a
1×nsd). Therefore the global sti�ness matrix is a square matrix of npts · (nsd+1)×npts ·
(nsd + 1) (where npts is the number of nodes). The nonlinear terms are treated usingthe Piard method and they are evaluated at the element Gauss points at the previousiterations.The matrix form of the stabilized system of equation 2.46 an be written as:
[

M+ SM
wu 0

0 0

]

·
[

u̇

ṗ

]

+

[

K+ Swu + Sc G+ Swp

D+ Squ Spq

]

·
[

u

p

]

=

[

F+ Sf
w

Sf
q

] (2.48)where all the stabilization matries are inserted. Their detailed meaning an be foundin Table 2.3 where Swv = SC
wv + Sµ

wv + SD
wv and Squ = SC

qu + Sµ
qu + SD

qu.Equation 2.48 an be written in ompat form as
Mv̇ + fint(v(t), t) = fext(t); (2.49)where vT = [u, p] and v̇T = [u̇, ṗ] are the vetor of unknowns and their time derivativesrespetively.
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Matriial term Continuum term
Mu̇

∑

el

∫

Ωel

whρ∂tuhdΩ

KCu
∑

el

∫

Ωel

whρuh · ∇uhdΩ

Ku Kµu −2
∑

el

∫

Ωel

wh∇wh : µ∇uhdΩ

KDu
∑

el

∫

Ωel

wh(E1uh + E2|uh|uh)dΩ

Gp −
∑

el

∫

Ωel

n ph∇ ·whdΩ

Du
∑

el

∫

Ωel

qh∇ · uhdΩ

F
∑

el

∫

Ωel

whρnbdΩTable 2.2: Matries and vetors of system 2.48 without stabilization terms.
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Momentum equationMatriial term Continuum term

SM
wuu̇

∑

el

∫

Ωel

τ1uh · ∇wh∂tuhdΩ

SC
wuu

∑

el

∫

Ωel

τ1uh · ∇whuh · ∇uhdΩ

Swuu Sµ
wuu −

∑

el

∫

Ωel

τ1uh · ∇whν∆uhdΩ

SD
wuu

∑

el

∫

Ωel

τ1uh · ∇wh(E1uh + E2|uh|uh)dΩ

Swpp
∑

el

∫

Ωel

τ1uh · ∇whn∇phdΩ

Sf
w −

∑

el

∫

Ωel

τ1uh · ∇whnbdΩ

SC
quu

∑

el

∫

Ωel

τ1∇qhuh · ∇uhdΩ

Squu Sµ
quu −

∑

el

∫

Ωel

τ1∇qhν∆uhdΩ

SD
quu

∑

el

∫

Ωel

τ1∇qh(E1uh + E2|uh|uh)dΩ

Spqp
∑

el

∫

Ωel

τ1∇qhn∇phdΩ

Sf
q −

∑

el

∫

Ωel

τ1∇qhnbdΩContinuity equation
Scu

∑

el

∫

Ωel

τ2∇ ·wh∇ · uhdΩTable 2.3: Stabilization matries and vetors of system 2.48.



36 The �uid problem2.4.3 Bossak time integration shemeThe Navier-Stokes equations are solved in time using a Bossak sheme. First of all, letus reall the Newmark sheme from whih it takes its origin. This is one of the mostpopular time integration proedures in strutural dynamis and it is used with suessin the linear regime. Its use in non-linear problems is possible, however in presene oflarge geometri non-linearities it is known to lead to unstable results unless the time stepis severely redued. This drawbak derives form the fat that, in the stability of linearproblems, the balane of energy equation implies an upper bound to the solutions. Onthe ontrary, in a non linear regime this is not automatially veri�ed when a linearizationis performed. A stable algorithm an diverge in problems in whih energy an grow upunlimitedly. It is therefore neessary to introdue some parameters in the time shemeable to lead to energy dissipation in high frequeny modes [61, 118℄.The momentum equation in strutural problems is written in the general form as
Mẍ +Cẋ +Kx = f ext; (2.50)where x is the vetor of displaements and M, C, K are the stabilized mass, dampingand sti�ness matries respetively. The overbar is used to distinguish the stabilizedoperators from those presented in equation 2.47.Let's all vT = [u, p] and v̇T = [u̇, ṗ] the vetor of unknowns and their time derivativesrespetively. Equation 2.50, rewritten in terms of v and its derivative, represents theompat form of equations 2.48. It is

Mv̇ + fint(v(t), t) = fext(t); (2.51)where M is the mass matrix. fint takes into aount of all the terms that dependson veloity and pressure (the internal fores) and fext is the vetor of external fores,inluding all the ontributions independent from the unknowns. Let's remark thatequation 2.51 is an alternative way of writing equation 2.48.Following the Newmark formulation v and x an be obtained at time step n+ 1 as
vn+1 = vn + (1− δ)∆t v̇n + δ∆tv̇n+1; (2.52a)
xn+1 = xn +∆tvn +

(
1

2
− β

)

∆t2v̇n + β∆t2v̇n+1; (2.52b)



Element-based approah: monolithi solver 37where ∆t is the time step and δ and β are the two parameters that ontrol the stabilityand auray of the sheme [116, 118℄. The Newmark family of methods has its originfrom the di�erent hoies of δ and β.In impliit shemes, for instane, stability is ensured by
2β ≥ δ ≥ 1

2
;that leads to an unonditionally stable method. Alternatively, using

δ ≥ 1

2
β ≤ δ

2
;leads to a onditionally stable method. The stability ondition in this ase gives anupper bound to the natural frequeny times the time step.Calling v̂n+1 and x̂n+1 the predition of the unknowns and displaements in terms ofthe known variables at time step n, equations 2.52 an be rewritten as

vn+1 = v̂n+1 + δ∆t v̇n+1; (2.53a)
xn+1 = x̂n+1 + β∆t2 v̇n+1. (2.53b)Equation 2.53a an be alternative written as
v̇n+1 =

1

δ∆t

(
vn+1 − v̂n+1

)
. (2.54)Finally inserting equation 2.54 in equation 2.51 it gives

1

δ∆t
M
(
vn+1 − v̂n+1

)
+ fn+1

int = fn+1
ext ; (2.55)whose residual an be de�ned as

r(vn+1) = − M

δ∆t

(
vn+1 − v̂n+1

)
− fn+1

int + fn+1
ext . (2.56)The de�nition of the residual of the solution system (equation 2.56) disloses the residualbased approah that is used in the preditor orretor solution strategy to solve thelinearized system. This will be lari�ed in the next pages.



38 The �uid problemThe α-method Hilber Hughes and Taylor in 1977 presented the α−method able tointrodue numerial dissipation at high frequeny modes without degrading the order ofauray of the solution [60℄. The unknowns and their derivatives are alulated througha weighted average of their values at time step n and n+ 1. For instane in the ase ofa veloity formulation, the vetor of unknowns is de�ned as
vn+1+αH = (1 + αH)v

n+1 − αHv
n; (2.57)that redues to the Newmark method if αH = 0.In equation 2.57 the hoie

αH ∈
[

−1
3
, 0

]

, δ =
1− 2αH

2
, β =

(1− αH)
2

4
; (2.58)retains the seond order auray and the unonditional stability. Maximum dissipationis obtained for αH = −1/3. In this sope the residual is slightly di�erent form equation2.56, taking the following form:

r(vn+1+αH ) = −M
[
1 + αH

δ∆t

(
vn+1 − v̂n+1

)
− αH v̇

n

]

−fn+1+αH

int + f
n+1+αH

ext .

(2.59)
Bossak sheme The Bossak sheme follows a similar approah, but the modi�ationa�ets exlusively the term related to the inertia fores. In fat

v̇n+1−αB = (1− αB)v̇
n+1 + αBv̇

n; (2.60)and the residual form of the equilibrium equation is expressed as
r(vn+1−αB) = −M

[
1− αB

δ∆t

(
vn+1 − v̂n+1

)
+ αBv̇

n

]

− fn+1
int + fn+1

ext ; (2.61)Introduing the predition of veloity stated by equations 2.52a and 2.53a and groupingthe unknowns at time n + 1 the �nal expression of the residual linearized in time usedin this work is
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r(vn+1−αB) = −M

(
1− αB

δ∆t
vn+1

)

− fn+1
int + fn+1

ext

−M
[
1− αB

δ∆t
vn +

(

αB −
(1− αB)(1− δ)

δ

)

v̇n

]

;

(2.62)Also in this ase the unonditional stability and 2nd order auray are ahieved withthe following values of the parameters
αB ∈

[

−1
3
, 0

]

, δ =
1− 2αB

2
, β =

(1− αB)
2

4
; (2.63)The α−method was proven to be more aurate than Bossak sheme when the numerialdissipation is maximal [61, 126℄. However the latter presents some implementationadvantages for non-linear problems as explained in [6℄. These are the reasons for thehoie of the Bossak sheme in this work.

Preditor multi orretor residual based strategyThe solution of the non linear problem is ahieved using a residual based approah. Aquasi Newton method allows the linearization of the non linear terms. Using a Taylorexpansion of equation 2.62 at iteration k, the residual at iteration k+1 is obtained andis imposed to be zero, i.e.
r(vn+1,k+1) = r(vn+1,k) +

∂r(vn+1,k)

∂vn+1
∆vk +O(∆vk)2 = 0; (2.64)where ∆vk = vn+1,k+1 − vn+1,k and

∂r(vn+1,k)

∂vn+1
= − M

δ∆t
− ∂f ,n+1,k

int

∂vn+1
; (2.65)The �nal solution system is

−∂r(v
n+1,k)

∂vn+1
︸ ︷︷ ︸

LHS

∆vk = r(vn+1,k)
︸ ︷︷ ︸

RHS

; (2.66)



40 The �uid problemwhere LHS stands for left hand side and it is the matrix of the derivative of the residualat the urrent iteration with respet to the unknowns. Whereas RHS stands for righthand side, it is the vetor of the residual of momentum and ontinuity equations at theprevious iteration.The basi steps of the Newton-Raphson solution proedure are:1. Predition vn+1,k+1 = vn+1,k;2. Solve the system in its residual based form (equation 2.66);3. Update vn+1,k+1 = vn+1,k +∆vk;4. Chek onvergene;5. Go bak to step 2 till onvergene is ahieved.
2.5 Edge-based approah: frational step solverConerning the element-based approah presented in the previous setions, two set ofvariables are neessary in the evaluation of the right hand side (RHS): the nodal variableslike veloities and pressure and the elemental ontributions like elemental volumes, shapefuntions and shape funtion derivatives.The main steps of the evaluation of the residual in an element-based formulation are:1. Gather nodal information into the element;2. Operate on element-data to evaluate the elemental residual;3. Satter the elemental information to point-data in order to obtain the global RHS;The ost of addressing operations in steps 1 and 3 an be drastially redued usingan edge-based approah. With this di�erent data struture some redundant opera-tions are avoided. Löhner and o-workers demonstrated that the FLOPs (�oating pointoperations) overhead ratio between element-based and edge-based formulation is ap-proximately 2.5 [115℄. All the matrix operators (mass, Laplaian, strong and weakgradient and divergene) an be alulated only one at the beginning of the run in the



Edge-based approah: frational step solver 41ase of a �xed mesh approah, like the one onsidered in the present work, beause theonnetivities between nodes do not hange along the alulation [115℄ .The idea is to express all the integral operators of the lassial Galerkin disretizationin terms of the neighboring ontributions aessing eah node only one and takingadvane of the Compressed Sparse Row (CSR) matrix storing format9.Sine symmetry is not exploited in the present implementation, the parallelization ofan edge-base ode is straight forward. Two nested loops are performed, the main loop(whih is the one to parallelize) is made over the mesh node i, and the inner one is madeover node j surrounding node i (the edges onneted to node i). The ontributions ofthe edge ij are omputed only when the node i is aessed (edge ji for simpliity isonsidered di�erent from edge ij). On the ontrary in an element-based approah edge
ij is aessed more than one being part of at least two di�erent elements (see Figure2.6). This implies that the ontribution ij of every matrix omes from more than oneelement, thereby introduing some di�ulties in parallelizing the elemental loop.

Figure 2.6: Build up ontribution in an edge-based data struture for the elementalontribution.9In CSR format, suitable for sparse matries, only the non zero entries of the matrix are stored.Considering for example matrix A below. It an be stored in a CSR format through vetors aij , j and
i that are the vetor of the non zero entries of A, the vetor of the olumn indexes of every non zeroentry of A and the position of the �rst non zero entry of eah row of A in aij respetively, i.e.

A =







5 7 0 1
0 0 0 3
0 1 0 4
0 0 9 0







aTij = {5 7 1| 3| 1 4| 9}

jT = {0 1 3| 3| 1 3| 2}

iT = {0| 3| 4| 6| 6}



42 The �uid problem2.5.1 Stabilized formulationAs already mentioned in Setion 2.4.1 in the edge-based approah, as well as in theelement-based one, SGS methods are employed to stabilize equations 2.39. In the presentwork the Orthogonal sub-grid sale OSS method introdued by Codina [34, 38℄ is used.In this ase the spae for the sub-grid sale is taken orthogonal to the �nite element one.Following stritly the operations outlined in [39, 41, 115℄, the problem already presentedin equation 2.39, with the insertion of the onvetion and inompressibility stabilizationterms, is: �nd (uh, ph,πh, ξh) in Vh ×Qh × Vh × Vh suh that
∫

Ω

wh∂tuhdΩ +

∫

Ω

whuh · ∇uhdΩ

−
∫

Ω

nph(∇ ·wh)dΩ + 2

∫

Ω

∇wh : ν∇uhdΩ

+

∫

Ω

wh(E1uh + E2|uh|uh)dΩ−
∫

Ω

whnbdΩ

−
∫

Ω

τ(uh · ∇wh)Ph
⊥(uh · ∇uh + E2|uh|uh)dΩ = 0 ∀wh ∈ Vh;

∫

Ω

qh∇ · uhdΩ+

∫

Ω

τ∇qhPh
⊥(n∇ph)dΩ = 0 ∀qh ∈ Qh;

(2.67)
where Ph

⊥ is the spae of orthogonal projetions Ph
⊥ = I − Ph and Ph is the L2 −

projection onto Vh. That is
Ph

⊥(uh · ∇uh + E2|uh|uh) = uh · ∇uh + E2|uh|uh − πh; (2.68a)
Ph

⊥(∇ph) = n∇ph − ξh; (2.68b)with πh and ξh de�ned as
∫

Ω

whπhdΩ =

∫

Ω

wh(uh · ∇uh + E2|uh|uh)dΩ; ∀wh ∈ Vh (2.69a)
∫

Ω

whξhdΩ =

∫

Ω

whn∇phdΩ; ∀wh ∈ Vh (2.69b)The additional unknowns ξ and π an be easily expressed in funtion of veloity andpressure through this equations.Remark 8. A split-OSS is implemented. The orret form of applying OSS to themomentum equation would be to onsider a stabilization term like equation 2.45 where



Edge-based approah: frational step solver 43the Pm(wh) and τ orrespond to those presented in Table 2.1 for ASGS. The di�ereneis represented by the hoie of the Rm(uh) term. Instead of taking the whole residuumof the momentum equation, only its orthogonal projetion (the projetion onto Ph
⊥) istaken into aount. Two onsiderations should be made:- The inertia term, the body fore term and the linear part of the Dary term belongto the �nite element spae Vh (i.e. their projetion onto Ph

⊥ is zero);- The visous term disappears using linear elements (i.e. the Laplaian of a linearfuntion is zero);Therefore Rm(uh) takes the form
Rm(uh) = Ph

⊥(uh · ∇uh + E2|uh|uh +∇ph); (2.70)and the stabilization term should be
∫

Ω

τ(uh · ∇wh +∇qh)Rm(uh)dΩ; (2.71)whih is di�erent from
∫

Ω

τ(uh · ∇wh)Ph
⊥(uh · ∇uh + E2|uh|uh)dΩ +

∫

Ω

τ∇qhPh
⊥(∇ph)dΩ; (2.72)In pratie this seond form has been seen to be very e�etive [115℄ and it is the oneimplemented in this work.An error analysis leads to the de�nition of τiin funtion of the parameters of the di�er-ential equation (like advetive veloity u or kinemati visosity ν) [51℄. Following theanalysis of Codina [35, 37℄, and onsidering the additional presene of the Dary term,

τ is de�ned as
τi =

(
α

∆t
+

4νi
h2
i

+
2|ui|
hi

+ (E1 + E2|ui|)
)−1 (2.73)where hi is the mesh size taken equal to the minimum edge length (lij) of the edges ijsurrounding node i. α is a parameter that ontrols the importane of the dynami termin the stabilization (α ∈ [0, 1]). In the ase of pressure stabilization the optimal α valueis 1, whereas for the onvetive term, α it is taken equal to 0.01 therefore dereasing theimportane to a 1%. Finally E1 and E2 are the Ergun's oe�ients de�ned in 2.31 and2.32 respetively.



44 The �uid problem2.5.2 Disretization proedureSystem 2.67 an be rewritten in a semi disrete form as
M̃∂tu+ K̃C (u)u− G̃p+ K̃µu+ K̃D (u)u+ Suu− Sππ − F̃ = 0; (2.74a)

D̃u+ Spp− Sξξ = 0; (2.74b)
M̃π − K̃C(u)u = 0; (2.74)

M̃ξ − ∇̃p = 0; (2.74d)where u is the vetor of nodal veloities and p the vetor of nodal pressures. Theoperators take the form presented in Table 2.4 and the stabilization operators Si arede�ned as shown in Table 2.5.In order to simplify the problem, equations 2.74 and 2.74d an be substituted inequations 2.74a and 2.74b respetively, giving
M̃∂tu+ K̃C (u)u− G̃p+ K̃µu

+K̃D (u)u+ Suu− SπM̃−1K̃C(u)u− F̃ = 0; (2.75a)
D̃u+ Spp− SξM̃−1

∇̃p = 0; (2.75b)The residual of the momentum equations without the dynami term is de�ned as
r̃ (u,p) := K̃C (u)u− G̃p+ K̃µu

+K̃D (u)u+ Suu− SπM̃−1K̃C(u)u− F̃;

(2.76)Remark 9. The tilde super-index over the matrix operators emphasizes the di�erenebetween the same operators in the element-based formulation presented in Table 2.2.
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Matriial term Continuum term

M̃ij

∑

j

∫

Ω

NiNjdΩ;

K̃C
ij(u)

∫

Ω

Ni (ug · ∇Nj) dΩ;

K̃ij K̃
µ
ij

∫

Ω

νi∇Ni · ∇NjdΩ;

K̃D
ij (u)

∑

j

∫

Ω

NiugNjdΩ

G̃ij

∫

Ω

ni∇NiNjdΩ;

∇̃ij

∫

Ω

niNi∇NjdΩ;

D̃ij

∫

Ω

Ni∇NT
j dΩ;

F̃i

∫

Ω

niNidΩTable 2.4: Matries and vetors of the semi disrete form of equations 2.75.
Matriial term Continuum term

Su
ij

∫

Ω

τi(ug · ∇Ni)(ug · ∇Nj + E2|ug|Nj)dΩ

Sπ
ij

∫

Ω

τiNi(ug · ∇Nj + E2|ug|Nj)dΩ

S
p
ij

∫

Ω

τi∇Ni · ∇NjdΩ

S
ξ
ij

∫

Ω

τiNi∇NjdΩTable 2.5: Stabilization matries and vetors of system 2.75.



46 The �uid problem2.5.3 Frational step solver using an expliit 4th order RungeKutta time shemeThe modi�ed form of the Navier-Stokes equations are solved using a frational step algo-rithm. Pressure-splitting approahes of the frational-step type are very onvenient dueto their high omputational e�ieny for �ows at high Re, and have enjoyed widespreadpopularity sine the original works of Chorin [33℄ and Temam [119℄. The fundamentalidea is to solve the momentum equation keeping �xed the pressure and later orretingthe pressure so as to guarantee the satisfation of the divergene onstraint. A modernalgebrai presentation of the method an be found in [36℄. The frational step approahis traditionally presented in an impliit ontext, typially using a �rst or seond orderBakward Di�erentiation Formula (BDF1 or BDF2 algorithm respetively) for the timeintegration of the momentum equation. In dealing with free-surfae problems unfortu-nately, the shape of the �uid domain, and onsequently the boundary onditions on thefree surfae, are subjeted to frequent and radial hanges. This implies that, to allowa satisfatory representation of the solution, an aurate traking should be performed.In pratie, it is typially observed that, even fully impliit shemes are pratially lim-ited to time steps for whih the free surfae approximately moves of one element lengthper time step. Suh heuristi onstraint is equivalent in essene, to a restrition onthe pratial CFL (Courant Friedrihs Lewy)10 number to values in the order of unity.This observation e�etively implies that expliit shemes will be ompetitive providedthat CFL ≈ 1 an be used and meshes of su�iently good quality an be generated.This motivates the use of an expliit form of the frational step sheme (see for example[109℄) based on the use of a 4th order Runge Kutta (RK4) in dealing with the momentumequation.Before proeeding in the desription of the method, it should be observed that thealgebrai splitting proposed by Codina in [36℄ leads naturally to the de�nition of a dis-rete Laplaian DM−1G whih in priniple does not introdue any additional error inthe imposition of the divergene freeness ondition with respet to the original mono-lithi sheme. However, in pratie the use of the disrete Laplaian implies a large10The CFL, for hyperboli system of partial di�erential equations (PDEs), is de�ned by
CFL =

λmax · dt
h

; (2.77)where λmax is the maximum eigenvalue of the system, dt the time step and h the size of the element[81, 109℄.



Edge-based approah: frational step solver 47omputational burden as the matrix is rather densely populated. In order to overomesuh problem the disrete Laplaian is typially substituted by a ontinuum Laplaianwhih has a muh smaller stenil than the disrete one (around six times smaller in
3D). This fat has important onsequenes both on the e�ieny and on the stabilityof the numerial sheme (see e.g. [36℄) but in partiular it has an important impat onthe mass onservation properties of the method [66℄. One pratial issue is that whilethe use of a disrete Laplaian matrix guarantees an invertible matrix, this is not thease when the ontinuum form is hosen implying that pressure needs to be �xed on theNeumann boundary, that is, pressure is to be imposed strongly, at least for the solutionof the pressure step. This implies that when FS is to be used the pressure is knownbeforehand on the Neumann boundary.Given suh situation, it is onvenient, to avoid integrating by parts the pressure gradientterm, using the equivalent formula

∫

Ω

w · ∇pdΩ = −
∫

Ω

p∇ ·wdΩ+

∫

∂Ω

w · pndΓ (2.78)This implies that the pressure spae should be in [H1(Ω)]d whih is an additional re-quirement to the smoothness of the funtion. Suh modi�ed form has the importantadvantage that no boundary integrals need to be omputed (seond integral of the rightand side of equation 2.78) for the pressure whih leads to an easier appliation of thepressure boundary ondition on the free surfae as it will be explained in Setion 2.6.4.This onsideration leads to the following expression for the residual at node i (note theuse of ∇̃ instead of G̃).
r̃ (u,p) := K̃C (u)u+ ∇̃p+ K̃µu

+K̃D (u)u+ Suu− SπM̃−1K̃C(u)u− F̃;

(2.79)
Remark 10. Using Eq. 2.78 implies a pointwise appliation of the normal fore on theNeumann boundary instead of its weak imposition. This is an aeptable approximationfor low visosity �ows for whih the term ∫

Ω
n · µ∆udΩ is negligible.On the basis of suh de�nition the time integration an now be performed.



48 The �uid problemRunge Kutta time integration shemeThe lower omputational ost of an expliit time integration tehnique (that does notrequire solving of a system of equations), is not the only advantage of this approah. Itsimplementation is highly parallelizable, whih is the main reason why it has been hosenin this work. Moreover onsidering the m-Runge Kutta shemes, it is known that theorder of the time integration an be arbitrarily hosen, although they give m− th orderof auray up to m = 4 [51℄. Whenever for m > 4 the order is lower than m. That isthe reason of the popularity of the 4-steps sheme (RK4).It is demonstrated that the RK4 is the optimal ompromise between the number ofintermediate steps and the permissible time step size in spite of its onditional stability.For more details the onsultation of [51℄ is reommended.RK4 makes use of the solution at tn to evaluate the solution at time tn+1 by alulatingthe residual of the equations at a ertain number of intermediate steps.This means that for a general Cauhy problem
∂y

∂t
= f(y(t), t); (2.80)a one step expliit approah leads to a time sheme with the following general format

yn+1 − yn

∆t
= f(yn, tn); (2.81)whereas for the 4th order Runge Kutta method

yn+1 − yn

∆t
=

1

6
(r1 + 2 r2 + 2 r3 + r4); (2.82)where ri with i = 1, 2, 3, 4 are the residuals of the stationary form of 2.80 evaluated at

r1 = f (tn, yn) ;

r2 = f

(

tn +
∆t

2
, yn +

∆t

2
· r1
)

;

r3 = f

(

tn +
∆t

2
, yn ++

∆t

2
· r2
)

;

r4 = f (tn +∆t, yn +∆t · r3) .

(2.83)



Edge-based approah: frational step solver 49In order to fully explain every stage of the integration sheme applied to the momentumequation let us use the de�nition of the stabilized residual obtained in equation 2.79.The semi-disrete form of the momentum equations in terms of the residuals at theintermediate stages is then
M̃

un+1 − un

∆t
=

1

6
[̃r1 + 2 r̃2 + 2 r̃3 + r̃4];

=
1

6

[
r̃(un,pn) + 2 r̃(uθ1,pθ1) + 2 r̃(uθ2,pθ2) + r̃(uθ3,pθ3)

]
;

(2.84)where r̃(uθi ,pθi) are the residuals of the momentum equations de�ned by equation 2.79evaluated at θi intermediate stages.To orretly evaluate the residual at eah intermediate time step, the solution of theontinuity equation would have been required. This would have onsiderably reduedthe e�ieny requiring a huge omputational e�ort. In order to overome this issue,aording to [111℄, a linear variation of pressure is assumed in the time step. It shouldbe remarked that this assumption leads the veloity �eld to be divergene free only atthe end of the step.Rede�ning equation 2.79 as
r̃(u,p) = r̃u(u) + r̃p(p); (2.85)being r̃u(u) the part of the residual related to veloity and r̃p(p) the part related tothe pressure gradients. The residuals beome

r̃1 := r̃(un,pn) = r̃u(un) + ∇̃pn;

r̃2 := r̃(uθ1,pθ1) = r̃u(uθ1) +
1

2

(

∇̃pn + ∇̃pn+1

)

;

r̃3 := r̃(uθ2,pθ2) = r̃u(uθ2) +
1

2

(

∇̃pn + ∇̃pn+1

)

;

r̃4 := r̃(uθ3,pθ3) = r̃u(uθ3) + ∇̃pn+1;

(2.86)
And the global momentum equation 2.84 an be symbolially rewritten as



50 The �uid problem
M̃

un+1 − un

∆t
=

1

6

[
r̃u(un) + 2 r̃u(uθ1) + 2 r̃u(uθ2) + r̃u(uθ3)

]

+
1

2

[

∇̃pn + ∇̃pn+1

]
(2.87)Final system using a frational step approah and a RK4In order to deouple the solution for the veloity and pressure, the traditional pressuresplitting proedure is performed and the frational step veloity ũ is inserted. This gives

M̃
ũ− un

∆t
=

1

6

[
r̃u(un) + 2 r̃u(ũθ1) + 2 r̃u(ũθ2) + r̃u(ũθ3)

]
+

1

2
∇̃pn; (2.88a)

M̃
un+1 − ũ

∆t
+

1

2
∇̃(pn+1 − pn) = 0; (2.88b)

D̃un+1 + Sppn+1 − SξM̃−1G̃pn+1 = 0; (2.88)where it has to be remarked that equation 2.88a only depends on the pressure at theprevious time step and on the intermediate frational step veloities, leading to a slightlydi�erent RK4 steps as explained later on.From equation 2.88b
un+1 = ũ− ∆t

2
M̃−1

∇̃(pn+1 − pn); (2.89)that substituted in equation 2.88 gives
D̃ũ− ∆t

2
D̃M̃−1

∇̃(pn+1 − pn) + Sppn+1 − SξM̃−1G̃pn+1 = 0. (2.90)Finally substituting the disrete Laplaian (D̃M̃−1
∇̃) by the ontinuous one (L), the�nal system to be solved is [109℄:

M̃
ũ− un

∆t
=

1

6

[
r̃u(ũn) + 2 r̃u(ũθ1) + 2 r̃u(ũθ2) + r̃u(ũθ3)

]
+

1

2
∇̃pn; (2.91a)

∆t

2
L
(
pn+1 − pn

)
= D̃ũ+ Sppn+1 − SξM̃−1G̃pn+1; (2.91b)

un+1 = ũ− ∆t

2
M̃−1

∇̃
(
pn+1 − pn

)
; (2.91)



Edge-based approah: frational step solver 51where the residuals of equation 2.91a are evaluated aording to the following steps
r̃u(un); (2.92a)
ũθ1 = un + M̃−1∆t

2

[

r̃u(un) + ∇̃pn
]

; (2.92b)
r̃u(ũθ1); (2.92)
ũθ2 = un + M̃−1∆t

2

[

r̃u(ũθ1) +
1

2
∇̃pn

]

; (2.92d)
r̃u(ũθ2) (2.92e)
ũθ3 = un + M̃−1∆t

[

r̃u(ũθ2) +
1

2
∇̃pn

]

; (2.92f)
r̃u(ũθ3); (2.92g)2.5.4 The edge-based operatorsHaving made the hoie of using an expliit sheme for the time integration of themomentum equation, a suitable data struture for the fast alulation of the residualsshould be devised. The idea to be exploited is that many of the integrals involved in theomputation of the residual an be written in terms of onstant operators whih an bediretly applied to the nodal values. Di�erent tehniques were developed over the yearsto reah suh goal. In writing this work the nodal-based approah desribed in [34℄ isblended with the edge-based proposed in [81, 115℄.The starting point is the systemati usage of the partition-of-unity property of the FEshape funtions, whih provides the relations
∑

i

Ni = 1 =⇒ Ni = 1−
∑

j 6=i

Nj ; (2.93)and, as a onsequene,
∑

i

∇Ni = 0 =⇒ ∇Ni = −
∑

j 6=i

∇Nj. (2.94)The edge-based approah is obtained by applying systematially suh relations for theomputation of the disrete operators of interest.In the following the di�erent terms involved in the alulation of the residual are on-sidered one by one, by expressing the ontributions to the entry orresponding to a given



52 The �uid problemnode i. The j index indiates one of the neighbor nodes of i whih share an edge withit.
Gradient term. The gradient term (not integrated by parts) whih appears in themomentum equation, reads

∑

j

∫

Ω

Ni∇NjpjdΩ =
∑

j 6=i

∫

Ω

Ni∇NjpjdΩ +

∫

Ω

Ni∇NipidΩ

=
∑

j 6=i

∫

Ω

Ni∇NjpjdΩ−
∫

Ω

Ni

(
∑

j 6=i

∇Nj

)

pidΩ

=
∑

j 6=i

∫

Ω

Ni∇Nj (pj − pi) dΩ

=
∑

j 6=i

∇̃ij (pj − pi).

(2.95)
Applying equation 2.94 it an be demonstrated that the pressure gradient term an beomputed by using the ∇̃ij for any edge ij. Note that the term ii is never needed withthe approah proposed.
Divergene term. The derivation of the divergene term is basially idential tothe previous one, with the only di�erene that a salar produt is involved. Followingexatly the same steps as before it an be readily shown that

∑

j

D̃ij · uj =
∑

j 6=i

D̃ij · (uj − ui) dΩ. (2.96)
Convetion term. The non-linear onvetion term has to be approximated to �twithin the framework of the present edge based formulation. Several possibilities existto obtain a suitable form to be used in the alulations. One ould start by onsidering



Edge-based approah: frational step solver 53the onservative form of the onvetion operator ∇ · (u⊗ u) .
∑

j

∫

Ω

Ni∇Nj · (uj ⊗ uj) dΩ =

=
∑

j 6=i

∫

Ω

Ni∇Nj · ujujdΩ−
∫

Ω

Ni

(
∑

j 6=i

∇Nj

)

· uiuidΩ;

(2.97)
whih tells us that the onvetive term an be estimated as

∑

j 6=i

(

∇̃ij · uj

)

uj −
∑

j 6=i

(

∇̃ij · ui

)

ui. (2.98)Alternatively, one an start with the non-onservative form of the same equation anduse a nodal integration rule as proposed in [34℄. This approah estimates the onvetiveterm ontribution as
∑

j 6=i

(

∇̃ij · ui

)

(uj − ui) . (2.99)The �rst approah is �globally onservative� by onstrution in the sense that the sumover all of the nodes in the mesh is guaranteed to give zero. This property is onlyapproximately veri�ed by the seond tehnique, sine the integration rule is not exat.In pratie, both approahes work e�etively. Nevertheless the seond approximationappears to be slightly more robust and was the one hosen in that work.�Weak� gradient term. The migration from a lassial �nite element to an edge-based implementation requires desribing the gradient of a salar funtion integrated byparts. Sine in the urrent formulation the pressure gradient term is not integrated byparts, this is not stritly needed for the implementation of the present method. In anyase, following [86℄
∑

j

∫

Ω

ni∇NiNjpj =
∑

j 6=i

∫

Ω

ni∇NiNjpjdΩ+

∫

Ω

ni∇NiNipidΩ

=
∑

j 6=i

∫

Ω

ni∇NiNjpjdΩ−
∫

Ω

(
∑

j 6=i

ni∇Nj

)

NipidΩ

= G̃ijpj − ∇̃ijpi.

(2.100)



54 The �uid problemVisous term. The visous term in the Navier-Stokes equations requires estimatingthe salar Laplaian operator Lij . Although the possibility exists of storing diretly oneah edge an entry of the type Lij :=
∫

Ω
∇Ni ·∇NjdΩ, in the present work it is preferredto store a matrix term of the type

Ld
ij =

∫

Ω

∇Ni ⊗∇NjdΩ; (2.101)on eah edge of the mesh. The salar gradient an then be obtained as needed by thetrae operator as
Lij = Tr

(
Ld

ij

)
; (2.102)whih allows writing the visous term as

∑

i6=j

Tr
(
Ld

ij

)
µ (uj − ui) (2.103)�Speial terms�. The terms desribed until now inlude all of the terms that areneeded for the implementation of the Navier-Stokes equations. Nevertheless, it is appro-priate to remark that storing the matrix Laplaian Ld

ij instead of its salar ounterpart,is justi�ed for the implementation of the stabilization operators. A detailed desriptionof the use of Ld
ij in this ontext an be found in [83℄. The need for storing suh operatoran be also understood by onsidering a SUPG-like stabilization operator. On a givennode i, the stabilization operator has the form

∑

i6=j

∇ · (ui ⊗ ui)∇ (uj − ui) . (2.104)By using the matrix laplaian operator, this an be approximated as
∑

i6=j

(
ui · Ld

ij · ui

)
∇ · (uj − ui) ; (2.105)whih requires onsidering Ld

ij in the omputation. Similarly, the matrix form is alsouseful in the omputation of the sub-sale residuals and for the de�nition of a ross-winddissipation term whih is useful for ontrolling unwanted numerial osillations.Remark 11. The ommon features of all of the terms desribed is that they an beevaluated for eah node i independently of all of the others. This implies that the



Edge-based approah: frational step solver 55alulation of the residuals an be performed in parallel for eah node of the mesh.Remark 12. All the other magnitudes that have not been spei�ally treated here aretaken as nodal, suh as, for instane, the intrinsi time τ .2.5.5 Improving mass onservationIndependently on the time auray of the numerial sheme used for the �rst step, theoverall sheme an not be more than seond order aurate due to the pressure splittingproedure. Furthermore, the use of the ontinuum Laplaian operator, mandatory in theontext of a semi-expliit sheme, implies some volume loss partiularly onentratedin the viinity of the free surfae (Neumann boundary). The origin of suh loss an betraed bak to two distint phenomena:1. As observed in [66℄, the pressure is �xed on the Neumann boundary as this isneeded to make the Laplaian resolvable. This implies that it loses the apaityto adapt loally so to attempt guaranteeing the loal mass onservation.2. The divergene onstraint (Du = 0) is generally evaluated at time step n + 1implying that it depends exlusively on the veloity at n + 1. Any error in theful�llment of this onstraint at the preeding step (Dun = 0 ) is simply disardedand never reovered.The algorithm devised for the solution of the free surfae problem attempts to minimizethe �rst issue. The idea, as shown in Setion 2.6.4, is that the pressure will be �xedon the nodes outside the free surfae, thus letting some freedom to the nodes in itsproximity.On the other hand, the ful�llment of the divergene free ondition at the present timestep (n+1) and at the previous one (n) are ombined in order to overome the drawbakstated in point 2. The idea is the following: if no error was made in the past, it an bestated that Dun = 0. However this assumption is not veri�ed in pratie and volume iseither reated or destruted at a rate of Dun. While usually this information is simplydisarded, in the present work the divergene free ondition (Dun+1 = 0) is modi�ed inorder to sum up the volume variation lost (or gained) at the previous time (Dun).In mathematial terms the proposal is simply to modify the divergene onstraint as
Dun+1 +Dun = 0 (2.106)



56 The �uid problemAs shown in some of the examples, this simple modi�ation improves the volume on-servation of the overall sheme.2.6 Free surfae traking. The Level Set methodThe proposed tehnique is based on the use of a �xed-grid approah. Hene at eahtime step the �uid domain should be de�ned, implying:1. The de�nition of a traking method that allows:- moving the �uid free surfae;- de�ning the position of the �uid boundary at eah time step;2. The appliation of the boundary onditions at the �uid boundary that do notneessarily oinide with mesh edges;A level set tehnique is employed to fae the �rst issue. The level set method wasoneived as a methodology to following moving interfaes. The moving boundaries areomposed of the zero-valued iso-surfae of a given smooth funtion (at least Lipshitzontinuous11 [11℄) ϕ(x, t).Let us all Ω0 ⊂ R
d (where d is the spae dimension) the global ontrol domain ofanalysis. The �uid domain de�ned in the previous setion at time t is Ω(t) ⊂ Ω0. Theboundary of Ω(t) is de�ned by part of ∂Ω0 and by a moving boundary de�ned as

∂Ωm(t) := {x | ϕ(x, t) = 0} (2.107)From now on Ω(t) = Ω, and Ωm(t) = Ωm and the expliit indiation of time will beomitted for simpliity. Following the same riteria, the �uid domain at a given timestep tn is Ω(tn) = Ωn.11In mathematis Lipshitz ontinuity is a stronger requirement than simple ontinuity onditioningthe speed of hange of the funtion. Let f : Rm → R
m. Given an open set B ⊆ R

m, f is Lipshitz-ontinuous on the open subset B if there exists a onstant Λ ∈ R
+

0
suh that

||f(x)− f(y)|| ≤ Λ||x− y|| ∀x,y ∈ B.



Free surfae traking. The Level Set method 57The level set funtion is de�ned as
ϕ(x, t) > 0 if x /∈ Ω;

ϕ(x, t) = 0 if x ≡ ∂Ωm;

ϕ(x, t) < 0 if x ∈ Ω;

(2.108)

FLUID DOMAIN

FREE SURFACE

NON FLUID DOMAIN

CONTROL DOMAIN

mFigure 2.7: Graphi representation of the level set funtion ϕ.see Figure 2.7 for a graphi representation of the level set funtion.In the present work the level set funtion is taken to be a signed distane funtion. TheEulidian distane funtion is by de�nition
d(x) = min|x− xi| ∀xi ∈ ∂Ωm (2.109)The level set funtion, for a given time instant t, is de�ned as

ϕ(x) = d(x) if x /∈ Ω, t ∈ (0, T );

ϕ(x) = d(x) = 0 if x ∈ ∂Ωm, t ∈ (0, T );

ϕ(x) = −d(x) if x ∈ Ω, t ∈ (0, T );

(2.110)As exhaustively detailed in [103℄ this funtion inherits of all the properties of impliitsurfaes (being signed distane funtions a subset of the latter). Moreover, its mono-toniity aross the interfae allows its di�erentiation.



58 The �uid problemThe fundamental idea of using the level set approah an now be understood onsideringthe mass onservation equation for a variable-density �uid:
dρ

dt
+ u · ∇ρ+ ρ∇ · u = 0 (2.111)The ase of interest is that ρ 6= 0 inside the �uid domain and ρ = 0 outside the freesurfae, where a regularization funtion should be onsidered to be applied to ρ to makeit di�erentiable in spae.Let us split equation 2.111 in the following two equations
dρ

dt
+ u · ∇ρ = 0 (2.112)and

ρ∇ · u = 0→∇ · u = 0 (2.113)It is easy to understand that if suh two equations are veri�ed equation 2.111 will alsobe veri�ed. This requirement is in fat striter the the original one. Now, equation 2.112represents the transport of the density with the mean �ow veloity. Sine the densityan be rather badly behaved as it approximates a jump, it is onvenient to replae itby the transport of a smooth salar ϕ (in the present work ϕ is the distane funtion)whih an be used to reover the density distribution at any moment. The problem isthus transferred to the solution of the transport problem
∂tϕ+ u · ∇ϕ = 0 in Ω0, t ∈ (0, T ),

ϕ = ϕ on ∂Ωin, t ∈ (0, T ),

ϕ(x, 0) = ϕ0(x) in Ω0,

(2.114)where ∂Ωin := {x ∈ ∂Ω0 | u ·n < 0} is the in�ow part of ∂Ωm. When the �uid entersthe porous matrix an aeleration of the advaning front an be observed beause of arestrition of the empty area. This is taken into aount by onsidering the advetiveveloity equal to the atual �uid veloity de�ned in equation 2.2.Two di�erent solution approahes are used for the edge-based and the element-basedalgorithm for the solution of the onvetive system 2.114. In the edge-based tehnique a
4th order Runge Kutta sheme 2.114 is implemented and an OSS stabilization tehniqueis used, similarly to what has already been explained in Setion 2.5.1. Conversely a



Free surfae traking. The Level Set method 59Crank-Niolson time integration sheme is employed in the element-based approahstabilized with the ASGS method.2.6.1 Coupling the level set equation and the Navier-StokessolverIn order to ompletely de�ne the approah used in this work, the desription of theoupling between the Navier-Stokes solver and the newly added level set equations isneeded. Coneptually, the veloity obtained from the solution of the Navier-Stokesequation has to be used in onveting ϕ, while the zero level set funtion providesthe position of the free-surfae and is onsequently needed to presribe the pressureondition on the Neumann boundary. Many di�erent approahes have been proposedover the years to perform suh oupling; some based on sub-integration tehniques on theut elements [42℄ and others based on some form of regularization for the density funtionin the viinity of the free surfae. The proposal in this work rises from the observationthat, one a ontinuous pressure distribution is assumed, only the gradient of the existingpressure appears in the momentum equation (as already observed before,the pressureterm is not integrated by parts). This implies that the momentum equation an be solvedapproximately without knowing exatly the position of the free surfae, provided thatan estimate of the pressure gradient is given in any ative (or potentially ative) areaof the �uid domain. On the other hand, the imposition of the zero tration onditionon the Neumann boundary ould be applied in the pressure orretion step through theimposition of adapt boundary onditions at the level of the pressure Laplaian system.To omplete the algorithm some other ingredients are needed:- An extrapolation funtion to de�ne the values of the veloity on a band ontainingthe free surfae of the �uid and to allow the imposition of the inompressibilityondition on the free surfae;- A tool for alulating the nodal distanes in the whole domain Ω0;- A method to impose the boundary onditions on the free surfae.2.6.2 The extrapolation proedureIn order to allow the onvetion of the free surfae ∂Ωm in regions of Ω0 out of Ωn , anextrapolation of the veloity �eld in the part of the domain lose to the free surfae but



60 The �uid problemexternal to Ωn is needed and it should be extended su�iently far to over all of theregion upon whih the �uid domain is likely to extend during time step n+ 1.On the other hand, the pressure gradient and the pressure nodal values are needed inorder to impose the inompressibility ondition in the edge-based proedure (for moredetails see Setion 2.6.4). In the present work an expliit extrapolation is performed.An auxiliary data struture is de�ned. It ontains the layers of nodes lose to the freesurfae. As an examples, let us refer to Figure 2.8 that represents the domain at theend of tn. The gray area is the �uid part and the blak irles represent the alulatednodes.The layers are de�ned using the following riteria:- LAYER 0 (L0) is the �rst layer of nodes of the �uid domain internal the freesurfae (L0 ∈ Ωn).- LAYER i (Lk) (k = 1, 2, ..., nl12) is the layer of non-�uid nodes neighboring with
Lk−1 (Lk /∈ Ωn)

LAYER 0

LAYER 1

LAYER 2

CALCULATED NODES

NOT CALCULATED NODES

LAYER -1

FLUID DOMAINFigure 2.8: Extrapolation layers and alulated nodes in the time interval tn − tn+1.The �uid veloity and pressure �elds on the layers Lk with k ≤ 1 are known from theprevious time step tn (the blak nodes in Figure 2.8). In the present work however, suhvalues are not used in performing the extrapolation of pressure, veloity and gradient ofpressure, but rather veloity is taken starting from layer L0 and pressure and pressuregradient from L−1. The rationale of this hoie is that the pressure and pressure gradi-ents in the immediate viinity of the free surfae may show a ertain level of spuriousosillations, sine pressure is imposed strongly on layer L1 and the e�et of a non-smooth12nl denotes the number of extrapolation layers set up by the user.



Free surfae traking. The Level Set method 61pressure boundary ondition may be still felt on layer L0. The extrapolation of pressure(and pressure gradient) is thus started from the inner layer (L−1), whih guarantees amuh smoother behavior of the extrapolation area.In symbols, we de�ne the pressure gradient on eah node i of a given layer k, as thearithmeti average (avg) of all of its neighbors j whih belong to the layer of lower order,i.e.
∇pki := avg

(
∇pk−1

j

)
∀k = 0...nl i ∈ Lk j ∈ Lk−1 (2.115)Given suh pressure gradients, pressure is then evaluated on node i so as to maintainthe extrapolated pressure gradient, that is

pki := avg
(
pk−1
j + hij · ∇pk−1

j

)
∀k = 0...nl i ∈ Lk j ∈ Lk−1 (2.116)where hij := xj − xi is the vetor from i to j.The extrapolation of the veloity is performed in a very similar way, with the onlydi�erene that the extrapolation starts from layer L0, not from L−1 (see Figure 2.8 fora graphial representation).

uk
i := avg

(
uk−1
j

)
∀k = 1...nl i ∈ Lk j ∈ Lk−1 (2.117)The extrapolation proedure desribed above provides a predition of the veloity andpressure �elds that is likely to be found outside of the pressure domain. Suh extrap-olation is performed before onveting the distane funtion, and should be extendedsu�iently far to over all of the area upon whih the �uid domain is likely to extend dur-ing the following time step. It should be remarked that the data struture that ontainsthe di�erent layers should be updated every time the distane funtion is onveted.It is interesting also to observe that the hoie of using the strong form of the pressuregradients in the momentum equations appears at this point to be bene�ial. The ideais that sine the pressure gradient was not integrated by parts, no boundary integral ofthe pressure is needed on the free surfae (in the solution of the momentum equation)and the only thing needed on any �uid element (inluding the elements ut by thefree surfae) is the orret omputation of the pressure gradient, whih is automatiallyavailable one the pressure is extrapolated as desribed.Remark 13. The data struture that ontains the di�erent layers should be updatedevery time the distane funtion is onveted.



62 The �uid problemRemark 14. The extrapolation of pressure and pressure gradient is neessary only inthe edge-based formulation in order to approximately presribe the zero pressure ondi-tion on the free surfae, as it will be explained in Setion 2.6.4. For the element-basedformulation a virtual sub-splitting is proposed and no pressure gradients are needed.2.6.3 The distane funtionOne the onvetion operation has been performed the level set funtion is no longer theEulidean distane funtion presented in 2.110. To reover its original nature a tool tore-evaluate the nodal distane from the new alulated free surfae, has been developed.Due to the dynami nature of the analyzed problem, a rede�nition of the �uid domain
Ω := {x ∈ Ω0 | ϕ(x) ≤ 0} is neessary at eah time step. In the present setion themethodology for the alulation of the distane �eld is desribed. The 3D ase is takeninto aount although the 2D ase has also been implemented. For the alulation ofthe distane �eld of the domain Ω0, numerial methods have to be employed beausethe use of analytial solution is not trivial. The method proposed by Elias, Martinsand Coutinho (see [56℄ for more details) is taken as a referene. It takes its origin fromthe Fast Marhing Method (FMM), a tehnique, �rst developed by Sethian (see [114℄),for the omputation of the arrival time of a front. In the FMM the Eikonal equation(equation 2.118) is given as a boundary ondition

‖∇T‖ · F = 1; (2.118)where T is the time arrival of the front and F is the speed of the front. That meansthat T (p) is the time arrival of the front to point p. Taking F = 1, T (p) is nothing butthe distane missed by the front to arrive at the point p. That means thatfuntion T oinides with the signed distane funtion ϕ adopted in the present work.
‖∇T‖ = ‖∇ϕ‖;The key idea of Elias and oworkers, that makes the di�erene from the FMM, was theuse of a �nite element interpolation for the alulation of the level set funtion ϕ(x, t).For eah element its gradient is then disretized as follows
‖∇ϕe‖ = ‖BTd‖; (2.119)



Free surfae traking. The Level Set method 63where dT = (d1, d2, d3, d4) is the vetor of the nodal distanes of a tetrahedral element,and B
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is the matrix of the derivatives of the shape funtions in the three artesian diretions.Then






ϕ,x

ϕ,y

ϕ,z




 =






N1,xd1 +N2,xd2 +N3,xd3 +N4,xd4;

N1,yd1 +N2,yd2 +N3,yd3 +N4,yd4;

N1,zd1 +N2,zd2 +N3,zd3 +N4,zd4;




 (2.120)Therefore, equation 2.118, with F ≡ 1 an be written as

(ϕe
,x)

2 + (ϕe
,y)

2 + (ϕe
,z)

2 = 1; (2.121)That means that if the distane of three over four nodes of a 3D element is known(suppose known d1, d2, d3) the value of d4 an be easily alulated. Considering thefollowing simpli�ation:
dx = N1,xd1 +N2,xd2 +N3,xd3;

dy = N1,yd1 +N2,yd2 +N3,yd3;

dz = N1,zd1 +N2,zd2 +N3,zd3;

(2.122)and substituting equation 2.122 into equation 2.121 it results
(dx +N4,xd4)

2 + (dy +N4,yd4)
2 + (dz +N4,zd4)

2 = 1. (2.123)Equation 2.123 is a seond order equation where the only unknown is d4. The maximumvalue between the two possible solutions of equation 2.123 will be the solution of theproblem. In the ase of an imaginary solution, it is possible to de�ne the distanefuntion arriving from another element. If this is not possible, the node will be skippedand the solution will be interpolated at the end of the loop [56℄.Using a �xed mesh approah the free surfae will not neessarily oinide with a layerof nodes but it will ut the elements. This means that the distane values of at least



64 The �uid problemone layer of nodes have to be known in order to de�ne the initial onditions for startingthe above desribed proedure. The problem is solved by evaluating in a di�erent waythe distanes of the nodes of those elements rossed by the interfae.
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FLUIDFigure 2.9: Calulation of nodal distanes di on the nodes i of one element ut by thefree surfae.One all these elements are identi�ed, for eah of them the steps are the following:1. Calulate the oordinates of point A of Figure 2.9. It is one of the points ofintersetion between the onveted free surfae and the element edges;2. Calulate the distane of any node to point A (diA with i = 0, ..., npts).
diA = xi − xA; (2.124)In Figure 2.9 they are represented by the blue dotted arrows;3. Evaluate ∇ϕ. It is the gradient of the level set funtion inside the element;4. Calulate the omponents of the distanes diA in the diretion of ∇ϕ

di = diA ·
∇ϕ
||∇ϕ|| ; (2.125)where di are the distane values of the nodes from the new free surfae (blue arrows inFigure 2.9).



Free surfae traking. The Level Set method 65One these initial onditions are de�ned, a loop over all the elements is performed, inorder to identify those elements whose nodal distanes are all known but one. Equation2.123 an then be used.2.6.4 Presribing the boundary ondition on the free surfae
∂ΩmFinally the last important issue is the imposition of the zero pressure boundary ondi-tions on the evolving free surfae ∂Ωm at eah time step. In boundary �tting meshes,the imposition of boundary onditions is straightforward, sine the whole boundary ofthe domain oinides with some edges or faes of the mesh. This is not possible if a �xedgrid approah is used, as there are no element edges whih de�ne the free surfae of thedomain. This requires devising some alternative strategies to presribe boundary on-ditions. Reading [40℄ is reommended to have an overview of many di�erent �xed gridapproahes and respetive tehnique to assign boundary onditions. In the present worktwo di�erent methods are implemented in the element and the edge-based approahes.In the �rst ase a virtual splitting of the elements is performed at eah time step inorder to onsider in the alulation only the �uid portion of the element divided by thefree surfae. In the edge-base ase an approximate tehnique using the extrapolatedpressure gradients is presented.Element-based approahIn the element-base approah a virtual splitting of the elements ut by the free surfaeis performed without modifying the global degrees of freedom of the problem. This isdone in order to evaluate the integrals only on the portion of the element overed by�uid.When an element is rossed by the free surfae, it is split in 4 virtual sub elements. Ifan edge is rossed by the free surfae, a linear interpolation of the distane values of thenodes is performed in order to identify the point of intersetion between the free surfaeand the edge itself, if not, the virtual point is set in the middle of the edge.In Figure 2.10(b) an example of splitting is shown. The position of node 3 and 4 isalulated with a linear interpolation of the distane value of the nodes 0− 2 and 2− 1respetively. Node 5 is �nally plaed in the middle of the edge 0 − 1. Four virtual subelements are identi�ed and their geometri and material harateristis are alulated,



66 The �uid probleme.g. their Gauss points (alled auxiliary Gauss points), their area, density, visosity andso on.
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(b) Virtual division in sub ele-mentsFigure 2.10: Splitting proedure for the elements ut by the free surfae.A numerial integration on the four auxiliary Gauss points (aGPi in Figure 2.10(b))is performed but only the ontribution of the �uid part (i.e. sub-elements 0 − 5 − 4,
4− 5− 3 and 5− 1− 3) is assembled in the global system. Just as an example, lookingat element 0− 1− 2 of Figure 2.10(b), any X degree of freedom of node 0 will be givenas the sum of the values of X evaluated on aGP0, aGP1,aGP3 multiplied for the areaof the respetive sub-elements. On the ontrary sub-element 2− 4− 3 is not taken intoaount as it is not a �uid element.Edge-based approahDespite its advantages, the pressure extrapolation desribed in Setion 2.6.2 does notimpose in any way the tration-free ondition on the free surfae. This is done in theseond step of the frational step proedure, by �xing the value of the pressure at thetime step n + 1 so that the pressure �eld is zero on the free surfae.Sine the free surfae uts the element at an arbitrary position, as already explained inthe previous setions, no nodes are available for diretly �xing the pressure In the aseof the edge-based proedure, an additional di�ulty is that element splitting of the utelements, as desribed in the previous setion, and the subsequent integration only onthe �uid portion, is impossible within an edge-based formulation unless one wants toreompute the edges and lose e�ieny.The hosen approah is to onsider orret the predited pressure gradient in the viinity



Free surfae traking. The Level Set method 67of the free surfae. Therefore pressure at nodes laying in L1 is �xed so to guaranteethat its value is zero on the free surfae, provided that the pressure gradient is kept�xed. Note that in doing so layer L1 should be reomputed sine it does not neessarilyoinide with the one used in the extrapolation step.The idea is to evaluate the gradient of pressure of node i (∈ L1) in the diretion of thedistane (whih is the gradient of the level set funtion) and alulate the pressure atnodes i onsidering a zero pressure on the free surfae whose distane from node i isknown and then interpolating linearly.
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Figure 2.11: Graphial explanation of the evaluation of pressure on the �rst layer of non�uid nodes in order to respet the inompressibility ondition.De�ning as i-path the luster of elements whose node i belongs to (elements 1 − 6 ofFigure 2.11), pressure on node i is evaluated as the value of the level set funtion onnode i times the gradient of pressure in the diretion of the gradient of the level setfuntion itself, i.e.
p1i = ∇pni ·

∇ϕn+1
i

||∇ϕn+1
i ||ϕ

n+1
i ; (2.126)where∇ϕn+1

i and ||∇ϕn+1
i || are the gradients of the level-set funtion at node i and its L2norm respetively and ϕn
i is the level-set funtion itself. ∇ϕn+1

i is alulated onsideringthe ontribution of the gradient of the level-set funtion on eah edge onurring onnode i. For instane edges ijp (with p = 1, 2, .., 6) of Figure 2.11.



68 The �uid problemRemark 15. It is important to observe that Eqn.2.126 is the only point at whih thelevel set funtion is atually required to be a distane. Sine its value is only needed on
L1, it is onvenient to reompute it as aurately as possible at every time step. Thisan be done geometrially for the elements rossed by the zero of the level set funtionwith a minor omputational ost.Remark 16. The orret alulation of the residual of the momentum equations wouldhave required integrating only on the �uid area of the ut elements. This is impossiblewithin an edge-based formulation, unless one wants to reompute the edges and losee�ieny. In this work it is aepted to integrate on the whole element area onsideringthat both the body fore and the pressure gradient are extrapolated on the outside ofthe �uid. This is aeptable for most situations and is exat for the hydrostati asewhere the gradient of pressure and the body fore exatly anel eah other (see Setion2.8.1 for an empirial veri�ation).2.7 The algorithmThe steps of the global algorithm are �nally summarized in the box below.Element-based algorithm1. Given the level set funtion ϕn, extrapolate veloity, pressure and pressuregradient so to obtain un

ext, pnext and ∇pnext de�ned as the veloity, pressure andpressure gradient over the extrapolated domain.2. Convet the level set funtion ϕ de�ning the new free surfae at tn+1 using unand un
ext. Note that the extrapolated values are only required within a limitednumber of layers whih are the ones on whih the onvetion will be atuallyperformed.3. Re-alulate (if needed) the distanes in the whole domain starting from thezero of the level set funtion at tn+1 obtained at step 2.4. Chek split elements and assemble only the �uid sub-elements ontributions;5. Solve the monolithi system;6. Move to next time step.
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Edge-based algorithm1. Given the level set funtion ϕn, extrapolate veloity, pressure and pressuregradient so to obtain un

ext, pnext and ∇pnext de�ned as the veloity, pressure andpressure gradient over the extrapolated domain.2. Convet the level set funtion ϕ de�ning the new free surfae at tn+1 using unand un
ext. Note that the extrapolated values are only required within a limitednumber of layers whih are the ones on whih the onvetion will be atuallyperformed.3. Re-ompute (if needed) the distane in the whole domain starting from thezero of the level set funtion at tn+1 obtained at step 2.4. Solve the momentum equations 2.91a. Note that the solution is performed onthe domain at the predited free surfae position (ϕn+1).5. Set the approximate pressure boundary onditions on ∂Ωn+1 so to guaranteethat the pressure is (approximately) zero at the position indiated by the zero ofthe level set funtion. In order to do that, the geometri distane is evaluated on

L1.6. Solve for the pressure (equation 2.91b).7. Solve for the orretion (equation 2.91).8. Move to next time step.



70 The �uid problem2.8 Numerial examplesIn the following sub-setions a series of benhmark tests are presented. First two verysimple examples are presented to ompare the element-based and the edge-based freesurfae algorithms for a variable porosity medium.Their performane is analyzed both in the stati ase (Setion 2.8.1) and in the dynamione (Setion 2.8.2). In both ases the analytial solution is known and is ompared withthe numerial one obtained.The mass onservation apability is then analyzed both in a 2D and in a 3D example.No porous media is onsidered beause its presene has been veri�ed to help massonservation thanks to the introdution of an additional dissipative e�et.All the 3D examples are only performed with the edge-based algorithm being the onlyone implemented in 3D.In the last part of the setion the edge-based tehnique for free surfae �ows (withoutporous medium) is tested in a series of examples and its results are ompared withresults obtained with a Lagrangian approah using the Partile Finite Element Method(PFEM).2.8.1 Still water exampleThe still water example allows to verify the orret alulation of pressure in a variableporosity medium.The domain of analysis is a square of 10m edge. The right hand side of the domain isporous (n = 0.5) whereas the left hand side is not (n = 1), as shown in Figure 2.12. Thelevel of water is set at y = 5m and slip boundary onditions are imposed on the bottomand on the side edges. Gravity is 10m/s2. Pressure is expeted to vary linearly from
0Pa at the free surfae till 50000Pa at the bottom independently from whih vertialsetion is hosen.The element-based algorithm reprodues perfetly the expeted distribution. The dis-tribution of the iso-lines of pressure an be seen in Figure 2.13(a). No osillations areformed in the element-based example, on�rming the exat imposition of the pressureboundary ondition on the free surfae via the element splitting tehnique desribed inSetion 2.6.4.For the edge-based algorithm, although the free surfae does not move, a small osil-lation on the pressure is observed. This is aused by the approximated imposition of
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Figure 2.12: Geometry, strutured mesh and onditions of the still water model.

(a) Edge-based

(b) Element-basedFigure 2.13: Pressure distribution.



72 The �uid problemthe zero pressure ondition on the free surfae (see Setion 2.6.4). The osillation of thebottom pressure is shown in Figure 2.13(a).
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Figure 2.14: Pressure distribution in a vertial setion. Comparison between the twoalgorithms.Figure 2.14 �nally shows the pressure distribution along a vertial setion for bothalgorithms and it is ompared to the analytial solution. The negative pressure of the�rst node above the free surfae is the onsequene of the imposition on the ut elementsof the zero pressure ondition on the free surfae 2.6.4.
2.8.2 Water �owing through two materialsThe seond example aims to analyze the behavior of the free surfaes algorithms whena variable porosity medium is present in dynami onditions. The domain of analysis isa square of edge 10m. Only the upper part is porous with porosity n = 0.5 while thelower part orresponds to a pure air material (n = 1). A vertial entrane of water isset from the bottom edge. Slip boundary onditions are imposed to the vertial walls
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Figure 2.15: Geometry, strutured mesh and onditions of the two material model withbottom inoming water.and 0Pa pressure ondition is set, in the ase of the edge-based algorithm, to the upperside. The mesh is strutured as shown in Figure 2.15.In the sequenes presented in Figure 2.16 the free surfae line is perturbed when enteringthe porous media. Nevertheless it reovers the horizontal plane shape as soon as thedisontinuity has passed.Figures 2.17 and 2.18 show the distribution of pressure in the vertial entral setion ofthe two models, when the water level is 2.5m and 9.9m respetively. A omparison withthe analytial results is presented. There is a very good aordane of pressure valuesin the ase that no porous media is still present, as an be seen in Figure 2.17. Theelement-based algorithm perfetly alulate the pressure distribution also when waterhas entered the porous media. On the ontrary the error of the edge-based algorithm isnot negligible (Figure 2.18).
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(a) Edge-based. (b) Element-based.Figure 2.16: Evolution of free surfae for both algorithms.
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(a) Edge-based (b) Element-Based
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() Pressure distribution in a vertial setionFigure 2.17: Pressure distribution when water level reahes 2.5m from the bottom.
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(a) Edge-based (b) Element-Based
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() Pressure distribution in a vertial setionFigure 2.18: Pressure distribution when water level reahes the top.



Numerial examples 772.8.3 Mass onservation
2D vertial olumn Edge-based and element-based methodA seond example has been performed in order to hek the mass onservation apabilityin both algorithms. No porous media has been onsidered (n = 1) beause its dissipativee�et has been shown to help the mass to be onserved. The worst ase is then analyzed.A retangular domain of 5m width and 10m height is set. A disharge of 1m3/s isentering the domain from the bottom edge. The inlet vertial veloity is then 0.2m/s.Slip boundary onditions are imposed on the vertial edges and zero pressure is imposedon the upper edge (only for the edge-based formulation).Two di�erent meshes are onsidered as shown in Fig.2.19.
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(a) Mesh 0.2m (b) Mesh 0.5mFigure 2.19: Geometry, mesh and onditions of the mass onservation model.A good onservation of mass is seen in both algorithms. Figures 2.20 and 2.21 showthe evolution of the free surfae at 10− 20− 30− 40− 50 sec respetively.
3D Vertial olumn edge-based methodIn the present example a vertial retangular olumn with an inlet in the bottom sideand an outlet on the top fae is simulated. Geometry and onditions of the present
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(a) Mesh 0.2m

(b) Mesh 0.5mFigure 2.20: 2D Vertial olumn. Element-based algorithm. Evolution of free surfaeat 10− 20− 30− 40− 50 sec.
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(a) Mesh 0.2cm

(b) Mesh 0.5cmFigure 2.21: 2D Vertial olumn. Edge-based algorithm. Evolution of free surfae at10-20-30-40-50 se.



80 The �uid problemexample are taken from [43℄ (although in that ase the interation between two �uidswith di�erent spei� weight was taken into aount). Nevertheless the problem presentsthe same di�ulties of maintenane of a �at free surfae both in the transitory and inthe stationary regime.The problem has been studied using two meshes: a strutured one and an unstruturedone (Figure 2.22). STRUCTURED UNSTRUCTUREDMedium Medium Coarsen. nodes. 2981 1210 723n. elem 13800 6117 3720elem length [m℄ - 1 1.2elem per side 5× 5× 20 - -Table 2.6: 3D vertial olumn. Number of nodes, number of elements, elemental length(unstrutured meshes) and number of elements per edge (strutured mesh) of the meshesonsidered in the analysis.Figures 2.23 and 2.24 show the evolution of the free surfae (identi�ed with the zeroof the level set funtion (ϕ = 0) during the �lling proess. Considering that the freesurfae at time t = 0 is loated at h = 1m from the bottom and the veloity inlet is
v = 1m/s a very good agreement with expeted level of the free surfae an be notiedat eah time step (Figures 2.23 and 2.24). In both ases the expeted level of water at
2s, 6s, 10s, 14s and 18s is respeted and it is 3m, 7m, 11m, 15m and 19m respetively.No osillations are observed neither for the unstrutured nor the strutured mesh.If a lateral entrane of water is onsidered and the value of inlet veloity is dereasedto vin = 0.1m/s (see Figure 2.25 for the details on the geometry and the boundaryonditions onsidered), the improvement of volume onservation explained in Setion2.5.5 plays a relevant role. Two meshes are onsidered for the alulation: a oarse anda �ne one whose harateristis are summarized in Table 2.7 and shown in Figure 2.27.Figure 2.26(a) shows the bene�ial e�et of the volume orretion. The expeted levelof water is ompared with the one alulated for the �ne mesh model with and withoutvolume onservation improvements. On the other hand, it is important to observe that
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(e) t = 18sFigure 2.23: 3D vertial olumn. Strutured medium mesh. Evolution of free surfaefor 1m/s bottom inoming veloity. On the right of eah snapshot the expeted level isindiated.
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(e) t = 18sFigure 2.24: 3D vertial olumn. Unstrutured medium mesh. Evolution of free surfaefor 1m/s bottom inoming veloity. On the right of eah snapshot the expeted level isindiated.with the volume orretion, no relevant hanges are observed when a oarser mesh isemployed (observe graph 2.26(b)).

(a) Fine mesh (b) Coarse meshFigure 2.25: Mesh and geometry of the vertial hannel with lateral entrane of water



Numerial examples 83Another important aspet is that the use of the volume orretion leads to a �at freesurfae reduing the osillations. This an be observed by omparing Figures 2.27(a)and 2.27(b) where the volume orretion is used in both the �ne and oarse mesh withFigures 2.27() where not. Fine Coarsen. nodes. 12 100 3 050n. elem 61 600 14 400Table 2.7: Vertial olumn with lateral entrane example. Number of nodes and numberof elements for the meshes onsidered in the analysis.
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(b) With volume orretion. Coarse and �nemesh.Figure 2.26: Vertial olumn with lateral entrane example. Level of water in terms oftime.
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(a) With volume orretion. Fine mesh model

(b) With volume orretion. Coarse mesh model

() Without volume orretion. Fine mesh modelFigure 2.27: Vertial olumn with lateral entrane example. Evolution of the free surfaeat 50s, 120s, and 230s.



Numerial examples 852.8.4 Comparison of the level set algorithm with PFEMIn this setion the performane of the edge-based level set approah are ompared withthe apability of the partile �nite element method (PFEM). PFEM is a well establishednumerial method whose own nature makes it very appropriate to simulate free surfae�ows and breaking waves. The onsultation of [67, 75, 93, 96, 100℄ is reommendedfor an overview of its prinipal features. More details on the method are presented inChapter 3 of the present work. The omparison of the presented level-set approah withPFEM an be very hallenging and an represent a good validation of the developedfree surfae tool.2.8.5 Flip buketThe present example reprodues an experiment arried out by Hager and oworkerswhose results an be found in [70℄. The performane of the present level set tehniqueis ompared with the results obtained using PFEM [67, 98, 100℄ and published in [75℄.The geometry data, initial and boundary ondition an be found in [75℄. The ase withFroude number 5 is onsidered. The ontrol domain and the mesh used an be seen inFig.2.28 and 2.29 respetively.
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CONTROL DOMAINFigure 2.28: Geometry and boundary ondition of the �ip buket example.

Figure 2.29: Mesh of the �ip buket example.An entrane of water is imposed in the left side. After a transitory phase shown inFigure 2.30 the stationary regime is ahieved and pressure is registered on the buket
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Figure 2.30: Sequene of the transitory phase of the jet.as shown in Figure 2.31(a). The jet shape is also ompared in Figure 2.31(b) where thedarker line is the level set whereas the lighter represents the PFEM results.A good agreement with experimental pressure along the buket an be seen in Fig-ure 2.31(a). The blak points are the experimental results found in [70℄, whereas theontinuous line and the dotted line are the level set and the PFEM solutions respetively.2.8.6 3D dambreakThe present example is a 3D dam break example already studied by the authors in [75℄using PFEM.Data are taken from the experiments performed at the Maritime Researh InstituteNetherlands (MARIN) for breaking dam �ows [72℄. Several numerial results of this asestudy are available in literature for VOF tehniques. This is the ase of [72℄ employingCartesian grids, or [54℄ using an edge-based approah. Finally other level set simulationsan also be found. Among others, in [7, 71℄, an appliation of isogeometri analysis ispresented.The water olumn is left free to fall over a step where pressure sensors are set following
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(a) Pressure distribution on the buket. Experimental and numerial ompar-ison.

(b) Jet trajetory. Relative omparison.Figure 2.31: Level set and PFEM omparisons in the pressure head alulation and thejet development



88 The �uid problemthe sheme of Figure 2.32. The details of geometry an be found in [54℄.
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Figure 2.32: Geometry and boundary ondition of the 3D dam break example. On thelower left orner a zoom on the pressure sensors distribution on the stepTwo meshes are onsidered in the present work, their harateristis are detailed inTable2.8 and they are shown in Figure2.33.Mesh A Mesh Bn. nodes. 51 627 392 130n. elem 296 157 2 310 984Table 2.8: Dam break example. Number of nodes and number of elements of the twomeshes onsidered in the analysis.A sequene of the falling of the water olumn an be seen in Figure 2.34 where the freesurfae evolution is plotted for the two meshes onsidered.
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(a) Mesh A. (b) Mesh B.Figure 2.33: The two meshes onsidered. On the left Mesh A of 296 157 and Mesh B of
2 310 984 tetrahedra.

(a) Mesh A. (b) Mesh B.Figure 2.34: Evolution of the dam break at 0.4s, 0.6s and 2.0s. Comparison betweenthe results obtained with meshes A and B.



90 The �uid problemThe pressure evolution in time obtained with the two meshes is ompared in Figures2.35-2.42 with experimental results and PFEM results taken form [75℄.
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Figure 2.35: Pressure evolution on P1 on the vertial fae of the step indiated in Figure2.32. Comparison of level set, PFEM and experimental results.A better behavior of the Eulerian approah with respet to PFEM an be observedespeially with mesh B. Mesh re�nement improves the auray of the solution and theapability of athing the seond pressure waves with a orret timing, whereas a leardelay an be notied for the oarse mesh (mesh A).PFEM uses an unonditional stable sheme whih leaves more freedom in the hoieof the time inrement than in the semi-expliit sheme of the Eulerian method. Nev-ertheless PFEM needs a frequent re-meshing proedure for whih no parallelization isavailable yet. This aspet onsiderably slows down the time performane of PFEM inomparison with a parallel �xed mesh approah.
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Figure 2.36: Pressure evolution on P2 on the vertial fae of the step indiated in Fig.2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.37: Pressure evolution on P3 on the vertial fae of the step indiated in Fig.2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.38: Pressure evolution on P4 on the vertial fae of the step indiated in Fig.2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.39: Pressure evolution on P5 on the top fae of the step indiated in Fig. 2.32.Comparison of level set, PFEM and experimental results.
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Figure 2.40: Pressure evolution on P6 on the top fae of the step indiated in Fig. 2.32.Comparison of level set, PFEM and experimental results.
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Figure 2.41: Pressure evolution on P7 on the top fae of the step indiated in Fig. 2.32.Comparison of level set, PFEM and experimental results.
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Figure 2.42: Pressure evolution on P8 on the top fae of the step indiated in Fig. 2.32.Comparison of level set, PFEM and experimental results.2.9 ConlusionsIn this hapter the approah to numerially treat the problem of �ow in a variableporosity medium has been presented. After the hoie of the resistane law to be usedin the algorithm, the two solution methods developed have been presented in detail:
• Element-based algorithm. It uses a monolithi approah to solve the weak formof the balane equations that are stabilized using an ASGS tehnique. A fullyimpliit method is used and a Bossak time integration tehnique is hosen.
• Edge-based algorithm. In this ase a frational step approah is used to solvethe balane equations that are stabilized using an OSS stabilization tehnique. Asemi-expliit method, i.e. a 4th order Runge Kutta sheme is implemented.In both ases only simpliial meshes (3-noded triangles or 4-noded tethraedra) are takeninto aount.The dynami free surfae traking is done using a level set tehnique desribed in theseond part of the hapter. An expliit extrapolation is performed in order to de�nethe values of veloity on a band ontaining the free surfae of the �uid. The level



Conlusions 95set funtion (equation 2.110) is updated solving the problem 2.114. Points with zerodistane funtion identify the new free surfae. The alulation of the distane funtionis performed as detailed in Setion 2.6.3.Both algorithms have shown a good performane in the simulation of free surfae simpleproblems in presene of a variable porosity medium. Mass onservation is aeptably re-speted thanks to the improvement presented in Setion 2.5.5. Nevertheless the element-based approah still needs some e�ort in order to be used for the simulation of largeproblems. It is still limited to 2D problems and no parallel strutures have been imple-mented yet. These aspets make the element-based algorithm to lose ompetitivenessompared with the edge-based one.The performanes of the edge-based semi expliit algorithm for the simulation of thefree surfae problems have been also ompared with PFEM. The results show that theEulerian algorithm better represents the pressure peaks both in the dam-break and in the�ip-buket examples. The parallel struture helps to have very good time performanesdespite of the small time step imposed by the onditional stable method.On the basis of above onsiderations, the edge-based approah has been hosen for thestudy of real experiments on prototype embankments dams in Chapter 5 where a moreextensive and omplete validation of the algorithm an be found.





Chapter 3The strutural problemIn this hapter an algorithm to simulate the behavior of the granular non-ohesivematerial used in rok�ll dams is proposed. Taking into aount the high deformationthe struture might be subjeted to and the intrinsi inoherene of the roks, theonstitutive law of a non-Newtonian high visosity material is hosen. After an overviewof the traditional non-Newtonian relationships, a regularized Bingham model is seletedand implemented as a starting point. This approah presents severe limitations in thesimulation of granular behavior having a onstant yield threshold. To overome thisissue a variable yield model using a Mohr Coulomb failure riteria is proposed in theseond part of the hapter.The weak form of the problem is then obtained and the numerial tehnique adoptedis presented. The Lagrangian Partile Finite Element Method (PFEM) is hosen for itswide �exibility. In fat the strutural domain is expeted to undergo severe deformationsas the failure progresses and therefore a Lagrangian approah is a natural hoie.In the last part of the hapter the validation of the Binghammodel is performed throughsome benhmarks and the e�etiveness of the proposed variable yield model is tested insome examples.3.1 IntrodutionIn the present work, the simulation of the strutural response of a slope made of granularmaterial has been faed using a ontinuous approah despite the intrinsi inoherentnature of the rok�ll. This is an aeptable hoie under the assumption that the



98 The strutural problemrok�ll size is small with respet to the overall size of the struture.Nevertheless it should be mentioned that in reent years, the great advane in omputerperformane and in parallel omputing has allowed the simulation of the mehanialbehaviour of every single partile of a granular slope. The family of the so alled disrete(or distint) element methods (DEM) has been reahing a widespread popularity in theomputational mehanis ommunity. Their basi idea is that every partile is a disreteelement interating with the others onsidering its mehanial and material properties.This an be a valid alternative to the model presented in this hapter and it is atuallybeing implemented by other researhers at CIMNE.The adoption of a ontinuous approah leads to an additional requirement: the hoieof a suitable onstitutive law. Many plasti or rigid-plasti onstitutive models areommonly used in geomehanis to desribe the strutural response of an inoherentnon-ohesive material. It is usually aepted that a rok�ll slope has the apability tosupport a ertain amount of shear stress with almost no elasti strains before startinglarge deformations. When the yield stress is reahed the material starts to �ow untilarriving to a stable on�guration. It should be noted that the behaviour of the yieldedmaterial is more similar to the �owing of a �uid than to the proess of deformation ofa solid. On the other hand, in literature there exists a wide ategory of �uids whihexhibits a rigid behaviour till reahing a yield threshold. They are part of the family ofthe so alled non-Newtonian �uids.These aspets, together with the natural way of managing large deformations in �uids,lead us to onentrate on variable visosity models for the alulation of the struturalpart instead than on any other plasti or damage model. Consequently, a non-Newtonianonstitutive law has been adopted for the rok�ll body. This implies that the rok�llsti�ness is ontrolled by very high values of the visosity. Only when the yield thresholdis exeeded, the visosity dramatially dereases and the material starts �owing. Whenthe material stops its motion, the visosity reovers its initial values for whih the stresslevel does not exeed the yield limit.The model developed in this work has its origin in the traditional Bingham plastisusing the regularization proposed by Papanastasiou to overome numerial problemsindued by the bilinear stress-strain urve [104℄. Nevertheless in order to inlude a Mohr-Coulomb failure riteria (without ohesion), the possibility of onsidering a variable yieldlevel is introdued.The two onstitutive models with onstant and variable yield, are presented at the



Strutural onstitutive law. An overview of non-Newtonian models 99beginning of the present hapter after a brief overview on non-Newtonian models.The equations governing the strutural problem are studied in their weak form arrivingto the algebrai solution system whih is solved with a fully impliit approah. A stabi-lized, equal-order, mixed veloity-pressure element tehnology is hosen so to guaranteea loking free behavior. In fat Cervera and oworkers have demonstrated that the use ofa mixed approah is the appropriate framework for dealing with loalization problems ininompressible and quasi-inompressible problems. They have suessfully applied thisapproah in solid mehanis in plasti and damage models using linear/linear elements,providing a suitable stabilization tehnique [25�29, 32℄.Sine the strutural domain is expeted to undergo severe deformations as the failureprogresses, the kinemati model has to adapt dynamially to suh deformations. ThePartile Finite Element Method (PFEM) provides the neessary �exibility with a pow-erful remeshing mehanism [75, 100℄. Its features are desribed in the seond part ofthis hapter.In the last part of the hapter some examples are inserted to validate the Binghammodel and to appreiate its di�erenes with respet to the proposed variable visosityapproah. Finally some dambreaks of granular slopes with di�erent fritional anglesare simulated to verify that the model orretly reprodues the expeted mehanialproperties.3.2 Strutural onstitutive law. An overview of non-Newtonian modelsIn Chapter 2 the onstitutive model of a Newtonian �uid was used to desribe the stress-strain behavior of water. The stress tensor an be deomposed in its hydrostati anddeviatori parts as follow
σ = −pI + τ = −pI + 2µε(u), (3.1)where

ε(u) := ∇su =
1

2

(

∇u+ (∇u)T
)

, (3.2)The deviatori part of the stress tensor τ , is therefore linearly related to the rate ofstrain ε(u) through the onstant visosity µ.



100 The strutural problemFluids for whih the relations between τ and ε(u) is not onstant, are alled non-Newtonians. In this ase visosity annot be onsidered as a property of the materialas it is stritly dependent on the deformation proess. This lassi�ation is very generaland inludes a wide range of di�erent onstitutive relations. In order to brie�y lassifythe di�erent non-Newtonian �uids, let's onsider the 1d problem and let's de�ne anapparent visosity µ̃ like the ratio between the shear stress τ and the shear rate γ̇

µ̃ := µ̃(γ̇) =
τ

γ̇
. (3.3)Aording to Chhabra [31℄ a possible lassi�ation of the non-Newtonian �uids is thefollowing:- Fluids with time independent behavior: those for whih the urrent shear stressis funtion only of the shear rate τ = τ(γ̇). In funtion of the evolution of theirapparent visosity, they an be divided in:1. Shear-thinning or pseudo-plasti �uids. Their apparent visosity gradu-ally dereases when inreasing the shear rate. This is the ase of polymerisystems like melts and solutions.2. Shear-thikening or dilatant �uids. Their apparent visosity inreases whenthe shear rates inreases. This behavior is observed in onentrated suspen-sions, for instane.3. Viso-plasti �uids (with or without shear thinning behavior). They areharaterized by the existene of a threshold stress, the yield stress, whihmust be exeeded for the �uid to deform. For lower values of stress the viso-plasti �uids are ompletely rigid or an show some sort of elastiity. Onethe yield stress is reahed and exeeded, they an exhibit a Newtonian-likebehavior with a onstant apparent visosity (Bingham plastis �uids) or not,showing a shear thinning behavior (yield-pseudoplasti �uids).- Fluids with time dependent behavior: their apparent visosity is not only afuntion of shear stress and shear rate but also of the duration of the appliationof the shear stress and of its kinemati history. They an be lassi�ed into:1. Thixotropi. Under a onstant shear their apparent visosity dereases withtime. A typial thixotropi material is the ement paste.



Strutural onstitutive law. An overview of non-Newtonian models 1012. Rheopeti. Under onstant shearing their apparent visosity inreases withtime. For instane printers inks belong to this group.A shemati overview of the relation between shear stress and rate of strain for di�erentnon-Newtonian models an be observed in Figure 3.1.
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Figure 3.1: Qualitative �ow urves for the di�erent ategories of non-Newtonian �uids.A deep analysis of non-Newtonian �uids behavior falls outside the sope of this work.For a omprehensive review of the topi see [24, 31, 44℄.3.2.1 Constant yield: the Bingham modelIt was in 1919 when Eugene C. Bingham, while studying a possible onstitutive modelfor paints, disovered that their deformation was almost absent till reahing a threshold:the yield stress. After exeeding this stress limit they followed a Newtonian behavior.Aording to Papanastasiou [104℄ a wide range of materials have been identi�ed to havea yield threshold. Bird [15℄ was the �rst to give, in his book, a lists of several Binghamplastis, most of these produts ame from food or hemial industry. Among them wean list for instane slurries, pastes, nails, or food substanes like margarine, kethup,mayonnaise and others.The 1D onstitutive relation for a Bingham plasti an be de�ned as follows. Being τ0



102 The strutural problemthe yield stress
γ̇ = 0 if τ < τ0

γ̇ =
1

µs
(τ − τ0) if τ ≥ τ0

(3.4)where γ̇ is the rate of strain, µ is the dynami visosity and τ the shear stress.Figure 3.2 shows the di�erene between a Newtonian and a Non Newtonian �uid.
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Figure 3.2: Comparison between a Newtonian �uid and a Bingham �uid behavior witha yield stress τ0.Equation 3.4 an be rewritten as
τ =

(

µs +
τ0
γ̇

)

γ̇ if τ ≥ τ0. (3.5)Speial are should be taken in equation 3.5 when the level of stress is lower than theyield stress. In this ase, aording to equation 3.3, the apparent visosity approahesin�nity, i.e. µ̃ → ∞ as γ̇ → 0. This behavior might indue numerial di�ulties, somesmooth laws are usually preferred. Nevertheless some authors [80℄ tried to simulate whatis alled bi-visosity model but their preditions leads to inonsistenies. Consequently,in the present work the regularized model proposed by Papanastasiou [104℄ is hosen asa starting point for the development.Following the ideas presented in [104℄, equation 3.4 is regularized as follow
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τ =

[

µs +
τ0
γ̇

(

1− e−mγ̇

)]

γ̇, (3.6)where m is a regularization parameter that ontrols the approximation to the bilinearmodel as shown in Figure 3.3. The apparent visosity is de�ned as
µ̃(γ̇) = µs +

τ0
γ̇

(

1− e−mγ̇

)

, (3.7)Referring to equation 3.7, the problems onneted with the singular point of the bi-linear model are here avoided. In fat, in the un-yielded zone the shear strain rate
µ̃ = µ+ τ0 m as γ̇ → 0.
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Figure 3.3: Newtonian and Bingham �uid ompared with the regularized model forinreasing values of the m parameter.In order to introdue the onstitutive model for 3D problems, the following equivalentstrain rate γ̇ and yield stress τ0 are de�ned as the seond invariants of the rate of straintensor (ε) and of the deviatori part of the stress tensor (τ ), respetively.
γ̇ =

(
1

2
ε : ε

) 1

2 (3.8)
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τ0 =

(
1

2
τ : τ

) 1

2 (3.9)Equation 3.6 beomes for 3D problems as
τ = 2

[

µs +
τ0
γ̇

(

1− e−mγ̇

)]

ε(u), (3.10)where
µ̃(γ̇) = µs +

τ0
γ̇

(

1− e−mγ̇

)

, (3.11)3.2.2 Variable yield viso-rigid modelThe Bingham model presented in the previous setion was oneived for materials witha �xed yield stress. For granular materials, the de�nition of the yield stress depends on:- The harateristis of the rok�ll (its internal frition angle).- The presene of water inside the grains. It ats dereasing the e�etive stressleading to a signi�ant loss of resistane.The model proposed in the present work has its origin in a lassial Bingham onstitutiverelation but the yield stress τ0 is pressure sensitive and it is de�ned using a Mohr-Coulomb failure riteria without ohesion.
τ0 = p′s tg(φ), (3.12)where p′s is the e�etive pressure and φ is the internal frition angle. Equation 3.6 in

3D beomes
τ = 2

[

µs +
p′s tg(φ)

γ̇

(

1− e−mγ̇

)]

ε(u), (3.13)and the resulting apparent visosity is therefore
µ̃(γ̇) = µs +

p′s tg(φ)

γ̇

(

1− e−mγ̇

)

, (3.14)The idea of a pressure dependent yield stress has already been exploited for instane in[107℄, where a fritional �uid rehologial model is used for the simulation of land slides.



Continuous form 105Remark 17. In this hapter the presene of water and the oupling between strutureand �uid behavior has not been taken into aount yet. It is treated in Chapter 4.Nevertheless the failure riteria has already been expressed in funtion of the e�etivepressure in order to derives its more general form. For the strutural model, in abseneof water, the Mohr Coulomb failure riteria an be equivalently written as
τ0 = ps tg(φ). (3.15)3.3 Continuous formIn this setion the strong form of the equations used to solve the strutural problemare obtained. Their derivations starts from onsidering the balane equations of themonolithi oupled problem together with the balane equations of the �uid part, alreadytreated in Setion 2.2.3.The non-Newtonian variables and parameters are haraterized by the s sub-index,being the model used for the alulation of the strutural response.3.3.1 Variables of the problemThe unknowns of the strutural problem are- us veloity of the struture.- ps total pressure of the struture;- p′s e�etive pressure of the struture de�ned as p′s = ps − p (being p the waterpressure de�ned in Chapter 2);Other parameters are:- ρs is the solid dry density of the porous material. Calling ρs the density of thesingle grain, its relation with ρs is
ρs = (1− n)ρs (3.16)where n is the porosity de�ned in equation 2.3. In the present work the struturalmaterial is treated as an inompressible �uid with onstant density.



106 The strutural problem- µ̃ is the dynami apparent visosity. Its de�nition has been already presented inthe previous setions.
- µs is the dynami visosity of the yielded material (when Newtonian behavior isreovered).

3.3.2 Balane equationsThe balane equations governing the strutural model are represented by the Navier-Stokes equations for a non-Newtonian �uid.The presented model has been developed both in Lagrangian and Eulerian framework.Hene the onvetive veloity as of the balane equation is de�ned in its more generalform as
as := us − uM

s ; (3.17)being uM
s the mesh veloity. Aording to 3.17, as = 0 for a Lagrangian framework(where uM
s = us) and as = us in an Eulerian one, where uM

s = 0 (as in the previoushapter).Calling Ωs ⊂ R
d (where d is the spae dimension) the strutural domain in a timeinterval (0, T ), the modi�ed Navier-Stokes equations are

ρs∂tus + ρsas · ∇sus +∇p′s − 2∇ · µ̃∇us − ρsb = 0 in Ωs, t ∈ (0, T ),

∇ · us = 0 in Ωs, t ∈ (0, T ),
(3.18)The problem is fully de�ned with the following boundary and initial ondition:

us(x, 0) = us 0(x) in Ωs,

us(x, t) = gs(x, t) on ∂ΩsD, t ∈ (0, T ),

n · σs(x, t) = ts(x, t) on ∂ΩsN , t ∈ (0, T ),

(3.19)The apparent visosity µ̃ an be either the one of the Bingham model (equation 3.11),or that of the variable yield one (equation 3.14).



Weak form 1073.4 Weak formThe weak form of equations 3.18 is obtained following stritly the same steps than itwas done in Chapter 2 for the �uid problem. No relevant di�erenes are present.Using the Galerkin formulation the weak form of the general problem beomes
∫

Ω

wρs∂tusdΩ+

∫

Ω

wρsas · ∇usdΩ

+

∫

Ω

w∇p′sdΩ−
∫

Ω

w∇ · 2µ̃∇susdΩ−
∫

Ω

wρsbdΩ = 0 ∀w ∈ V,
∫

Ω

q∇ · us = 0 ∀q ∈ Q,

(3.20)
where , for a �xed t ∈ (0, T ), us is assumed to belong to the veloity spae V ∈ [H1(Ω)]dof vetor funtions whose omponents and their 1st derivatives are square-integrable,and p′s belongs to the pressure spae Q ∈ L2 of square-integrable funtions. w and
q are veloity and pressure weight funtions belonging to veloity and pressure spaerespetively.Performing the integration by part of the pressure and the visous terms as explainedin Setion 2.3 (see equations 2.37), gives

∫

Ω

wρs∂tusdΩ+

∫

Ω

wρsas · ∇usdΩ−
∫

Ω

p′s∇ ·wdΩ

+2

∫

Ω

∇w : µ̃∇susdΩ−
∫

Ω

wρsbdΩ−
∫

∂ΩN

w · hdΓ = 0 ∀w ∈ V,
∫

Ω

q∇ · usdΩ = 0 ∀q ∈ Q,

(3.21)
Let Vh be a �nite element spae to approximate V, and Qh a �nite element approxima-tion to Q. The problem is now �nding us h ∈ Vh and ps h ∈ Qh suh that
∫

Ω

whρs∂tus hdΩ

∫

Ω

whρsus h · ∇us hdΩ−
∫

Ω

p′s h∇ ·whdΩ

+2

∫

Ω

∇wh : µ̃∇sus hdΩ−
∫

Ω

whρsbdΩ−
∫

∂ΩN

wh · tshdΓ = 0 ∀wh ∈ Vh,
∫

Ω

qh∇ · us hdΩ = 0 ∀qh ∈ Qh.

(3.22)



108 The strutural problem3.5 The strutural approah: monolithi solverThe proedure used for obtaining the algebrai stabilized system of equation is analogousto what has already been explained in Setion 2.4 of Chapter 2. In the following setionsthe stabilization tehnique, the time integration sheme and the solution strategy arebrie�y desribed.Sine many aspets of the strutural solver oinide to the element-based one, only thedi�erenes are pointed out to lighten the reader from useless repetitions.In order to obtain the �nal solution system, the weak form represented by equations3.22 have to be stabilized and linearized in time. Finally as well as for the �uid solvers,a quasi-Newton residual based strategy is adopted to solve the non linear problem.
3.5.1 Stabilized formulationThe hoie of adopting equal order linear elements for veloity and pressure, despiteof the simpliity, entails the neessity of using a stabilization tehnique. An ASGSstabilization tehnique is employed for that purpose. The derivation of the stabilizationsheme is analogous to what has been presented in Setion 2.4.1. Therefore, in whatfollows, only the �nal stabilized form and the stabilization terms is reported.The stabilized form of the balane equations beomes
∫

Ω

whρs∂tus hdΩ

∫

Ω

whρsas h · ∇us hdΩ

−
∫

Ω

p′s h∇ ·whdΩ + 2

∫

Ω

∇swh : µ̃∇us hdΩ

−
∫

Ω

whρsbsdΩ−
∫

∂ΩN

whts hdΓ +
∑

el

∫

Ωel

τs 1Pm
s · Rm

s dΩ = 0 ∀wh ∈ Vh,
∫

Ω

qh∇ · us hdΩ+
∑

el

∫

Ωel

τs 2Pc
s · Rc

sdΩ = 0 ∀qh ∈ Qh,

(3.23)
where Pm

s , Rm
s , Pc

s and Rc
s are de�ned in Table 3.1.In a Lagrangian framework the onvetive term is not present. Therefore only pressurestabilization is required.
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Momentum equation

Pm
s (wh) as h · ∇wh +∇qh

τs 1

(
α

∆t
+

4µ̃

h2 ρs
+

2|as h|
h

)−1

Rm
s (us h) ∂tus h + as h · ∇us h −∇ ·

µ̃

ρs
∇sus h +∇p′s h − bsContinuity equation

Pc
s (wh) ∇ ·wh

τs 2
µ̃

ρs
+

h|as h|
2

Rc
s(us h) ∇ · us hTable 3.1: Stabilizing elemental terms in ASGS for the non-Newtonian element.3.5.2 Disretization proedureAording to what was explained in Setion 2.4.2 of Chapter 2, the matrix form of thestabilized system of equations 3.23 an be written as:

[

M+ SM
wu 0

0 0

]

·
[

u̇s

ṗs

]

+

[

K+ Swu + Sc G+ Swp

D+ Squ Spq

]

·
[

us

ps

]

=

[

Fs + Sf
w

Sf
q

](3.24)where the operators are expliitly written in Table 3.2 and the stabilization operatorsan be found in Table 3.3.3.5.3 Bossak time integration shemeAs in the �uid element-based solver, a Bossak time integration sheme is used to advanein time the momentum equations. For more details about the method see Setion 2.4.3.Equations 3.24 an be written in ompat form as
Mv̇s + fs int(vs(t), t) = fs ext(t). (3.25)
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Matriial term Continuum term
Mu̇s

∑

el

∫

Ωel

whρs∂tus hdΩ

KCus

∑

el

∫

Ωel

whρsas h · ∇us hdΩ

Kus

Kµ̃us +2
∑

el

∫

Ωel

wh∇wh : µ̃∇us hdΩ

Gps −
∑

el

∫

Ωel

ps h∇ ·whdΩ

Dus

∑

el

∫

Ωel

qh∇ · us hdΩ

Fs

∑

el

∫

Ωel

whρsbsdΩ

hs 0Table 3.2: Matries and vetors of system 3.24 without stabilization terms.
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Momentum equationMatriial term Continuum term

SM
wuu̇s

∑

el

∫

Ωel

τs1as h · ∇wh∂tus hdΩ

SC
wuus

∑

el

∫

Ωel

τs1as h · ∇whas h · ∇us hdΩ

Swuus

Sµ̃
wuus −

∑

el

∫

Ωel

τs1as h · ∇wh∇ ·
µ̃

ρs
∇sus hdΩ

Swpps

∑

el

∫

Ωel

τs1as h · ∇wh∇ps hdΩ

Sf
w −

∑

el

∫

Ωel

τs1as h · ∇whbs hdΩ

SC
quus

∑

el

∫

Ωel

τs1∇qhas h · ∇us hdΩ

Squus

Sµ̃
quus −

∑

el

∫

Ωel

τ1∇qh∇ ·
µ̃

ρs
∇sus hdΩ

Sqpps

∑

el

∫

Ωel

τs1∇qh∇ps hdΩ

Sf
q −

∑

el

∫

Ωel

τs1∇qhbs hdΩContinuity equation
Scus

∑

el

∫

Ωel

τs2∇ ·wh∇ · us hdΩTable 3.3: Stabilization matries and vetors of system 3.24.



112 The strutural problemThe resulting residual of the momentum equations linearized in time is
rs(v

n+1−αB
s ) = −M

(
1− αB

γ∆t
vn+1
s

)

− fn+1
int s

+fn+1
ext s −M

[
1− αB

γ∆t
vn
s +

(1− αB)
2

γ
v̇n
s − αBv̇

n
s

]

,

(3.26)where vT
s = [us, p

′
s] and v̇T

s = [u̇s, ṗ
′
s] are the vetors of unknowns.Preditor multi orretor residual based strategyThe preditor multi orretor strategy adopted has been already explained in Setion2.4.3. The linearization of the non-linear terms is performed using a quasi Newtonmethod.The visous terms as well as the onvetive ones are the non linear part of the balaneequations. When alulating the LHS of equation 2.66, they are linearized as follows

an+1, k
s ∇un+1, k+1

s ,and [

µ+
p
′ n+1, k
s tg(φ)

γ̇n+1, k

(

1− emγ̇n+1, k
)]

∇sun+1, k+1
s .3.6 Kinemati framework of the non-Newtonian stru-tural elementThe strutural model is implemented in order to allow both an Eulerian and a Lagrangiankinemati desription of motion.The Eulerian formulation desribed in the previous setions has been developed inorder to validate the Bingham model with some benhmarks found in literature (see forexample Setions 3.8.1, 3.8.2 and 3.8.3).It important to reall that the �nal purpose of this work is to ouple this model withthe �uid ode and simulate the deforming proess of a semi-saturated rok�ll slopewhen failing. Therefore, sine the strutural domain is expeted to undergo severedeformations as the failure progresses, the kinemati model has to adapt dynamially



The partile �nite element method (PFEM) 113to suh deformations leading to the preferable hoie of a Lagrangian approah. Amongmany possible Lagrangian methods, the Partile Finite Element Method (PFEM) hasbeen hosen and implemented for its �exibility and reliability [75, 100℄.3.7 The partile �nite element method (PFEM)The PFEM is a numerial method that uses a Finite Element mesh to disretize thephysial domain and to integrate the di�erential governing equations (see [67, 75℄). InPFEM the domain is modeled using an Updated Lagrangian Formulation. That is allthe variables are assumed to be known in the urrent on�guration at time t and theyare brought in the next (or updated) on�guration at time t + dt. The �nite elementmethod (FEM) is used to solve the ontinuum equations in a mesh built up from theunderlying nodes (the partiles). This is useful to model the separation of solid partilesfrom the bed surfae and to follow their subsequent motion as individual partiles witha known density, an initial aeleration and a veloity subjet to gravity fores [97, 100℄.It is important to underline that in PFEM eah partile is treated as a material pointharaterized by the density of the solid domain to whih it belongs to. The global massis obtained by integrating density at the di�erent material points over the domain. Thequality of the numerial solution depends on the disretization hosen as in the standardFEM. Adaptive mesh re�nement tehniques an be used to improve the solution in zoneswhere large gradients of the �uid or the struture variables our.Sine its �rst development espeially foused on the simulation of free surfae �owsand breaking waves [67, 75℄, PFEM has been suessfully used in a wide range of �elds.Just to mention some of them, it is used in FSI and oupled problems [68, 95, 98, 99,110℄, multi-�uid problems [65, 84℄, ontat problems [22, 23℄, geotehnial simulations[23, 94℄ and �re engineering [19℄. Moreover PFEM has also been suessfully used inthe implementation of Bingham plastis model for the simulation of landslides [46℄ andement slump tests [45℄.The basi ingredients of PFEM an be summarized in:
• An Updated Lagrangian kinematial desription of motion;
• A fast remeshing algorithm;
• A boundary reognition method(alpha-shape);
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• FEM for the solution of the governing equations;3.7.1 Updated Lagrangian kinematial desription of motionThe PFEM was oneived as a Lagrangian method to treat CFD problems inludingfree surfae �ows and breaking waves [67, 100℄. This approah is in ontrast with thelassial Eulerian way to treat CFD problems.Lagrangian algorithms are traditionally used in strutural mehanis where eah nodeof the omputational mesh follows the assoiated material partile evolution. This isa good way to trae easily the interfae between �uid and struture and to onsidermaterials with history-dependent onstitutive relations. Its weakness is the inability tofollow large distortions of the domain without the neessity of a ontinuum remeshing.This implies a di�ult parallelization of the ode as well.Eulerian algorithms, on the other hand, are largely used in �uid dynamis beause ofthe ease way to follow large movements. In this ase the omputational mesh is �xed andthe ontinuum moves with respet to the grid. Being a �xed mesh approah, an interfaetraking tehnique should be employed in Eulerian methods to follow the evolution ofthe free surfae (see Setion 2.6 for more information on the topi).A third popular tehnique is a generalization of the two kinematial desription ofmotion above desribed. It is known as the Arbitrary Lagrangian- Eulerian (ALE)desription. In this ase, the mesh is arbitrarily moved with a veloity uM and thedomain of the mesh is alled the referene domain [51℄.For uT

M ≡ (0, 0, 0) an Eulerian on�guration is reovered and the referene domainorresponds to the spatial one. Alternatively, if the mesh veloity oinides with thepartile veloity (uM ≡ u), then the onvetive term disappears and the Lagrangianformulation is reovered. In this ase the referene domain oinides with the materialone. The absene of the onvetive term in a Lagrangian framework, leads also to theelimination of the problems onneted with onvetion dominating proesses (see Setion2.4.1 of Chapter 2), simplifying the stabilization proedure.Aording to [51℄, three possible Lagrangian formulations are possible
• The total Lagrangian , where variables are desribed in the initial on�guration
Ω0, at time t0;
• The updated Lagrangian , where variables are desribed in the urrent on�guration
Ωn, at time tn;
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• The end of step Lagrangian , where variables are desribed in the on�guration
Ωn+1 at time tn+1.The total Lagrangian formulation is not the best hoie for a problem with large domaindeformations. Therefore, PFEM uses an updated Lagrangian desription of motion.3.7.2 Remeshing algorithmThe need of an e�ient remeshing algorithm together with the the di�ulty of paral-lelizing this proedure are the biggest drawbak of a Lagrangian approah.The mesh moves in aordane to the material points and large deformations our.The ode developed in this work uses external libraries to remesh the domain. They arethe TetGen and Triangle for the 2D and the 3D ases respetively (for more informationsee [5℄).The mesh generation sheme is based on the Voronoi diagrams1 and the Delaunaytessellation2.3.7.3 Boundary reognition method: alpha - shape methodOne the ontinuum domain is partitioned using the TetGen library, a riteria is neededto de�ne the free surfaes and the boundaries on the material domain. In the ase ofPFEM, alpha shape [20℄ is the adopted tehnology.Eah node i of the domain has its own dimension hi determined as the average distaneof node i from its neighbors. In the same way, an elemental dimension hel an be de�nedfor eah element as the average of the hi of its nodes. Finally depending on the preisionwanted, an α ustom parameter greater but lose to one (the alpha shape parameter) isde�ned.If the radius of the sphere that irumsribes the element (r) is bigger than α ·hel, thenthe element is eliminated (see Figure 3.4). That is1 The Voronoi diagram of a setN is a partition of R3 into region Vi (losed and onvex or unbounded),where eah region Vi is assoiated with a node pi, suh that any point in Vi is loser to pi than to anyother node pj . The Voronoi diagram is unique.2 A Delaunay tessellation within the set N is a partition of the onvex hull Ω of all the nodesinto region Ωi suh that Ω = Ωi where eah Ωi is the tetrahedron de�ned by 4 nodes of the sameVoronoi sphere. A Voronoi sphere within the set N is any sphere, de�ned by 4 or more nodes, thatontains no other node inside. Suh sphere are otherwise known as empty irumspheres. The Delaunaytriangulation and Voronoi diagram in R

2 are dual to eah other in the graph theoretial sense.
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r ≤ α · hel; (3.27)has to be respeted to keep the element in the domain.Di�erent values of the alpha shape parameter an lead to di�erent auray on themesh boundaries as shown in Figure 3.4() and 3.4(d) where di�erent values of thealpha parameter are used.

(a) Cloud of nodes. (b) Mesh of the onvex hull ob-tained with the Triangle library.
() Domain after applying alphashape. α = α1. (d) Domain after applying alphashape. α2 > α1.Figure 3.4: Possible boundaries of a loud of nodes using alpha shapes method. Imagetaken from [20℄.3.7.4 FEMA �nite element mesh and the onnetivities of the nodes are provided by the previousdesribed steps for the atual time step tn+1. The studied FEM is then used to writethe weak form of the governing equations.



Numerial Examples 1173.7.5 PFEM algorithmConsidering known the solution at time step n, the basi steps of PFEM algorithm aresummarized in the box that follows.PFEM algorithm1. Imposition of mesh veloity at time step n usM = un;2. Laplaian smoothing a (free surfae kept �xed);3. Remesh (see Setion 3.7.2);4. Solve the monolithi system;5. Bak to step 1.aThe Laplaian smoothing is a geometrial tehnique that allows a more homogeneousredistribution of the nodes inside the analysis domain without hanging the onnetivitiesbetween nodes3.8 Numerial Examples3.8.1 The Couette �owThe Couette �ow refers to the laminar �ow of a visous �uid between two parallel in�niteplates separated by a given distane, one of whih is moving relative to the other. The�ow is driven by virtue of visous drag fore ating on the �uid and the applied pressuregradient parallel to the plates.The modelThe length of the omputational domain is 6m and its height is 1m as shown in Figure3.5. The Neumann boundary onditions are applied on the vertial edges in terms ofexternal pressure. Dirihlet onditions are then applied on the horizontal edges (theplates). The lower plate is onsidered �xed, whereas the upper moves with a onstanthorizontal veloity. The horizontal veloity diagram in the entral vertial setion isanalyzed.
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6m

1m

DENSITY = 1 kg/mc
VISCOSITY = 10 Pas

IMPOSED vx 

FIXED EDGE 

EXTERNAL RIGHT 

PRESSURE 

EXTERNAL LEFT 

PRESSURE 

Figure 3.5: Geometrial data and boundary onditions.
Figure 3.6: Linear triangular mesh used in the alulation.The mesh used in every model is shown in Figure 3.6. It has 14736 linear triangularelements. Their dimension varies from 0.05m at the sides to 0.01m in the entral vertialsetion.The numerial resultsIn all the numerial examples the value of m and τ0 are kept onstant as well as theproperties of the material. They are summarized in Table 3.4.Density ρs 1kg/m3Fluidi�ed visosity µ 10Pa sSmoothing oe�ient m 300sYield stress τ0 10PaTable 3.4: Couette example. Material properties.Figure 3.7 shows the used regularized approximation in omparison with the bilinearform.The di�erene between the e�ets of a positive pressure gradient (adverse to the veloity�eld) and a negative one (favorable to the veloity �eld) are shown in Figure 3.9. In both
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Bingham bilinear lawFigure 3.7: Exponential approximation with m=300 and τ0 = 100Pa.ases an inreasing gradient of pressure is taken into aount. The veloity of the upperplate is ux = 0.5m/s. The gradient of veloity is higher lose to the plate. Consequentlythe value of tangential stress is also higher in these zones that are the regions where theyield stress is ahieved. The entral straight zone is the unyielded region where γ̇ = 0and µ̃ = µ + τ0 ·m. The visosity behavior in the entral vertial setion is shown inFigure 3.8
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Figure 3.8: Variation f visosity in the entral vertial setion.Inreasing the gradient of pressure the rigid plateau is narrowing and the yielded zoneis inreasing.Finally, the upper veloity is set to ux = 0.01m/s to reprodue the results of [105℄and to have a diret omparison with the analytial results as shown in Figure 3.10.
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(a) Negative Pressure Gradient �8�7�6�5�4�3�2�1 0 1
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Non-Newtonian Flow with upper Vx=0.5m/s and positive Dp.
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(b) Positive Pressure GradientFigure 3.9: Veloity diagrams for di�erent values of the gradient of pressure. Upperhorizontal veloity 0.5m/s.Di�erent values of negative gradients of pressure are onsidered as shown in Figure 3.10.Right edge external pressure is kept onstant and equal to 0Pa in all the ases, whereasthe left hand side pressure is 1500Pa, 1600Pa, 1700Pa, 1800Pa, 1900Pa and 2000Parespetively. The agreement is good and the yield point is reprodued orretly for allthe pressure gradients.
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AnalyticalFigure 3.10: Veloity diagrams for di�erent values of a negative gradient of pressure.Upper horizontal veloity 0.01m/s.



Numerial Examples 1213.8.2 Cavity �ow

(a) Homogeneous mesh. (b) Loally re�ned mesh.Figure 3.11: Cavity example. Meshes used in the alulation.In the present setion the Bingham model is tested in the lassial avity �ow example.This benhmark applied to non-Newtonian �uids, and partiularly Bingham plastis, hasbeen widely studied in reent years and many examples an be found in the literature(see for instane [55, 59, 85, 129℄).A square unit domain with edge H is de�ned and the harateristi speed (that is, theveloity of the lid) is taken equal to 1m/s.The dynami visosity is µs = 1Pa s and density is ρs = 1kg/m3.Let us de�ne the a dimensional Bingham number (Bn) as
Bn =

τ0H

µsus
, (3.28)where H and us are the edge length and the horizontal veloity of the upper lid respe-tively and τ0 the yield stress.In order to make a omparison to the work of Mitsoulis and Zisis [85℄, the model istested for di�erent values of Bn. In other words, the e�et of the inreasing yield stressis analyzed (being in the spei� ase Bn = τ0).
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(a) Homogeneous mesh. (b) Loally re�ned mesh.Figure 3.12: Cavity. White olor shows the yielded regions. Comparison between thease with homogeneous mesh (Figure 3.11(a)) and the re�ned one (Figure 3.11(b)).
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(a) Homogeneous mesh. (b) Loally re�ned mesh.Figure 3.13: Cavity. White olor shows the yielded regions. Comparison between thease with homogeneous mesh (�gure 3.11(a)) and the re�ned one (�gure 3.11(b)).
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(a) Results taken from [85℄. (b) Present model. Loally re�ned mesh.Figure 3.14: Cavity example. Streamlines and progressive evolution of the yielded area(white olor) for inreasing values of the Bingham number Bn (Bn = 2, 20 and 200respetively).



Numerial Examples 125

(a) Results taken from [85℄. (b) Present model. Loally re�ned mesh.Figure 3.15: Cavity example. Streamlines and progressive evolution of the yielded area(white olor) for inreasing values of the Bingham number Bn (Bn = 5, 50 and 500respetively).



126 The strutural problemThe hoie of the mesh is ruial and an in�uene relevantly the orret de�nition ofthe yielded region. The adoption, for example of an homogeneous mesh with averagedimension h = 0.02m, like the one shown in Figure 3.11(a) an be in some ases insu�-ient for the orret apturing of the rigid parts of the domain. This is shown in Figures3.12 and 3.13 where the omparison of the yielded regions for inreasing values of the
Bn is shown for the homogeneous mesh of Figure 3.11(a) (left olumn) and the meshshown in Figure 3.11(b) where a loal re�nement of href = 0.005m is performed on thelid and in the upper part of the vertial edges of the avity (right olumn). The use ofthe mesh with loal re�nement leads to more preise results, aording to [55, 85, 129℄.In fat the diret omparison of the yielded regions and the streamlines results of thepresent model is in good agreement with the one in [85℄, as shown in Figures 3.14 and3.15.3.8.3 Extrusion proess

0.0 0.2 0.4 0.6 0.8 1.0
TIME [s]

3000

3500

4000

4500

5000

EX
TE

RN
AL

 P
RE

SS
UR

E 
[P

a]

RAMP FUNCTION

Figure 3.16: Extrusion example. Ramp funtion of external pressure BC applied on leftvertial side.The present example simulates an extrusion proess of a Bingham plasti. Data andgeometry are taken from [105℄. A material with the harateristis detailed in Table 3.5is pushed into a square die with a restrition of two-thirds of the ross setional area.



Numerial Examples 127Due to the symmetry of the problem, only half of the domain is alulated as shown inFigure 3.17. An inreasing value of the external pressure (pext) is imposed on the leftside with a pressure inrement of 2Pa/step (the ramp funtion for applying the externalboundary pressure is detailed in Figure 3.16). On the right side the external pressure isset to zero and kept onstant. The walls are assumed to be fritionless.
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Figure 3.18: Extrusion example. Mesh used in the alulation. Average dimension
h = 0.2m with a loal re�nement 0.05m near point B of Figure 3.17 and in the restritionarea and an additional re�nement 0.005m lose to point A of Figure 3.17. The totalnumber of triangular elements and nodes are 11 600 and 5 800, respetively.The mesh used in the alulation is shown in Figure 3.18. It is re�ned in the area ofappearane of the slip lines to aurately ath their evolution.As explained in [105℄, in the hypothesis of perfet plastiity, the value of maximum rampressure (pmax

ext ) is analytially alulated in [82℄. It is given by the following relation
pmax
ext =

4

3

[

1 +
π

2

]

τ0 = 3426.7Pa. (3.29)This is the analytial yield pressure, whih orresponds numerially to the time intervalbetween the onset of the slip line an its full development. In the present model this isrepresented by the interval in whih the external pressure is between 3418Pa (beginningof the formation of the slip line) and 3472Pa (the slip line is fully formed). The analytial



128 The strutural problemvalue is therefore ontained between these two extremes. In the Figures 3.19 and 3.20the evolution of the slip lines is plotted and ompared with the results shown in [105℄.Aording to this paper, a ontour �ll of the equivalent strain rate γ̇ is plotted in therange 0.08s−1 − 0.72s−1 and white and the dark area indiate values of γ̇ lower than
0.08s−1 (rigid material), and larger than 0.72s−1 respetively (these two limits are hosenfor homogeneity with [105℄).Density ρs 100kg/m3Fluidi�ed visosity µ 10−6Pa sSmoothing oe�ient m 1000sYield stress τ0 1000PaTable 3.5: Extrusion example. Material properties.On the other hand, the yield pressure an be identi�ed plotting the pressure-veloitygraph in point B as shown in Figure 3.21. It an be observed that the material is almostrigid till reahing an external pressure value of 3418Pa. After that, onserving the sameexternal pressure inrement per step, the veloity inreases onsiderably indiating thatthe material starts to �ow. Similar results are found in [105℄.3.8.4 Bingham vs variable visosity model. Pushed slopeThe di�erene between the Bingham and the proposed variable yield model an beobserved in this example.A square domain in 2D and a ubi one in 3D are pushed towards a wall.The geometry of the models and the mesh used in both ases is shown in Figure 3.22.The wall on the left side moves with onstant veloity u0 = 0.1m/s-For the Bingham model the yield stress is τ0 = 1000Pa, whereas in the variable yieldmodel the internal frition angle is φ = 30.In the sequenes of the pushing proess shown in Figure 3.23 and 3.24 the di�erentbehavior of the two models is evident.For Bingham plastis, those points that do not exeed the onstant yield thresholdbehave like a rigid body, whereas in the present model the yield stress of the exterior
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Figure 3.19: Extrusion example. Evolution of the slip lines shown with a ontour �ll ofthe equivalent strain rate γ̇. Comparison between the present model (left olumn) andthe results presented in [105℄ (right olumn).
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Figure 3.20: Extrusion example. Evolution of the slip lines shown with a ontour �ll ofthe equivalent strain rate γ̇. Comparison between the present model (left olumn) andthe results presented in [105℄ (right olumn).
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Figure 3.21: Extrusion example. Pressure-veloity relationship on point B.
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(b) 3DFigure 3.22: Pushed slope example. Geometry, mesh and boundary onditions of 2Dand 3D models.
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Dry density ρs 1000kg/m3Fluidi�ed visosity µ 10−6Pa sSmoothing oe�ient m 3000sTable 3.6: Pushed slope example. Material properties.points is lower and it is exeeded also for lower pressure levels. Two di�erent phases anbe identi�ed in the present example:- The settlement phase. It is the initial part of the example. The granular materialis left free to fall and to reah its stable on�guration. It goes from the beginningof the example to the moment in whih the material touhes the right �xed wall.- The squeezing phase. It begins when the material touhes the right wall and startsto be squeezed between the two opposite walls that are getting loser.In Figure 3.23 the 2D omparison between the Bingham model and the variable yieldmodel during the settlement phase is shown. The ontour �ll of the equivalent strainrate is plotted in di�erent time instanes (the blue olor indiates γ̇ = 0).The Bingham model shows a sliding surfae where the tangential stress reahes theyield stress (1000Pa), whereas all the rest of the model shows an almost rigid behavior.Conversely, in the variable yield model, if a node has a tangential stress whih exeed itspressure times the frition angle tangent (pstgφ), it shows a drop in the visosity and itstarts �owing. The main di�erenes an be observed on the �free surfae� where the yieldstress tends to zero the loser the node is to the free surfae (where the pressure is zero),i.e. no resistane is present. The variable yield material reahes a stable on�gurationthat respets the internal frition angle of 30◦. For more details the onsultation ofSetion 3.8.5 is reommended.In Figure 3.24 the behavior of the two models in the squeezing phase is ompared. Thesequene shows how the equivalent strain rate γ̇ is almost zero up to the reation of thefailure lines and the subsequent ollapse of the material. In the granular material onthe ontrary, the �free surfae� has zero pressure, whih implies zero resistane and assoon as the material reahes the height of the walls it starts falling.The same onsiderations an be done in 3D, looking at the omparison between thetwo models in the settlement and the squeezing phase shown in Figures 3.25 and 3.26,
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(a) Bingham model. (b) Variable yield model.Figure 3.23: 2D pushed slope. γ̇ in the initial pushing phase. Di�erene between theBingham and the variable visosity models.respetively. The Bingham model in 3D shows less resistane in the squeezing phasedue to the 3-dimensional e�ets. It is �nally interesting to observe that the materialwhih is falling down in the ase of the Bingham model onserves the veloity imposed
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(a) Bingham model. (b) Variable yield model.Figure 3.24: 2D pushed slope. γ̇ in the squeezing phase. Di�erene between the Bing-ham and the variable visosity models.by the wall although this is very low, whereas this does not happen in the variable yieldmodel.
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(a) Bingham model. (b) Variable yield model.Figure 3.25: 3D pushed slope. Di�erene between the Bingham and the variable visos-ity models in the initial pushing phase.
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(a) Bingham model. (b) Variable yield model.Figure 3.26: 3D pushed slope. Di�erene between the Bingham and the variable visos-ity models in the squeezing phase.



Numerial Examples 1373.8.5 Settlement of a vertial rok�ll slopeThe variable visosity model is �nally used to reprodue the settlement of a granularvertial slope with a given internal frition angle. The objetive of this example is toverify the orret reprodution of the internal frition angle and the dependeny of thestable on�guration from the mesh size.For this purpose a retangular domain is onstrained by a vertial wall in the left sideand is left free on the right side as shown in Figure 3.27. The harateristis of thematerial are summarized in Table 3.7.
UNSTABLE AREA

GRANULAR SLOPE

characterized by 

Figure 3.27: Settlement of a vertial slope. Geometry of the model.Dry density ρs 1000kg/m3Fluidi�ed visosity µs 10−6Pa sSmoothing oe�ient m 3000sTable 3.7: Settlement example. Material properties.
Variable mesh sizeLet us onsider an internal frition angle φ = 30◦. Three di�erent mesh sizes are takeninto aount for the simulation:
• Mesh A is 0.1cm. The model has 444 nodes.
• Mesh B is 0.05cm. The model has 1580 nodes.
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• Mesh C is 0.01cm. The model has 35466 nodes.They are shown in Figure 3.28.

(a) Mesh A 0.1m.
(b) Mesh B 0.05m.
() Mesh C 0.01m.Figure 3.28: Di�erent mesh sizes taken into aount in the present example.The evolution of the settlement is shown in Figure 3.29 for the above mentioned meshes.As expeted the more aurate and realisti settlement proess is obtained with the �nermesh but no relevant di�erenes appear using the oarser ones. This is respeted forany internal frition angle φ less than 45◦. In fat in the latter ase the orret behaviorof the material is in�uened by the mesh size. For oarse meshes the material behavesas rigid as shown in Figure 3.30 where two meshes are taken into aount. However inthe next setion it will be pointed out that this value of φ is in the limit of validity ofthe model.
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(a) Mesh A. (b) Mesh B. () Mesh C.Figure 3.29: Settlements for a granular slope with internal frition angle φ = 30◦ for thethree di�erent mesh sizes indiated in Figure 3.28.The same example is run in 3D using the meshes A and B of Figure 3.28 leading toanalogous onlusions. The internal frition angle is well represented independentlyfrom the mesh hosen. A sequene of the 3D results for a slope with internal frition
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(a) Mesh B 0.05m (b) Coarse mesh 0.07mFigure 3.30: Di�erent results of the model with phi = 45◦ in ase of mesh B (0.05m)and a oarser mesh (0.07m). Both results are taken after 5s of simulation.angle φ = 30◦ is shown in Figure 3.31.Variable internal frition anglesDi�erent values of the internal frition angle are taken into aount in order to verifythe orret behavior of the strutural model. Mesh B is used for the disretization.The di�erent mehanial behavior ontrolled by the values of φ is orretly reproduedby the variable yield model presented in this work if the internal frition angle is lowerthan 45◦, as an be observed in Figure 3.32 where the stable on�guration of rok�llslope of 30◦, 40◦, 45◦and 47◦ is simulated. The ase with φ = 45◦ represents a pratiallimit of the model. Beyond that limit a dependeny on the mesh appears as some levelof loking an be observed. The onlusion is that the model is not able to orretlysimulate materials that have internal frition angles higher than 45◦. This is not sorelevant onsidering that in rok�ll slopes 45◦ an be onsidered an upper limit of thepossible internal frition angles.3.8.6 Frition angle testThe last example simulate a test for omputing the internal frition angle φ. A one �lledwith granular material with a bottom outlet is lifted up with a veloity of 0.025m/s.The geometry and the mesh used an be seen in Figure 3.33.The mehanial harateristis of the material used are summarized in Table 3.8.As expeted, the �nal slope of the fallen material mathes well with the 40◦ angle asshown in the last piture of Figure 3.34.Finally in Figure 3.35 the same example has been repeated in the ase of a Bingham



Numerial Examples 141

30º

(a) Mesh A.
30º

(b) Mesh B.Figure 3.31: Settlements for a 3D granular slope with internal frition angle φ = 30◦ inthe ase of onsidering mesh A and B of Figure 3.28.plasti with a yield threshold τ0 = 500Pa.The di�erent behaviour between the two models is evident: the material of the variableyield model ��ows� down in a nearly ontinuous way and at the end of the simulation no
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(a) φ = 30◦ (b) φ = 40◦

() φ = 45◦ (d) φ = 47◦Figure 3.32: Stable results for di�erent internal frition angles φ. The mesh used in thealulation is mesh B of Figure 3.28.
Dry density ρs 1490kg/m3Internal frition angle ϕ 40◦Fluidi�ed visosity µ 10−6Pa sSmoothing oe�ient m 3000sTable 3.8: Frition angle test example. Material properties.



Conlusions 143material is present in the one (the one is 41.6◦ steep). Whereas the Bingham materialresembles a toothpaste and at the end of the simulation part of the material remainsinside the one. The tangential stresses, in fat, are lower than the yield threshold.
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Figure 3.33: Frition angle test example. Geometry and mesh used for the alulation.

40ºFigure 3.34: Frition angle test example. Variable yield model with ϕ = 40◦.3.9 ConlusionsIn this hapter a model to desribe the behavior of a rok�ll slope is presented. ANon-Newtonian onstitutive law is hosen and a regularized Bingham plasti model isdeveloped as �rst approximation. This hoie derives from the observation that theelasti behavior in rok�ll slopes is negligible and when the yield stress is reahed thematerial starts to �ow more like a �uid than to deform like a struture. Moreover among
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Figure 3.35: Frition angle test example. Bingham model with yield stress τ0 = 500Pa.the non-Newtonian �uids, Bingham plastis have the apability of supporting a ertainamount of shear stress before reahing large strains.The good behavior of the Bingham model is veri�ed through some benhmarks, butdoes not seem to be adequate for the simulation of the behavior of a granular slope. Forthis purpose a variable yield threshold is introdued in order to mimi a Mohr Coulombfailure riterion.The di�erenes between the regularized Bingham and the variable yield models aredisussed in some examples.The main advantage of the onstitutive law proposed is its simpliity ompared with anyother plasti model. The treatment of the granular material as a �uid leads to balaneequations similar to those presented in Chapter 2. Hene, most onsiderations alreadydone for the �uid model an be used in this ontext as well, providing the neessaryadaptation to non-Newtonian materials.The variable yield model does not present serious limitations on the mesh sizes in general(although in Chapter 5 it will be pointed out that this is not always true in pratialases). Finally the variable yield model seems to be adequate to simulate materialswith internal frition angles lower than 45◦. Fortunately this value is higher than themaximum threshold of non ohesive rok�ll slopes.



Chapter 4The ouplingIn this hapter the oupled model for �uid-struture interation analysis is presented.First the �uid and the strutural balane equations, already disussed in the previousparts of this work, are derived from the monolithi oupled system. A staggered solutionstrategy is adopted to ouple the Eulerian �uid solver and the Lagrangian strutural one.A simple example is presented to hek the orret behaviour of the algorithm. Finallyin order to fully desribe the oupling algorithm, the projetion tool reated to mapinformation between the �uid and the strutural non-mathing meshes is disussed.Additional examples of the appliation of the oupled analysis method are shown inChapter 5.4.1 IntrodutionThe strutural stability of rok�ll slopes is heavily in�uened by its interation withwater. Traditionally the oupled problem of soils or rok and water is faed using amultiphase material whose behavior is governed by the oupling between the di�erentphases: soil, water and air. The �rst mathematial models desribing the oupling solidand �uid phase were developed by Biot [13, 14℄. Nevertheless his work was suitableonly for linear elasti materials and its extension to non-linear problems with largedeformations was �rst arried on by Zienkiewiz and Shiomi only several years later[131℄. Its should be mentioned that reently important steps ahead in this �eldhavebeen made by Lewis and Shre�er [78℄, Coussy [91℄ and Boer [49℄.These lassial and well established approahes in geomehanis were not onsidered as



146 The ouplingan alternative in the present work for the following reasons:
• The possibility of aurately following the dynami hange of the �ow throughoutand over the rok�ll is the key point of the model. The oupling of these twophenomena ould be very hallenging in the traditional models needing the trans-ferring of interfae onditions between the free surfae problem and the seepageone in order to perform the oupling. On the ontrary, in the present work this isautomatially taken into aount, as explained in Chapter 2.
• The onsideration of the saturation level and of the interation between air andwater in the partially saturated pores, beomes an useless information. In fat a-ording to experimental evidene, the problem of interest an always be onsideredfully drained, being the pores inter onneted.
• Due to the time sale of the exeptional �ooding that an be of the order of minutesor hours, the dam material an be onsidered as rigid (avoiding any elasti responsein the unyielded region) and its ompressibility an be negleted.
• The apability of traking the material yield surfae is not needed as ommentedin Chapter 3.The need of developing an ad ho �uid approah for the simulation of the free surfae-seepage problem desribed in Chapter 2 leads, as a natural onsequene, to the hoie of astaggered strategy. Nevertheless for a onsistent formulation both the �uid and struturebalane equations should be derived from the imposition of the global equilibrium. Forthat purpose, in the following setions the monolithi global problem is used to obtainthe balane equations for the struture. In this ase, the equation disussed in Chapter3 are ompleted with the oupling terms deriving from the global equilibrium.One the �uid and the strutural problems are de�ned, the oupling strategy is pre-sented. The need of working with an Eulerian and a Lagrangian model leads to imple-ment a fully staggered expliit sheme. A key point of the oupled tool is the possibilityof transferring information between the moving and the �xed mesh. For suh purposea mapping between non mathing meshes has been developed. The performane of thetool is presented at the end of the hapter.



The oupled monolithi problem 1474.2 The oupled monolithi problemLet us onsider the balane equation of the global problem whih an be written asfollows
ρC∂tuC + ρCuC · ∇suC − ρC∇ · σC − ρCb = 0 in Ω, t ∈ (0, T ),

ρC∇ · uC = 0 in Ω, t ∈ (0, T ),
(4.1)where sub-index C indiates the harateristis of the oupled homogenized system.Under the assumption that both the �uid and the struture are inompressible materi-als, System 4.1 an be expressed in terms of the �uid and the struture ontributionsexpliitly as

ρs∂tus + ρsus · ∇sus +∇p′s − 2∇ · µ̃∇sus − ρsbs+

+ρ∂tu+ ρu · ∇u+∇p− 2∇ · µ∇su− ρnbf = 0 in Ω, t ∈ (0, T ),

nρ∇ · u+ ρs∇ · us = 0 in Ω, t ∈ (0, T ),(4.2)Remark 18. Its should be pointed out that the assumption of fully drained problem isused. This onsideration derives from the hypothesis that all the pores an be onsideredinteronneted and that exess pore pressure will never develop.Remark 19. The nodal global density ρC an be either a dry density (de�ned inequation 3.16) if the node is not immersed in water, or a nodal saturated density ρsat

ρC = ρsat = nρ+ (1− n)ρs+ = nρ+ ρs. (4.3)
4.3 The �uid and the strutural balane equationsThe balane equations of the �uid have been de�ned in Chapter 2 and are rewrittenhere for larity. They are de�ned by
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Fluid problem

ρ∂tu+ ρu · ∇u + n∇p− 2∇ · µ∇su

−ρnb +D = 0 in Ω, t ∈ (0, T );

∇ · u = 0 in Ω, t ∈ (0, T );

(4.4)
u(x, 0) = u0(x) in Ω;

u(x, t) = g(x, t) on ∂ΩD, t ∈ (0, T );

n · σ(x, t) = t(x, t) on ∂ΩN , t ∈ (0, T );

(4.5)
Therefore the equations governing the strutural problem an be obtained subtrating4.4 from 4.2. The strutural system obtained is

ρs∂tus + ρsus · ∇sus +∇p′s
−2∇ · µ̃s∇us − ρsb+ (1− n)∇pf −D = 0 in Ωs, t ∈ (0, T ),

∇ · us = 0 in Ωs, t ∈ (0, T ).

(4.6)Strutural problem
ρs∂tus + ρsus · ∇sus +∇p′s

−2∇ · µ̃s∇us − ρsb+ (1− n)∇p−D = 0 in Ωs, t ∈ (0, T ),

∇ · us = 0 in Ωs, t ∈ (0, T ),

(4.7)
us(x, 0) = us 0(x) in Ωs,

us(x, t) = gs(x, t) on ∂ΩsD, t ∈ (0, T ),

n · σs(x, t) = ts(x, t) on ∂Ωs N , t ∈ (0, T ),

(4.8)
This problem is equivalent to the one treated in Chapter 3 providing the followingonsiderations:
• The DOFs of the problem stated by system 4.6 are the e�etive pressure (p′s) andthe solid veloity (us). This is essential in order to fully deouple the �uid and



The oupling strategy 149the strutural equations. This aspet was not expliitly disussed in Chapter 3beause the total pressure is equivalent to the e�etive one in absene of water.
• The external fore term in equation 3.18 is omposed only of the body foreswhereas in system 4.6 the Dary term (D) and the �uid gradient of pressure((1− n)∇pf) are also present.4.4 The oupling strategy

Figure 4.1: Graphial summary of the whole proess.A monolithi approah to the whole problem beomes impossible after the hoie oftwo di�erent kinematial frameworks for the struture and the �uid model. The useof a staggered sheme is therefore mandatory. Moreover in the ontext of partitionedshemes, the more aurate way of performing the oupling between the strutural andthe �uid model is by using an impliit oupling. In this ase iterations are performedbetween the solution of the two models at eah time step, till onvergene is ahieved.



150 The ouplingThis hoie is very aurate although very expensive. The seond possibility, whih isthe one used in the present work, is to perform an expliit oupling. This means thatthe solution at eah time step is obtained by the solution of the �uid and the struturalmodel alulated one after the other, without any iteration.This is aeptable onsidering that :
• The adoption of a semi-expliit sheme for the �uid problem leads to the need ofusing time steps muh smaller than for the fully impliit strutural problem, toensure stability. An impliit oupling would require adopting the smaller time step,i.e. that for the �uid solver, for both models, leading to an extremely expensiveproedure;
• The oupling between the two models is weaker in one of the two diretions. Forthe solution of the �uid problem, in fat, only the porosity distribution is neededto be transfered by the strutural model. In other words, the shape of the rok�llslope or, more generally, of the granular material have to be transfered to the�xed �uid mesh. On the ontrary the other way oupling, the �uid pressure andveloity are essential to orretly de�ne the external fores ating on the rok�llmaterial.In summary the strutural Lagrangian model is projeted on the Eulerian �xed meshdomain where, at the beginning of the simulation, the only available information is theinoming disharge of water and the ontrol domain. The idea is that the �uid analy-sis step is evaluated one the distribution of porosity is projeted from the struturaldomain. The solution of the �uid problem is then projeted on the Lagrangian stru-tural mesh. It is neessary to know the �uid pressure and the Dary fores in orderto evaluate orretly the external fore term of the momentum equation in 4.6. Onethis is done, the strutural response an be alulated. Therefore, the granular domaindeforms aordingly to the obtained veloity and pressure �elds. This new deformedgranular domain is �nally projeted onto the Eulerian mesh in order to solve for thesubsequent time step.Remark 20. The time step of the �uid model is typially one order of magnitudesmaller than the one of the strutural model. This is the onsequene of the alreadydisussed onditional stability of the semi-expliit sheme used for the �uid model.Therefore the �uid and the strutural models have di�erent time steps.



The oupling strategy 151The main points of the entire simulation proess are shown in Figure 4.1 and the �owhart of the algorithm are shematially summarized in the box below:Coupling algorithmAssuming known the solution of the oupled problem at time step tn.1. Projet the on�guration of the rok�ll material in terms of POROSITYdistribution on the Eulerian �uid domain;2. SOLVE the water free surfae �ow problem alulating the VELOCITYand PRESSURE �eld in an EULERIAN �xed mesh using the model pre-sented in Chapter 2;3. Projet the FLUID VELOCITY and PRESSURE �elds on the La-grangian strutural mesh;4. Projet the non linear DARCY TERM on the Lagrangian struturalmesh;5. CALCULATE the strutural response in a Lagrangian mesh, usingPFEM;6. Go bak to step 1.4.4.1 Numerial Example: Still water tank

Figure 4.2: Geometry of the tank and height of the ontained porous medium.The aim of this very simple example is to hek the alulation of the e�etive pressuredistribution when no veloity is present. A tank of porous material with three di�erent
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0.25m(a) Case 1 (hfA = 0.25m). 0.5m(b) Case 2 (hfB = 0.50m). () Case 3 (hfC = 0.75m).Figure 4.3: Depth of water in the three analyzed ases.levels of water is analyzed. The geometry of the model an be seen in Figure 4.2 andthe three analyzed ases are shown in Figure 4.3. The harateristis of the materialare summed up in Table4.1. In the present example gravity is assumed to be 10m/s2.ROCKFILLGlobal density ρC = 1895.2 kg/m3Dry density ρs = 1490 kg/m3Porosity n = 0.4052Average diameter D50 = 35.04 mmWATERFluid density ρ = 1000.0 kg/m3Visosity µ = 0.001 Pa sTable 4.1: Charateristis of the materials onsidered in the model.Let us de�ne:- hs: the depth of the porous medium (0.5m in the three ases);- hf : the water depth (hfA = 0.25m, hfB = 0.50m, hfC = 0.75m);- hw: the wet part of hs (hwA = 0.25m, hwB = 0.50m, hwC = 0.50m );- hd: the dry part of hs (hdA = 0.25m, hdB = 0.0m, hdC = 0.0m);- hfr

f : the water olumn over the porous medium (hfrA = 0.0m, hfrB = 0.0m,
hfrC = 0.25m );The total bottom pressure (ps) in eah ase an be alulated analytially like the sumof the pressure of the wet part, the pressure of the dry part and the pressure of the



The oupling strategy 153E�etive pressure [Pa℄Analytial NumerialCase A 5963.0 5836.8Case B 4476.0 4476.6Case C 4476.0 4478.9Table 4.2: E�etive pressure at the bottom.water olumn , i.e. in symbols
ps = ρC g hw + ρs g hd + ρ g hfr = [(1− n)ρs + nρ] g hw + (1− n)ρs g hd + ρ g hfr

f ; (4.9)and the bottom water pressure is
U = ρ g h. (4.10)Finally the e�etive pressure an be alulated as the di�erene between the total pres-sure and the water pressure

p′s = ps − U = (1− n)ρs g hs − (1− n)ρ g hw. (4.11)On the other hand equation 4.2 redues to
∇p′s +∇p− nρg − (1− n)ρsg = 0; (4.12)and the equilibrium of the �uid part is

n∇p− nρg = 0. (4.13)Rewriting the gradient of �uid pressure of equation 4.12 like ∇p = n∇p + (1 − n)∇pand subtrating equation 4.13 from 4.12 the equilibrium of the solid matrix is obtainedas
∇p′s = (1− n)ρsg− (1− n)∇p; (4.14)In Figures 4.4, 4.5 and 4.6 the numerial results in terms of e�etive pressure ontour�lls and e�etive pressure distributions are shown for the three ases and omparedwith analytial results. As expeted the e�etive pressure distribution does not hangein ases B and C. On the ontrary in ase A the e�etive pressure oinides with thetotal pressure distribution in the dry part of the solid matrix and dereases in the wet
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(b) Analytial and numerial results.Figure 4.6: Case C. hfC = 0.75m E�etive Pressure p
′

s.part due to the ation of the buoyany fores.4.5 Data mapping between non-mathing meshesThe e�etiveness and e�ieny of the model is stritly dependent on the oupling pro-edure whih up to now has only been explained oneptually. Managing a �uid and astrutural models that are represented in two di�erent kinemati frameworks requires atool to transfer information between non-mathing meshes.In the problem of interest, the mapping is to be done on overlapping domains: the �uidontrol domain always inludes the strutural Lagrangian domain. In any ase there isno need for one domain to be fully inluded in the other. The data transfer is performedfrom a 2D to a oplanar 2D domain or between 3D volumes. No mapping betweensurfaes or interfaes is needed for the urrent problem.When dealing with mapping information between meshes the possible ases that anbe onsidered are the following [52℄:1. Compatible idential meshes;2. Nested meshes typial of multi-sale approahes;



156 The oupling3. Non-nested meshes with a large di�erene between their sizes, typial of aeronautiproblems;4. Dissimilar meshes in general.In the present work the need of mapping from a moving to a �xed mesh and vie-versaleads to disard the �rst two groups. On the other hand, there is no partiular reasonwhy the order of magnitude of the two meshes should di�er very muh. Therefore thease of interest is the 4th one. Also the �uid and the strutural problems do not haveany Gauss point variable to be mapped. This simpli�es the problem that redues to thetransfer between nodal variables of non-mathing meshes.Let us de�ne origin mesh (OM) the mesh from whih the variable α is to be transferedto the destination mesh (DM). In this framework, aording to [18℄ the transfer methodsan be lassi�ed as follow:1. The Element Transfer Method (ETM). For eah node of the DM a searh is per-formed in order to loate the element of the OM it is inluded in. The value of αis obtained by interpolating the nodal values of suh element.2. The Mortar Element Transfer Method (METM) in whih onservation of the �eldsis imposed in a weak sense. The di�erene between the value of the �eld on theDM and its value on the OM is asked to be zero weakly performing an integrationon the DM [52℄.3. The Finite Volume Transfer Method (FVTM) where the onservation in a weaksense is obtained using the Finite Volume Method [102℄.4. The Convetion Transfer Method (CVM) whih is a modi�ation of the previousalgorithm suitable for Arbitrary Lagrangian Eulerian methods in whih neitherthe number of nodes, nor the onnetivity hange during the alulation [18℄.The ETM is a dissipative proedure that might reate a serious data loss if the dimensionof the two meshes is very di�erent. Nevertheless, due to its simpliity and onsideringthe weak oupling of the physial simulated phenomenon , it is the method hosen inthis work.Let us refer to Figure 4.7 to explain the ETM algorithm. The data transfer an beperformed via the following steps. For every element (ABC) of the OM:
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Figure 4.7: 2D example of the interpolation proedure. Node I, J and K are inside theirumsribed irle but only node J in inside the element and its value of alpha an bealulated.1. Calulate the sphere that irumsribes the element, or irle in 2D (blak irlein Figure 4.7);2. Searh all the nodes of the DM inside the sphere (nodes I, J and K in Figure 4.7);3. Chek whih of them is inside the element (verifying that the value of the shapefuntions of the element nodes are all positive and smaller than one);
0 < NA(xJ) < 1; (4.15)
0 < NB(xJ) < 1; (4.16)
0 < NC(xJ) < 1; (4.17)4. For every destination node inside the element of the OM (node J of Figure 4.7),interpolate the value of α

αJ = NA(xJ)αA +NB(xJ)αB +NC(xJ)αC ;Remark 21. The variable α an be either a salar or a vetor. A third possibility isleft to the user: he/she an hoose to map the whole origin model on the destinationone.In order to perform step 2 the use of a spatial searh data struture is needed. The



158 The ouplingalternatives available in Kratos [47, 48℄ (Appendix A), whih is the framework used todevelop all the algorithms presented in this work, are brie�y presented in next setion.4.5.1 The searhing algorithmThe searh algorithm is the key point of the e�ieny of the method, in fat it turnsout to be a time onsuming part.Aording to [113℄, the suitable ontainers for this kind of algorithms an be divided inthree families:1. Hash tables like bins and matries. These strutures are suitable for homoge-neously distributed data. If this ondition is met they are the fastest struture tobe used for searhing.2. Trees (quadtrees, otrees, k-d trees for instane). These strutures are ideal for anon-homogeneous data distribution. Nevertheless even if this is not the ase, theyare often preferred to hash tables due to their higher robustness.3. The previous two families an be suitably ombined in order to optimize the searh-ing proedure.A deep analysis of the topi is not the objetive of the present work and the onsultationof [113℄ is reommended for a omplete overview on the topi. In what follows just abrief overview of the data struture available in Kratos is done.The strutures available in Kratos are:1. k-d tree whih denotes k-dimensional tree. It is a spae-partitioning data stru-ture for organizing points in a k-dimensional spae. The k-d tree is based on areursive subdivision of spae into disjoint hyper-retangular regions alled ells.Eah node of the tree is assoiated with suh region, alled ell, and is assoiatedwith a set of data points that lie within this ell. The root node of the tree isassoiated with a bounding box that ontains all the data points.Considering an arbitrary node in the tree, as long as the number of data pointsassoiated with this node is greater than a small quantity, alled the buket size,the box is split into two boxes by an axis-orthogonal hyperplane that intersetsthis box. A representation of how the k-d tree works an be seen in Figures 4.8and 4.9. There are a number of di�erent splitting rules, whih determine how
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Figure 4.8: Shemati representation of a k-d tree data struture taken from [69℄.

Figure 4.9: Representation of a k-d tree partitioning taken from [47℄.this hyperplane is seleted and haraterize the k-d tree. In Kratos the availableoptions are the following:a) Mid splitting rule. The ell is always divided by half;b) Balaned splitting rule. The ell is divided into two ells that ontain thesame number of nodes. This is an optimal rule but very time onsuming;) Approximated balaned rule. It uses the average of the oordinates of thepoints as splitting dimension.2. Bins It divides the domain into a regular nx× ny × nz sub-domains as shown inFigure 4.10 and holds an array of bukets storing its elements (see Figure 4.11).



160 The ouplingThis struture provides an extremely fast spatial searhing when entities are moreor less uniformly distributed over the domain. The good performane for welldistributed entities and their simpliity makes bins one of the most popular datastruture for di�erent �nite element appliations.
Figure 4.10: Representation of a bins partitioning taken from [47℄.

Figure 4.11: Bins struture taken from [47℄.Two bins strutures are implemented in Kartos:a) Stati bins. This is the most e�ient bins struture organizing the data insparse matries but does not allow the insertion of additional data.b) Dynami bins. Slower than the previous one, it is basially a matrix of arraysof entries, allowing a more �exible modi�ation of its ontent at any time.3. Otree. It is a type of tree in whih every node in 3D has hildren. Spaeis reursively subdivided into eight otants (only otants ontaining nodes aredivided in turn). The reation of the tree is faster than in th k-d tree ase but theresulting struture an often be less balaned. The searhing proedure is fasterthan in k-d tree implying less jumps.4. K-d tree of bins a ombination of the previous desribed strutures.



Data mapping between non-mathing meshes 1615. Otree of bins a ombination of the previous desribed strutures.The advantages and drawbaks of every Kratos data struture an be found in [47, 48℄.In the present work the k-d tree, bins and k-d tree of bins data struture have beenused.4.5.2 Numerial ExamplesMesh dimension in�uene in the mapping proedure

(a) Mesh A. Origin (PFEM) mesh. (b) Mesh A. Destination (�xed) mesh.

() Mesh B. Origin (PFEM) mesh. (d) Mesh B. Destination (�xed) mesh.Figure 4.12: Meshes used in the alulation whose element dimension is reported inTable4.3. Left: Lagrangian (PFEM) mesh and right: Eulerian �xed mesh.The breaking of a 2D water olumn example is onsidered here to underline the limitsand possibilities of the interpolation algorithm. The initial height and width of the waterolumn is 0.5m. The alulation is performed in a moving mesh (the origin mesh OM)



162 The ouplingusing PFEM, and at eah time step the whole model part is projeted to the �xed mesh(the destination mesh DM). A k-d tree data struture is used to perform the searhingof the neighbors. Mesh A Mesh BDimension [m℄ 0.005 0.05Table 4.3: Size of the two meshes onsidered in the projetion example.Two di�erent mesh sizes are onsidered for the interpolation proedure, a �ne mesh(mesh A of Table4.3) with approximately 100 elements in the water olumn edge and aoarser one (Mesh B of Table 4.3) with 10. The Eulerian and Lagrangian initial domainsfor the two meshes onsidered are shown in Figure 4.12. In Figure 4.13 the interpola-tion is performed from mesh A to a �xed grid with the same mesh dimension. Wheninterpolating data between oarser PFEM and �xed meshes (mesh B) the interpolationshows a lak of preision (�gure 4.14). Nevertheless it should be observed that originaldata are already quite poor and no relevant data loss is present.The worst performane is observed when interpolating form a PFEM model with meshA to a oarse �xed mesh (mesh B). The loss of information is evident in Figure 4.15.Therefore as a onlusion, the dimension of the origin and destination meshes has to beof the same order of magnitude to obtain an aeptable preision in the interpolationproedure.Performing the projetion algorithmIn the present example the time performane of the interpolation algorithm is alulatedfor a k-d tree, bins and k-d tree of bins data strutures. The example onsiders theprojetion of a salar variable (the porosity) from a PFEM model to a �xed grid model.The meshes are unstrutured and homogeneous. The same dimension is onsidered inthe Lagrangian and Eulerian models.Four di�erent meshes are onsidered for the omparison. The detail of eah of them anbe found in Table4.4. The results are summarized in Figure 4.16 where, as expeted,in the ase of an homogeneous mesh, the bins struture is muh faster than the k-dtree one. The di�erene is learer as muh as the mesh is re�ned. Nevertheless the
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(a) Origin (PFEM) mesh (b) Destination (�xed) mesh. ()Figure 4.13: Mapping between models with Mesh A.

(a) Origin (PFEM) mesh (b) Destination (�xed) mesh. ()Figure 4.14: Mapping between models with Mesh B.
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(a) Origin (PFEM) mesh (b) Destination (�xed) mesh. ()Figure 4.15: Mapping from a �ne mesh (mesh A) to a oarse one (mesh B).ombination of these two strutures resulting in a k-d tree of bins improve relevantlythe e�ieny of the simple k-d tree.The e�ieny of the bins an be ompromised for a mesh with very high di�erene inthe dimension. In that ase, the splitting rule of the k-d tree is the faster searhingproedure [113℄.Conerning the problem of interest of the present work, the results on�rm that thereis no reason why the mesh should vary very muh in the ase of the oupled models ofrok�ll dams that will be presented in next hapter.Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.02 0.03 0.04 0.05Eul Lagr Eul Lagr Eul Lagr Eul Lagrn. nodes 8 200 2 600 3 600 1 200 2 000 700 3 700 460n. elem 15 900 7 400 7 000 3 300 4 000 1 800 7 000 1 200Table 4.4: Mesh dimension of the four meshes onsidered in the projetion example. Thelast two rows indiates the number of nodes and elements for the Eulerian destinationmesh (Eul) and the Lagrangian origin one (Lagr).
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Figure 4.16: Comparison between the performane of k-d tree, bins, and k-d tree of binsdata strutures for the projetion of a salar variable for di�erent mesh sizes.4.6 ConlusionsIn the present hapter the staggered balane equations of the oupled model have beenderived from the global balane equations. The expliit oupling strategy is desribedand a simple example has been used to hek the apability of the model of alulatingthe e�etive pressure distribution for a stati ase.In the seond part of the hapter a proedure to map variables from non-mathingmeshes is presented. After a brief overview of the possible data passing models theimplemented Element Transfer Method is explained. In spite of the di�usivity of themethod and its moderate auray, it is hosen beause of its simpliity. In the futurethis tool ould be easily substituted with a more e�ient projetion tehnique. Thesearhing algorithms available in Kratos have been presented.The examples analyzed lead to the following onlusions:1. The origin and the destination mesh should be of the same order of magnitude toensure an aurate data mapping.2. The stati bins struture is the best hoie for an homogeneous distribution of the



166 The ouplingnodes, Nevertheless the k-d tree data struture an be ompetitive for exampleswith an alternation of dense and sparse distribution of nodes.In any ase a deeper study on the performane of the mapping tehnique is to be donein order to optimize the ode.



Chapter 5Failure analysis of sale models ofrok�ll dams under seepage onditionsIn the present hapter the seepage and the oupled models are validated through aomparison with the experimental results on sale models of rok�ll dams in di�erentseepage onditions, arried out by UPM and CEDEX during the XPRES and E-DAMSprojets [53, 127℄. The e�etiveness of the models are tested on 2D and 3D models ofrok�ll dams with di�erent types of impermeabilization. The in�uene of some physialand mehanial parameters is studied to alibrate the odes.5.1 IntrodutionThe extensive work of UPM and CEDEX during the XPRES and E-DAMS projets[53, 127℄ results in more than 100 experiments. Three experimental failities of di�erentdimensions have been used (they an be seen in Figure 1.6 of Chapter 1). The mainobjetive of the experimentalists during the XPRES projet was the analysis of thein�uene of a series of parameters and of their ombination, on the failure mehanismof the dam.The experimental ampaign investigated the e�et of
• the type of impermeabilization;
• the slope of the downstream part;
• the dimension of the material used;
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• the randomness in the experiments;
• the inoming disharge1;
• the sale e�et;Eah experiment studies a sale model dam under a series of inremental �steps ofdisharge�. After eah inrement, the inoming disharge is maintained onstant tillreahing the steady state. When a breah appears in the downstream slope, its stabi-lization is ahieved before measuring its advane.Pressure heads is registered and the length of failure is therefore measured at eah�step�.

(a) Front view of UPM hannel withthe pressure sensors tubes. (b) One of the panels for readingpressure heights.Figure 5.1: Pressure instrumentation.Pressure at the bottom of the �umes is evaluated by a network of sensors Figure 5.1(a).Its value is read on millimetri panels like the one shown in Figure 5.1(b).The deformation of the dam is analyzed through the evolution of the so alled lengthof failure (B parameter in Figure 5.2(a)). It is, by de�nition, the horizontal projetionof the distane between the initial undeformed downstream toe and the higher point ofthe failed area.Usually olored horizontal strikes are painted on the initial slope. This helps the mea-surement of B (see Figure 5.2(b) for instane). In some of the experiments a moredetailed measurement of the evolution of failure is performed using a lose-objet-photogrammetry-tehnique. It onsists on taking a series of photos with a very short1The inoming disharge is a boundary ondition of the experiment. It is the disharge (in l/s)pumped upstream by the laboratory pumps.
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(a) Shemati view of the length of failure (B). (b) Visual measurement of the ad-vane of failure with the help of ol-ored lines.Figure 5.2: Length of failure. Charaterization and operative measurement.

Figure 5.3: Length of failure. Digital model of the deformed slope to evaluate theevolution of failure B.



170 Failure analysis of sale models of rok�ll dams under seepage onditionstime interval until the end of the simulation. Through the re-elaboration of this data,the reation of a digital model of the deformed dam is possible and the dynami evolutionof the breah is followed with high preision (see for instane Figure 5.3).The experiment ends when failure reahes the rest of the dam.The analysis of the experimental ampaign is not the objetive of the present work andfor more details on the topi, the onsultation of [21, 76℄ is reommended. Neverthelesssome important onlusions of the experimental study are summarized here in order tomotivate the hoie of the ase study presented in the following setions.
1. As explained in Chapter 1, there exists two main failure mehanisms in a rok�llslope when overtopping ours: mass sliding and dragging of partiles. They atin ombined or alternative way prinipally depending on the geometrial hara-teristis of the downstream slope. For steep slopes (1.5H : 1V for instane) masssliding predominates over dragging of partiles. The opposite ours when theslope is very �at (3H : 1V for instane). Taking into aount this important as-pet, UPM and CEDEX observed that data-satter is higher in the experimentswith �intermediate� slopes, where neither the mass sliding nor the erosion arepredominant but their ation is ombined.
2. The length of failure of the �rst steps of disharge (that is for low water level),presents a rather high data satter onerning the evolution of the breah. Onthe ontrary the disharge for whih failure reahes the rest is always in greataordane.
3. No lear relation an be found between the unit failure disharge2 and the down-stream slope.
4. Considering prototype dams of the same dimension, it has been observed that fora ore dam, the unit failure disharge is between 10 and 20% lower than for otherkind of dams.
5. The unit failure disharge inreased for material with higher D50.
6. Failure is observed to be more fragile in the ase of steepest slopes for whih thepredominant failure mehanism is mass sliding.2The unit failure disharge is the disharge for unit length of the �ume, for whih the failure reahesthe rest of the prototype dam.



Overview of the ase study 1715.2 Overview of the ase studyAs a �rst step in the validation of the �uid and oupled ode, a group of experimentshas been reprodued numerially. A seletion of the results is presented in this work.The evolution of seepage and beginning of failure in three di�erent types of dams issimulated: an homogeneous dam, without any sort of impermeabilization, a ore damand a dam with an impervious sreen in order to identify the di�ulties and limitationsin all these ases.All the dams onsidered have the same downstream slope: 1.5H : 1V . This geometrialaspet does not have any in�uene in the modeling of seepage but strongly determinesthe deformation of the rok�ll. In fat, aording to experimental evidene (see point
6 of the previous setion), mass sliding is predominant in this kind of slopes. Theoupled ode has been oneived for representing the predominane of this failure mode.For �at slopes (i.e. H3 : V 1), the inlusion of an algorithm to simulate dragging ofsurfae partiles is required. This module has been already developed following [94, 98℄,nevertheless it still requires extensive testing and is not yet su�iently mature to bepresented in this ontext.Only one material has been analyzed its harateristis are summarized in Table 5.1.Porosity n 0.4052Average diameter D50 35.04mmDry density ρs 1490kg/m3Saturated density ρsat 1910kg/m3Apparent spei� weight W 2500kg/m3Pore index Pi 0.68Internal frition angle range φ [37◦ − 42.5◦]Table 5.1: Properties of rok�ll material.All the previous values are obtained by an external laboratory aording to the Spanishnorms. For instane the granulometri distribution, aording to the UNE-EN 933-1, isthe one shown in Figure 5.4. From this analysis, the diameter for whih the 50% of thematerial passes the sieves (D50) is 35.04mm as detailed in Table 5.1.
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Figure 5.4: Granulometri analysis of rok�ll material aording to the UNE-EN 933-1.This is the largest material used in the experimental ampaign. A diret relation be-tween the dimension of the grains and the disharge of beginning of failure was observed.This implies the possibility of working with higher veloities. In fat this represents apositive aspet beause the level set tehnique an present some problems with very lowveloities (i.e. very low water depth). Just to make an example, at the beginning of thesimulation the Froude number3 an be of the order of 10−2.Finally for eah experiment, di�erent steps of disharge have been simulated. In allthe ases with the lower disharge onsidered no movements in the downstream slope isobserved. This implies that, in order to speed up the alulations, the �uid unoupledode an be used for the simulation. The oupled model is used for the higher disharges.Before presenting of the results, the nomenlature used to lassify the ases is brie�yresumed here.Three di�erent type of dams are simulated in the present hapter:- CASE A: an homogeneous dam without impermeabilization.3Froude number is an a-dimensional number indiating the ratio between gravity and inertia fores.It is used to lassify the �ow regime [58℄.



CASE A: Homogeneous dam 173- CASE B: a dam with internal ore. Only the downstream slope is simulated.- CASE C: a dam with an upstream impervious fae.For eah ase i (i = A,B, and C), two sub-step analyses have been arried out:- Case i1: Analysis of the non-linear seepage given an inoming/overtopping dis-harge. Experimentally no deformation is observed in the dam. This analysis isarried out with the �uid unoupled ode.- Case i2: Analysis of the evolution of failure given an inoming/overtopping dis-harge. Several inreasing values of disharges are onsidered for eah ase aord-ing to experiments. In this ase the oupled ode is employed.Finally in Table 5.2 the disharge (Q in l/s) for every simulated ase is detailed.CASE A CASE B CASE CHomogeneous dam Core dam Impervious fae damWITHOUT A1 Q = 25.46l/s B1a Q = 5.93l/s C.1 Q = 5.17l/sFAILURE B1b Q = 4.0l/sB1 Q = 16.7l/sWITH A2.1 Q = 51.75l/s B2a.1 Q = 19.36l/s C2.1 Q = 15.36l/sFAILURE A2.2 Q = 69.07l/s B2a.2 Q = 30.45l/s C2.2 Q = 25.05l/sA2.3 Q = 90.68l/s B2a.3 Q = 39.56l/s C2.3 Q = 30.27l/sTable 5.2: Case study.The detailed position of the pressure sensors and the experimental data for eah aseare not reported here but an be found in [74℄. This benhmark was seleted to be oneof the three themes of the XI Benhmark workshop of ICOLD on Numerial Analysis ofDams that held in Valenia in Otober 2011. The proposed solution to this benhmarkan be found in [73℄.
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Figure 5.5: Experimental setting.5.3 CASE A: Homogeneous damThe �rst example reprodues an experiment arried out by UPM: a dam without anyinternal ore or impervious sreen is analyzed.5.3.1 Case A. Experimental setting and geometryThe geometry of the prototype dam is presented in Figure 5.6, where also the distributionof the bottom pressure sensors is indiated.

Figure 5.6: Case A. Geometry of the experimental setting and map of the sensorsdistribution.
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Figure 5.7: Case A1. Qualitative model geometry and boundary onditions5.3.2 Case A1. 2D numerial model and resultsThe numerial model is built following the geometry of the experiment [74℄. The ontrolvolume of the Eulerian �uid model has to be large enough in order not to in�uene thesolution.Conerning the boundary onditions, an inlet with �xed veloity is set in the left sideof the ontrol volume. A slip boundary ondition is imposed on the walls as shown inFigure 5.7. The mesh used for the simulation has 16 347 linear triangular elements. Asexplained in the next setions, the mesh size does not a�et relevantly the quality of theresults.The ode an simulate the unsteady regime of the �lling of the upstream reservoir evenif experimental data only refers to the steady state. Figure 5.8 gives an example of theunsteady part of the simulation.In Figure 5.9 the omparison between numerial and experimental head of pressure isshown.The agreement is good even if the numerial ode underestimates the experimentalvalues. This is the onsequene of the model hosen for the resistane law (see Setion2.1.3 for a disussion of the topi).Considering that the geometry of the experiment and the in�ow disharge are orret,the parameters that might in�uene the results of the model are:1. The quality of the mesh;2. The value of the porosity n;3. The value of the average diameter D50.In order to understand how an error in the determination of eah of these parametersan in�uene the solution, a deeper analysis is arried out in the following setions.
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Figure 5.8: Case A1. Evolution of the seepage line in a dam with porosity n = 0.4 and
D50 = 35mm. Q = 25, 46l/s.
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Figure 5.9: Case A1. Bottom pressure distribution at stationary regime for Q =
25, 46l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.



CASE A: Homogeneous dam 1775.3.3 Case A1. Mesh in�ueneIn order to understand how the mesh in�uenes the results, ase A1 is run with di�erentmeshes. The inlet area has been left onstantly re�ned (href = 0.01m4) in order to ensurea onstant inoming disharge before entering the porous medium. The harateristisof the meshes are summarized in Table 5.3 and an be seen in Figures 5.10.Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.01 0.1 0.15 0.20n. elem 43 500 550 310 220n. nodes 86 100 970 510 340Table 5.3: Case A1. Mesh sizes used in the mesh sensitivity study.Results shows that the mesh does not seem to have a strong in�uene on the quality ofthe results at least inside the dam when no impervious strutures are present. The maindi�erene an be observed at the downstream toe of the dam, where water omes out ofthe granular material. For oarser meshes an important loss of volume an be observedoutside the rok�ll. The presene of the porous medium with its dissipative e�et ishelpful in enforing the volume onservation properties also for very oarse meshes likemesh D, for instane. This is no longer true outside the granular material.This aspet should be taken into aount when hoosing the mesh for a simulation.5.3.4 Case A1. In�uene of porosityThe porosity of the material used in the experiments presented in this hapter is evalu-ated by an external laboratory aording to the Spanish norm UNE-EN 1936:2007 andis 0.4052.Keeping all the parameters of the models and the alulation mesh �xed, porosity ishanged in the range 0.30 − 0.45 in order to see the in�uene of this parameter in theanalysis. A onstant variation in the porosity value ∆n indues a onstant jump in thepressure head distribution as an be observed in Figure 5.12.4h is the average mesh dimension. In this ase the sub-index ref indiates that this h refers to there�ned areas at the inlet.
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(a) Mesh A (b) Mesh B
() Mesh C (d) Mesh DFigure 5.10: Case A1. Meshes used in the analysis of mesh sensitivity. Detailed hara-teristis of the meshes an be found in Table 5.3.
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Figure 5.11: Case A1. In�uene of the mesh.
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Figure 5.12: Case A1. Pressure head distribution for porosity n = 0.3, 0.35, 0.4 and
0.45.



CASE A: Homogeneous dam 179The numerial results obtained for n = 0.4052 yields a lower pressure head, whilethe ase with n = 0.35 overestimates the experimental data. The same problem wassubsequently analyzed in more detail onsidering smaller porosity inrement. The resultsadopting n = 0.37, 0.38 and 0.39 are shown in Figure 5.13. The experimental data agreewell with the ase of n = 0.38.
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Figure 5.13: Case A1. Zoom of the pressure head distribution for porosity n = 0.37, 0.38and 0.39.
5.3.5 Case A1. In�uene of the diameter of the materialThe last analysis onerns the in�uene of the D50 value. This value is hanged withan inrement of 1cm from 1 to 8cm. It is interesting to observe Figure 5.14 where thederement of pressure head is not linear with respet to D50. Moreover if D50 > 5cmits in�uene on the pressure distribution is negligible. On the ontrary, the smaller the
D50 is, the bigger its in�uene on the pressure distribution.
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Figure 5.14: Case A1. In�uene of the diameter of the material.



180 Failure analysis of sale models of rok�ll dams under seepage onditions5.3.6 Case A1. 3D numerial model and resultsThe 3D model of ase A has been onsidered following the geometry given in Figure 5.7.The ontrol volume is meshed with a 1 264 015 4-noded linear tetrahedra linear elementsas shown in Figure 5.15.

Figure 5.15: Case A1. 3D model and mesh.Three lines of pressure sensors where ativated during the experiments (respetivelylines 1, 4 and 7 of the plane view of Figure 5.6). They are loated along the entral lineand at 4cm from eah side of the hannel. By identifying Y with the oordinate in thetransversal diretion (as shown in �gure 5.6), the exat position of the sensor lines forase A is detailed in Table 5.4.

Figure 5.16: Case A1 3D. Evolution of the seepage line in a dam with porosity n = 0.4and D50 = 35mm. Q = 25, 46l/s.A sequene of the transitory phase of �lling of the dam an be observed in Figure 5.16.
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Line 1 at Y = 0.04mLine 4 at Y = 1.23mLine 7 at Y = 2.42mTable 5.4: Ativated sensors lines in ase A.
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Figure 5.17: Case A1 (3D). Bottom pressure distribution at stationary regime along thethree sensors lines (Y = 0.04m, 1.23m, 2.42m respetively) for Q = 25, 46l/s. Porosity
n = 0.4, D50 = 35mm. Numerial and experimental omparison.



182 Failure analysis of sale models of rok�ll dams under seepage onditions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
[m]

0.0

0.2

0.4

0.6

0.8

1.0

PR
ES

SU
RE

 [m
]

Q=25.46l/s. Time 10s.
Dam shape
2d results
3d results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
[m]

0.0

0.2

0.4

0.6

0.8

1.0

PR
ES

SU
RE

 [m
]

Q=25.46l/s. Time 25s.
Dam shape
2d results
3d results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
[m]

0.0

0.2

0.4

0.6

0.8

1.0

PR
ES

SU
RE

 [m
]

Q=25.46l/s. Time 50s.
Dam shape
2d results
3d results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
[m]

0.0

0.2

0.4

0.6

0.8

1.0

PR
ES

SU
RE

 [m
]

Q=25.46l/s. Time 75s.
Dam shape
2d results
3d results

Figure 5.18: Case A1. Bottom pressure distribution in 2D and in 3D models at di�erentinstanes of the transitory regime. Q = 25.46l/s. Porosity n = 0.4, D50 = 35mm.



CASE A: Homogeneous dam 183Figure 5.17 shows the omparison between experimental values measured at di�erent
Y and the orrespondent numerial results. The 3D results for ase A1 on�rm thatthe model underestimates the experimental results.Finally a omparison between the 2D and 3D models is performed for the unsteadyregime at di�erent time instanes and the bottom pressure distribution is plotted asshown in Figure 5.18.5.3.7 Case A2. 2D oupled model and results
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Figure 5.19: Case A2. Fluid and dam qualitative models and boundary onditions forthe oupled analysis.The oupled models aim to simulate the seepage line and the overtopping �ow whilefollowing the evolution of the breah in the dam material. It is omposed of two parts:- The �uid Eulerian model. Its onstrution is analogous to the ase A1 and themesh properties are the same. The main di�erene derives from the absene ofany porous material. This information is passed during the alulation, by thePFEM model.- The PFEM strutural model. The dam model is onstruted in a Lagrangianframework. This implies modeling only the material domain (i.e. the dam initialshape and the walls if present). The de�nition of a bounding box is required. It



184 Failure analysis of sale models of rok�ll dams under seepage onditionssets the maximum alulation domain. If a node exits the bounding box is nolonger alulated and is deleted.Remark 22. A preliminary remark on the interpretation of the experimental datashould be made here. The experimental B length of failure is by de�nition the horizontalprojetion of the position of the higher partiles that moves. This movement is notquanti�ed. In the present work it was assumed that a partile is to be onsidered�moved� if its total displaement is higher than the average dimension of the granularmaterial (3.0cm). This hoie is arguable and, as it will be shown later on, it oftenmakes our model too deformable. Nevertheless this empirial riterion was used in allthe models analyzed in order to allow a omparative analysis.
Figure 5.20: Case A2. 2D mesh of the dam model. 3.400 linear triangular elements.In Figure 5.19 a shemati view of the �uid and struture boundary onditions is shown.The mesh used for the �uid model is the same used in ase A1, whereas for the struturalmodel, the mesh is omposed of 3 400 linear triangular elements (Figure 5.20).The photogrammetri analysis of the A ases was also available and helped the om-parison between experimental and numerial results. Figures 5.21-5.23 show on the leftthe digital model derived by the photogrammetri analysis, and on the right the ontour�ll of the displaements. The olored area indiates the displaements larger than 3cm.The reason for this hoie is explained in Remark 22. A very good agreement is observedbetween experimental and numerial length of failure in the three ases.Looking at the pressure head distribution (�gures 5.24-5.24), the experimental bottompressure head is underestimated by the numerial one. This aspet is more relevant thanin ase A1. It might be the signal of an internal variation of the material onditions(suh as porosity or permeability) that is not taken into aount in the model.Figure 5.26 shows that in ase A23, the pressure head presents a lower experimentalvalue where the water exits the dam. The ontration of the �ux an be indued by
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(a) Experimental length of failureB= Bexp = 0.71m. (b) Numerial length of failure B= Bnum= 0.68m.
Figure 5.21: Case A21. 2D omparison between experimental and numerial length offailure.

(a) Experimental length of failureB= Bexp = 1.08m.
(b) Numerial length of failure B= Bnum= 1.04m.

Figure 5.22: Case A22. 2D omparison between experimental and numerial length offailure.
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(a) Experimental length of failureB= Bexp = 1.56m.
(b) Numerial length of failure B= Bnum= 1.58m.

Figure 5.23: Case A23. 2D omparison between experimental and numerial length offailure.
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Figure 5.24: Case A21. Bottom pressure distribution at stationary regime for Q =
51.75l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.Q [l/s] Bexp Bnum ErrorCase A21 51.75 0.71 0.68 4.2%Case A22 69.07 1.08 1.04 3.7%Case A23 90.68 1.56 1.58 1.3%Table 5.5: Case A2. Comparison between experimental (Bexp) and numerial (Bnum)length of failure.
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Figure 5.25: Case A22. Bottom pressure distribution at stationary regime for Q =
69.07l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.the absene of the rok�ll that �owed away during the failure proess. This leads tothe onlusion that the failed material in the numerial model is more rigid than in thereal ase. Its aumulation over the original toe of the dam indues a higher value ofpressure than in the experiment.
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Figure 5.26: Case A23. Bottom pressure distribution at stationary regime for Q =
90.68l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.
5.3.8 Case A2. 2D sequene of inremental dishargesThe ode was oneived to analyze the onsequene of transitory inoming disharges,allowing inserting �ooding urves as an input. Unfortunately this apability has notbeen exploited in the examples presented beause the experimental results where givenfor the stationary regime and no omparison an be made in the transitory regime.Fortunately in the last months, the UPM partners in the E-DAMS projet have been
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Figure 5.27: Imposed inoming disharge in funtion of time.As a preliminary test, ases A1-A21-A22 were run in sequene leaving the su�ient timefor the intermediate stationary regime to be ahieved. The imposed urve representingthe inlet disharge in funtion of time, is reported in Figure 5.27. The pressure head inorrespondene of two pressure sensors loation is registered as an be seen in Figure5.28. The two points are loated at 2.2m and 2.7m from the upstream toe of the dam.The dotted line in the graph is the stationary value of pressure read from the piezometersin the ases A1, A21 and A22 respetively. Also in this ase the numerial resultsunderestimate the experimental ones and the error is analogous to the one presented inthe previous setion.5.3.9 Case A2. 3D oupled model and resultsSome preliminary results have been obtained also in 3D. The �uid and strutural modelshave been developed aording to what explained in Setion 5.3.7 for the 2D validation.On the other hand, the deformation of the dam is not so lear as in the 2D ase. Thishappens beause the deformation is partially skewed by the remeshing at eah time step.As explained in Setion 3.7, remeshing is a key point of PFEM. In fat this method wasoriginally oneived to treat Newtonian free surfae problems where the regeneration ofthe mesh is always required. This is not the ase of the present non-Newtonian algorithmwhere in most of the steps all the nodes are in the unyielded region and do not move.
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Figure 5.28: Bottom pressure distribution onsidering the hydrogram presented in Fig-ure 5.27. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.
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Figure 5.29: Case A22 3D. Numerial and experimental length of failure.



190 Failure analysis of sale models of rok�ll dams under seepage onditionsFor this reason the possibility of inserting a onditional remeshing in the problem is tobe added in the ode in order to have a viable 3D oupled analysis ode.A preliminary tool that allows a onditional remeshing has already been inserted in theode and yields good results like the one shown in 5.29.The plots of the pressure drop (�gure 5.30) shows a good agreement between the resultsof the 2D and 3D models (dotted and ontinuous line respetively). This on�rms theresults obtained in Setion 5.3.6 for the A1 ase in 3D, where only the �uid ode wasused.
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Figure 5.30: Case A22 3D. Bottom pressure distribution at stationary regime for Q =
69.07l/s. Porosity n = 0.4, D50 = 35mm. 2D and 3D numerial results ompared withexperimental data points.5.4 CASE B. Core dam

Figure 5.31: Core dam. Experimental setting.The seond experiment simulated in this work is the seepage inside a ore dam. The oreis onsidered �xed and undeformable. The experiment is arried out building exlusively



CASE B. Core dam 191the downstream slope as an be seen in Figure 5.31. The water entrane is set in theupper left part, omitting the simulation of the �lling of the reservoir that is useless inthe present analysis.5.4.1 Case B. Core dam. Experimental setting and geometryThe geometry of the dam is presented in Figure 5.32 where the distribution of thepressure sensors on the bottom of the hannel an be seen.The model is built in order to reprodue the real geometry of the experimental setting.Sine the ase of interest is the simulation of the overtopped �ow, the geometry of themodel does not inlude the reservoir. The entrane of water is set in the upper left partas shown in Figure 5.33.

Figure 5.32: Case B. Geometry of the experimental setting and map of the sensorsdistribution.
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Figure 5.33: Case B1. Qualitative model geometry and boundary onditions.



192 Failure analysis of sale models of rok�ll dams under seepage onditionsA slip boundary ondition is imposed on the bottom of the hannel and on the oreside.5.4.2 Case B1a. Core dam. 2D numerial model and results

Figure 5.34: Case B1a. Mesh used in the alulation.The mesh used for the alulation an be seen in Figure 5.34. It has 14 859 lineartriangular elements. The omparison between experimental and numerial pressureheads an be observed in Figure 5.35.A re�nement of the mesh is performed in the ritial zones of the falling of the waterand near the bottom of the hannel. The reason for that hoie will be explained inSetion 5.5.2 when desribing ase C1.
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Figure 5.35: Case B1a. Bottom pressure distribution at stationary regime for Q =
5.93l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.



CASE B. Core dam 193Case B presents an additional di�ulty in the �uid dynami problem. It is partiularlyhallenging to simulate orretly the falling jet of water (espeially if the inoming waterveloity is very slow), without su�ering serious mass loss. The good agreement betweenexperimental and numerial pressure heads on�rms that this problem an be auratelymodeled with the method developed in this work. This is on�rmed in the 3D simulationof ase B1a in Setion 5.4.4.5.4.3 Cases B1b and B1. Core dam. Comparison with theo-retial Ergun modelIt has been observed that the numerial pressure head gives lower values than the exper-imental ones. To verify if the problem an be attributed to the hoie of the resistanelaw, a omparison with the theoretial results is performed aording to the work ofLopez Verdejo [125℄. In order to do that a slightly di�erent geometry is taken intoaount. The dam studied is made of the same material as the one presented in theprevious setions but the height of the dam is 0.5m and the length of the downstreamslope is 1.5m. The slope ratio is H3 : V 1.The mesh used is shown in Figure 5.36. It has 2 865 nodes and 5 728 linear triangularelements.

Figure 5.36: Case B1(b-).Mesh used in the alulation.The theoretial solution for an inoming disharge of 4.0l/s and 16.7l/s is plotted in reddotted line in Figures 5.37 and 5.38 respetively. The numerial approximation is verylose to the Ergun theoretial one as expeted. Both these urves underestimate theexperimental values. This on�rms that Ergun model might not be the best hoie forthe resistane law of this kind of problem. In order to overome this issue the next stepwill be to modify the ode in order to let the user insert a ustom quadrati resistane



194 Failure analysis of sale models of rok�ll dams under seepage onditionslaw.As a onsequene of this observation CEDEX will build a permeameter for rok�ll inorder to study deeply this aspet and eventually derive an experimental resistane lawfor the materials used in the projet.
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Figure 5.37: Case B1b. Bottom pressure distribution at stationary regime for Q =
4.0l/s. Porosity n = 0.4, D50 = 35mm. Numerial, experimental and theoretialomparison.
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Figure 5.38: Case B1b. Bottom pressure distribution at stationary regime for Q =
16.7l/s. Porosity n = 0.4, D50 = 35mm. Numerial, experimental and theoretialomparison.5.4.4 Case B1a. Core dam. 3D numerial model and resultsCase B1a has been simulated in 3D as well. Figure 5.39 shows a sequene of thetransitory regime of the �lling of the ore dam. Three di�erent meshes are taken intoonsideration in order to understand whih is the minimum element length to orretlyreprodue the experiments, without relevant volume losses.



CASE B. Core dam 195

Figure 5.39: Case B1a 3D. Evolution of the seepage line in a dam with porosity n = 0.4and D50 = 35mm. Q = 5.93l/s.
Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.02 0.03 0.04 0.05n. elem 1 460 000 517 000 281 000 183 000n. nodes 250 000 89 600 49 000 34 000Table 5.6: Case B1a. Meshes used for the analysis.



196 Failure analysis of sale models of rok�ll dams under seepage onditionsThe harateristis of the four meshes analyzed are summarized in Table 5.6. There�nement is performed only in the dam volume, whereas the dimension of the elementsis kept �xed in the rest of the domain as it an be observed in Figure 5.40.
(a) Mesh A (b) Mesh B
() Mesh C (d) Mesh DFigure 5.40: Case A1. Meshes used in the analysis of mesh sensitivity. The harater-istis of the meshes an be found in Table 5.6.Figure 5.41 shows the pressure heads for the di�erent mesh sizes. The onvergene isahieved when the mesh is �ner than 0.03m. For larger meshes the volume onservationis seriously ompromised. This loss takes plae when the �ux falls down vertially.Therefore partiular are should be taken in the re�nement for the analysis of a oredam.5.4.5 Case B2. Core dam. Coupled model and resultsThe onstrution of the models for the oupled ase is analogous to what already ex-plained in Setion 5.3.7 for the A2 ase. A shemati representation of the boundaryonditions an be found in Figure 5.42.Figure 5.43 shows the Lagrangian mesh used in the alulation. It has 8 000 lineartriangular elements.
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Figure 5.41: Case B1a (3D). Bottom pressure distribution at stationary regime for
Q = 5.93l/s. Porosity n = 0.4, D50 = 35mm. Numerial, experimental and theoretialomparison.
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Figure 5.42: Case B2. Fluid and dam qualitative models and boundary onditions forthe oupled analysis.
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Figure 5.43: Case B2. 2D mesh of the dam model. 8 000 linear triangular elements.5.4.6 Case B21. Core dam. Sensitivity analysis: internal fri-tion angleThe numerial length of failure obtained for material with frition angle of 40◦ and 41◦exeeds signi�antly the experimental measurements. Additional tests were arried outinreasing φ. The dam remains ompletely rigid if φ = 42◦. Therefore, the intermediateangles were onsidered as shown in Table 5.7 where the length of failure B obtained fordi�erent values of φ is summarized.
φ [0] B [m]

40 0.92

41 0.76

41.5 0.75

41.54 0.75

41.548 0.74

41.55 0.0

42 0.0Table 5.7: Case B21. Length of failure B for di�erent φ.The model is able to ath the motion if φ < 41.550. Moreover in the range φ ∈
[41− 41.55] no relevant di�erenes are found in the evaluation of B. This indiates thatthe model is not able to ath orretly the �rst deformation of the slope. As expeted



CASE B. Core dam 199no relevant hanges are observed in the pressure head of the onsidered ases (�gure5.44).

0.0 0.5 1.0 1.5 2.0 2.5
[m]

0.0

0.2

0.4

0.6

0.8

1.0

PR
ES

SU
RE

 [m
]

Q=19.36l/s
Dam shape
Experimental results
Numerical results �=400

Numerical results �=410

Numerical results �=41.50

Numerical results �=41.540

Numerical results �=41.5480

Numerical results �=41.550

Numerical results �=420

Figure 5.44: Case B21. Bottom pressure distribution at stationary regime for Q =
19.36l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison fordi�erent internal frition angles φ.The auray improves for ases B22 and B23 as explained in the next setions. Thisfat oinides with what was observed experimentally: the length of failure indued bythe lower step of disharge presents a high data satter whereas the failure ahieves therest always at the same disharge level.5.4.7 Case B2 with φ = 41◦Sine the di�erene in the length of failure is not so relevant if φ ∈ [41 − 41.55], theinternal frition angle adopted for ase B2 is φ = 41◦.Figures 5.45-5.47 show the omparison between experimental and numerial dam de-formation at eah step of disharge for φ = 41◦. The error in the evaluation of B isprogressively redued when inreasing the disharge as detailed in Table 5.8.An additional onsideration an be made looking at the pressure head distribution ofthe three ases shown in Figures 5.48-5.50. As for the A2 ase, the amount of movedrok�ll is lower in the simulation than in the experiments. In fat the higher value ofnumerial pressure at the toe of the dam indiates that granular material is presentover the sensor position (i.e. the resistane given by the grains inreases the water leveland the pressure head as well). This seems to indiate that the material settles fasterthan in the experiment. It may be the onsequene of the viso-rigid onstitutive modeladopted.
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(a) Experimental length of failureBexp = 0.32m. (b) Numerial length of failure B= Bnum= 0.76m.Figure 5.45: Case B21. 2D omparison between experimental and numerial length offailure.

(a) Experimental length of failureBexp = 0.68m. (b) Numerial length of failure B= Bnum= 0.90m.Figure 5.46: Case B22. 2D omparison between experimental and numerial length offailure.

(a) Experimental length of failureBexp = 1.00m. (b) Numerial length of failure B= Bnum= 1.02m.Figure 5.47: Case B23. 2D omparison between experimental and numerial length offailure.
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Q [l/s] Bexp Bnum ErrorCase B21 19.36 0.32 0.76 137%Case B22 30.45 0.68 0.90 32%Case B23 39.56 1.00 1.02 2%Table 5.8: Case B2. Comparison between experimental (Bexp) and numerial (Bnum)length of failure for φ = 41◦.
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Figure 5.48: Case B21. Bottom pressure distribution at stationary regime for Q =
19.36l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.

0.0 0.5 1.0 1.5 2.0 2.5
[m]

0.0

0.2

0.4

0.6

0.8

1.0

PR
ES

SU
RE

 [m
]

Q=30.45l/s
Dam shape
Experimental results
Numerical results �=410

Figure 5.49: Case B22. Bottom pressure distribution at stationary regime for Q =
30.45l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.
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Figure 5.50: Case B23. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.5.5 CASE C. Impervious fae damThe simulation of a dam with an impervious sreen is the most hallenging ase from a�uid dynami point of view. The inlet of water is set in the upper left part, aordingto what already done in ase B. It implies that a falling jet should also be simulated.The impemeabilization of the experimental dam is obtained making use of a plastideformable material used to over the upstream slope. Speial are is observed onthe perimeter, where the plasti is onneted with the side walls and the bottom ofthe hannel. In fat, there is a high possibility of leakage that ould invalidate theexperiment. Figure 5.51 shows a view of the experimental setting, unfortunately nophotos are available of the upstream slope with the plasti overage.

Figure 5.51: Case C1. Experimental setting.



CASE C. Impervious fae dam 2035.5.1 Case C. Impervious fae dam. Experimental setting andgeometryThe details of the geometry of the experimental setting an be seen in Figure 5.52, wherethe pressure sensors distribution is also shown. The red retangles indiate the threelines of sensors ativated. They are respetively at Y = 0.3m Y = 0.5m and Y = 0.7m.

SENSOR LINE 

Y = 0.7m

SENSOR LINE 

Y = 0.5m

SENSOR LINE 

Y = 0.3m

Figure 5.52: Case C1. Impervious fae dam. Geometry of the experimental setting andmap of the sensors distribution.



204 Failure analysis of sale models of rok�ll dams under seepage onditions5.5.2 Case C1. Impervious fae dam. Unoupled model andresultsIn order to optimize the omputational domain, the upstream reservoir is not simulatedand the entrane of water is diretly set in the upper left part, at the rest level, as shownin Figure 5.53. The upstream sreen is therefore onsidered perfetly impermeable andit is simulated as a rigid wall with a slip ondition.
n = 1.0

UIN

SLIP BOUNDARY CONDITION

SCREEN

n = 0.4052

D50 = 35.04 mm
SLI

P B
.C
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Figure 5.53: Impervious fae dam. Qualitative model geometry and boundary ondi-tions.The rest of the boundary onditions are similar to those of the previous models andthey are shematially presented in Figure 5.53. A qualitative geometry is also shownin the image.It has been experimentally observed that no deformation of the downstream slope oursup to a disharge of 5.71l/s. Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.03 0.02 0.015 0.01n. elem 4 700 8 500 13 000 20 000n. nodes 2 900 4 200 6 800 10 000Table 5.9: Case C1. Meshes used in the analysis.Di�erent mesh are used in order to identify the minimum element size that yields aorret onservation of the �uid volume. Their harateristis are summarized in Table5.9 and they are shown in Figure 5.54. The �rst mesh taken into onsideration is meshA shown in Figure 5.54 where the average dimension of the elements is set to 0.03m.



CASE C. Impervious fae dam 205This ondition is not su�ient for the �ow to be simulated orretly and the mass lossompromises the results. The �nal level of water obtained is in fat muh lower than inthe other ases, as shown in Figure 5.55.
(a) Mesh A (b) Mesh B
() Mesh C (d) Mesh DFigure 5.54: Case C1. Meshes used in the analysis of mesh sensitivity. Detailed hara-teristis of the meshes an be found in Table 5.9.This problem is solved just re�ning the area where the jet falls and the bottom ofthe hannel as for mesh B, C and D. It is interesting to observe how the mesh sizerequirements are striter than in ase B1a.The omparison between bottom pressure distribution of the analyzed ases shows thatfor a mesh �ner than 0.015m the results onverge to the same solution. In the samegraph the wrong behavior of the model with the oarsest mesh is learly re�eted interm of pressure head.
(a) Mesh A (b) Mesh DFigure 5.55: Case C1. Steady state on�guration in C1 ase with mesh A an D respe-tively. The blue line represents the free surfae.
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Figure 5.56: Case C. Bottom pressure distribution at stationary regime for Q = 5.17l/s.Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison for the di�er-ent meshes analyzed.5.5.3 Case C2. Impervious fae dam. Coupled model and re-sultsThe onstrution of the models for the oupled analysis is done as explained for ases
A2 and B2 and is shown in Figure 5.57. The mesh used in the �uid model is mesh Dused for the C1 ase (Figure 5.54) whereas the mesh of the dam is shown in Figure 5.58.
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Figure 5.57: Case C2. Fluid and dam qualitative models and boundary onditions forthe oupled analysis.



CASE C. Impervious fae dam 207Looking at Figure 5.59 it an be observed that the oupled model overestimates thelength of failure in ase C21. The results improve for higher disharges, as explainedin the following setions. The overestimation of the length of failure when Bexp << B0has already been disussed in Setion 5.4.7.
Figure 5.58: Case C2. 2D mesh of the dam model. 9.400 linear triangular elements.The pressure head distribution (see Figure 5.62) aording to what has been explainedin the previous ases is underestimated by the model. On the other hand, the variationin the pressure head at the deformed toe of the dam an be, also in this ase, theonsequene of a too fast settlement of the �uidi�ed material. This issue is expeted tobe orreted by inluding of the possibility of dragging the super�ial partiles.

B0 =1.20m

B =0.58m

Figure 5.59: Case C21. 2D omparison between experimental and numerial length offailure.In ase C22 the numerial length of failure is Bnum = 0.61m, as shown in Figure 5.60,whih is lose to the experimental value of Bexp = 0.59m. Nevertheless, the numerialpressure heads are lower than the experimental ones (Figure 5.63).In the last example failure ahieves the rest of the dam both in the numerial (Bnum =

1.40m) and in the experimental (Bexp = 1.44m) models (Figure 5.61) as expeted.Finally a good aordane an be found in the pressure head distribution, as shown inFigure 5.64.
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B0 =1.20m

B =0.61m

Figure 5.60: Case C22. 2D omparison between experimental and numerial length offailure.
B0 =1.20m

B =1.40m

Figure 5.61: Case C23. 2D omparison between experimental and numerial length offailure.
Q [l/s] Bexp Bnum ErrorCase C21 15.36 0.24 0.58 142%Case C22 25.05 0.59 0.61 3.2%Case C23 30.27 1.44 1.40 2.7%Table 5.10: Case C2. Comparison between experimental (Bexp) and numerial (Bnum)length of failure.
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Figure 5.62: Case C21. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.
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Figure 5.63: Case C22. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.
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Figure 5.64: Case C23. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numerial and experimental omparison.



210 Failure analysis of sale models of rok�ll dams under seepage onditions5.6 Conlusions and future workIn this work a novel approah for the simulation of the onset of failure of downstreamslopes in rok�ll dams is presented. The dynami evolution of seepage and the freesurfae �ow both upstream and downstream the dam are simultaneously analyzed. Thisis done using the edge-based ode presented in Chapter 2. The strutural response isevaluated with a viso-rigid onstitutive model. As a failure riterion, Mohr Coulombhas been adopted. The rok�ll is treated as a highly visous non-Newtonian �uid (thereason for this hoie is explained in Chapter 4). The visosity drastially dereaseswhen, due to the hydrodynami fores, the yield stress is exeeded. When this happensfailure ours and the material starts to �ow. The �uid-struture oupling is performedusing a fully staggered sheme and a projetion tool between non-mathing meshes. Inwhat follows the onlusions and the future work onerning the validation presented inthis hapter are detailed
• The �uid module.

1. There is a good agreement between experimental and numerial pressureheads for the undeformed ases (A1, B1, C1) both in 2D and 3D. Never-theless the numerial results always slightly underestimate the experimentalvalues. Additional numerial experiments arried out in the framework ofXPRES and EDAMS projets an on�rm that the pressure line is alwayslower than the experimental one, espeially when inreasing the porosity val-ues. This aspet, together with the omparison with theoretial Ergun urvesshown in Setion 5.4.3, lead to the onlusion that the Ergun oe�ients un-derestimate the pressure drop in the seepage problem. In the near future, weplan to generalize the quadrati law of the Dary non linear term ( αu+βu2)and let to the user the hoie of the suitable α and β oe�ients.
2. The overestimation of the pressure head at the toe of the deformed dam(ases A2, B2, C2), might be the onsequene of a smaller deformation ofthe failed material. Whereas the length of failure is orretly reprodued, thefailed material settles faster than in the real ase and aumulates lose to theoriginal toe. In the experiments the path run by the failed rok�ll materialis muh larger (see the onlusion about the oupled model for additionalomments on this issue).
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3. The ode has a good performane also in the hallenging ases of a fallingjet of water. The only requirement is a re�nement of the mesh in the fallingpart of the domain.
4. Another hallenging aspet of ases A1, B1, C1 is that the disharges arevery low. This might represent a problem at the beginning of the simulationwhen a very thin layer of water starts �lling the dam. This issue an be easilyorreted by re�ning the mesh lose to the bottom.
5. It might be interesting to test the model with di�erent materials and eventu-ally with several di�erent porosities in the same dam. In this ontext somepreliminary results (not shown in the work) have been obtained using the�uid ode. This aspet is interesting beause it will allow a more realistirepresentation of the rok�ll slope. The onstrution proess in fat is usuallydone layer by layer and a mehanial ompation is performed with a rollerbefore passing to the next level. This ompation auses a rumbling of thesuper�ial material. A thin layer is obtained on the surfae. It is formedby partiles with average diameter muh smaller than the rest of the rok�llleading to a di�erent porosity.
6. The sale e�et is another aspet that must be taken into aount in thefuture. CEDEX is now building a hannel that will allow setting up dams ofup to 2 meters high (the maximum height of prototype dams built up to nowwas 1m).

• The oupled module.
1. The ode represents the inremental failure of the dam when inreasing theoverspilling disharge. It is also able to represent orretly the ases for whihfailure ahieves the rest of the dam. On the ontrary for lower disharges

B is overestimated. This aspet is also re�eted at experimental level. Infat when repeating the same experiment, the beginning of formation of thebreahing su�ers of a ertain data satter. Conversely, the disharge for whihthe failure reahes the rest is always the same.
2. As already observed in the onlusions regarding the �uid module, the failedmaterial settles faster than in the real ase. This an be a onsequene of theviso-rigid onstitutive model hosen. In fat when the shear stress dereasesunder the yield stress threshold, the visosity dramatially inreases ausing



212 Failure analysis of sale models of rok�ll dams under seepage onditionsa sudden stop of the element. The insertion of an erosion tool might solvethe problem dragging away the deposed material.
3. In the experiments presented the high downstream slope (1.5H : 1V ) anlead to the onlusion that the prinipal failure mehanism is mass sliding.Nevertheless in the most general ase erosion, i.e. super�ial dragging ofpartiles, plays a relevant role, ating in ombined or alternate way. Thepossibility of inluding a proedure to evaluate erosion is essential in orderto fully desribe the phenomenon.
4. The 3D oupled model has given enouraging results. Nevertheless the pos-sibility of inserting a onditional remeshing should be taken into aount inorder to ontrol the deformation avoiding exessive visous e�ets that leadto an exessive �ueny of the downstream slope.
5. The oupled ode was oneived to analyze the onsequene of transitoryinoming disharges, allowing inserting �ood hydrograms as an input. Thisapability is not exploited in the presented examples. Just a preliminaryexample is shown in Setion 5.3.8. Experiments are urrently arried out atUPM onsidering hydrograms and not inremental steps of disharge. In anear future it may be possible a validation of this important aspet.
6. In the present hapter it was pointed out the low reliability of the B param-eter used to quantify the length of failure. In the future, the possibility ofomparison between the 3D digital model and 3D numerial results shouldbe investigated in more detail.



Chapter 6ConlusionsIn this hapter the onlusions of the work are presented and an overview of the futurelines of researh is made.6.1 Summary and ahievementsThe aim of this work was to development a numerial tool for the simulation of theovertopping in rok�ll dams. For that purpose three are the main points developed inthe present work (re�eted in Chapters 2, 3 and 4 respetively):
1. The development of a �uid ode able to simulate the free surfae �ow over andthroughout the rok�ll. The lassial Navier-Stokes equations have been modi�edto automatially aount for a hange in porosity values. The non linear seepageis evaluated using a quadrati form of the resistane law. Ergun's oe�ientshave been hosen. The possibility of inluding variable inoming disharges isan essential requirement for the objetives of the work. A �xed mesh approahhas been used and a level set tehnique has been implemented for traking theevolution of the free surfae both outside and inside the rok�ll. Of the twoapproahes presented in Chapter 2, the edge-based one has been hosen for itsbetter performanes in terms of omputer time.
2. The implementation of a ode to simulate the behaviour of a granular non-ohesivematerial. A non- Newtonian modi�ed Bingham law is proposed. This approahgives the possibility of onsidering a pressure sensitive resistane riteria. This is



214 Conlusionsobtained by inserting a Mohr Coulomb failure riteria in the Bingham relation.Sine the rok�ll is expeted to undergo severe deformation during the failureproess, a Lagrangian approah is preferred to a �xed mesh one. PFEM was theadopted tehnique.
3. The implementation of a strategy to ouple the models mentioned in Points 1and 2. This tool needs to inlude an algorithm for the data mapping betweennon mathing meshes being the strutural and the �uid models in two di�erentkinemati frameworks (the Lagrangian and the Eulerian one).Finally in hapter 5 an extensive validation of the ode is done, simulating the experi-ments performed by UPM and CEDEX in the XPRES and E-DAMS projets. Severaldi�erent experimental settings have been taken into aount. For eah of them a sensi-tivity analysis of the main parameters has been arried out in order to understand theapabilities and limitations of the ode.The results are enouraging onsidering that this work represents a �rst step for thesolution of a omplex problem.6.2 Future lines of researhTo onlude some ideas of possible appliations and future lines of researh derivingfrom this work are provided in this setion.The �uid-seepage ode has been used in this work for a very spei� appliation. Never-theless one the possibility of de�ning a ustom resistane law is inserted in the ode, itbeomes a general tool to treat a wide range of problems. For instane all the problemsdominated by Dary inompressible �ows an be simulated setting to zero the non-linearterm. Several problems in harbor engineering need to evaluate the dissipation su�eredby inoming waves when smashing over tetrapods, or general protetions of dikes andlevees, that behaves like rok�ll. Another appliation an be, for instane, turbine sim-ulation. In fat the pressure drop indued by this type of mahines is often simulatedwith an equivalent porous medium in order to study the e�ets in the surrounding �uidenvironment.The �uid ode itself has been already applied to a number of free surfae �ow problemswithout the presene of any porous material. Some of them have been shown in Chapter2 (the �ip buket example or the water olumn ollapse). This ode has been suessfully



Future lines of researh 215used for the alulation of the disharge on a spillway as detailed in [112℄, or for thesimulation of mould �lling proesses as shown in [108℄.The modi�ed Bingham model oupled with the �uid ode an also be used for thesimulation of the e�et of a landslide into a reservoir. In fat the ode naturally simulatesthe interation between the solid falling into the water and the resulting wave.Conerning the problem of overtopping in rok�ll dams, it should be remarked thatthe whole work was oneived to easily hange the strutural model maintaining theoupling strategy and the �uid-seepage module. As a omplement of the FEM-PFEMontinuous approah presented in this work, the possibility of a FEM-DEM model isurrently being explored by other researhers of the same working team.





Appendix AKratos Multiphysis
A.1 KratosAll the algorithms presented in this thesis are developed insideKratos Multiphysi [3, 48℄.Kratos is a framework for building multi-disiplinary �nite element odes as well as aommon platform for natural interation of these modules in di�erent ways. It is writtenin C ++ language.It provides several tools for easy implementation of �nite element odes and a ommonplatform for their natural interation in di�erent ways.It is addressed to a variety of people ranging from developers (�nite element experts orappliation programmers) to engineers or designers who stop at the user level withoutgetting involved in the programming features.A.1.1 Objet-oriented approahThe main goal of an objet-oriented struture is to split the whole problem into severalobjets and to de�ne their interfaes. With regard to the simulation of multi-disiplinaryproblems using FEM, the objets de�ned in Kratos are based on a general �nite elementmethodology. Figure A.1 illustrates the main lasses.Vetor, Matrix and Quadrature ome from basi onepts of numerial analysis. Node,Element, Condition, Mesh and Dof are taken diretly from �nite element onepts.Model, Properties, ModelPart and SpatialContainer are oneived for a better or-ganization of all neessary data. IO, LinearSolver, Proess and Strategy are basilar
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Figure A.1: List of the prinipal objet in Kratos. Image taken from [47℄.di�erent tools of �nite element programs. Finally, Kernel and Appliation handle thelibrary management and de�ne Kratos interfae.A.1.2 Multi- layer designKratos uses a multi-layer approah in its design. This imply that eah objet only inter-faes with objets in the same layer or in lower ones. Layering redues the dependenyinside the program. It helps in the maintenane of the ode and also helps developersto understand the ode and lari�es their tasks.The layers struture has been designed to be addressed to di�erent ategory of users. Itwas oneived to lead the user to work with the minimum number of layers as possible.This was done in order to redue on�its between users and espeially to redue asmuh as possible the part of the ode touhed by eah developer.Following the design mentioned above, Kratos is organized as follow:Basi Tools Layer. It holds all the basi tools used in Kratos. This layer usingadvane C++ tehniques is essential in order to maximize the performane. It isdesigned to be implemented by an expert programmer not neessarily FEM expert.
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Figure A.2: Graphial summary of the multi.layer design. Image taken from [47℄.This layer may also provides interfaes with other libraries.Base Finite Element Layer. It holds the objets that are neessary to implementa �nite element formulation. It also de�nes the struture to be extended fornew formulations. This layer hides to the �nite element developers the di�ultimplementations of nodal and data struture and other ommon features .Finite Element Layer. The layer for �nite element developers. It only uses basiand average features of C++ and uses the previous desribed layers in order tooptimize the performane without entering into optimization details.Data Strutures Layer. It ontains all objets organizing the data struture. Thislayer has no implementation restritions. Advaned language features are used tomaximize the �exibility of the data struture.Base Algorithms Layer. Generi algorithms are implemented here to be availablefor users in di�erent �elds.User's Algorithms Layer. This layer is to be used by high level �nite element



220 Kratos Multiphysisprogrammers. It ontains all lasses implementing the di�erent algorithms inKratos.Appliations' Interfae Layer. It holds all the objets that manage Kratos and theirrelation with other appliations. The omponents of this layer are implementedusing high level programming tehniques in order to provide the required �exibility.Appliations Layer. It ontains the interfae of ertain appliations with Kratos.Sripts Layer. Holds a set of IO sripts whih an be used to implement di�erentalgorithms from outside Kratos. Pakage users an use modules in this layer orreate their own extension without having knowledge of C++ programming or ofthe internal struture of Kratos. Via this layer they an ativate and deativateertain funtionalities or implement a new global algorithm without entering intoKratos struture details.A graphial representation of the struture an be seen in �g. A.2A.1.3 Python interfaeKratos uses the failities of Python language for IO data transmission [4℄. This �exibleinterpreter with its objet-oriented high level language an be used to implement andexeute new algorithms using Kratos. Python allows an high level of �exibility, withoutthe need of reompiling the ode when debugging or testing new algorithms.A.2 GiD problem types and interfaesThe pre and post- proessing is done using the in-house ommerial sofware GiD [2℄.Di�erent problem types have been developed in TCL to ustomize GiD insert the dataand print the results of the di�erent appliations presented in this work. They are allavailable in the kratos website [3℄.
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