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�La �loso�a è s
ritta in questo grandissimo libro 
he 
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i sta apertoinnanzi a gli o

hi (io di
o l'universo), ma non si può intendere se prima non s'imparaa intender la lingua, e 
onos
er i 
aratteri, ne' quali è s
ritto. Egli è s
ritto in linguamatemati
a, e i 
aratteri son triangoli, 
er
hi, ed altre �gure geometri
he, senza i qualimezzi è impossibile a intenderne umanamente parola; senza questi è un aggirarsivanamente per un os
uro laberinto.�Galileo Galilei, Il Saggiatore (1623)
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Abstra
t
Ro
k�ll dams are nowadays often preferred over 
on
rete dams be
ause of their e
onomi
advantages, their �exible design and thank to the great advan
e a
hieved in geos
ien
esand geome
hani
s. Unfortunately their behavior in 
ase of overtopping is still an openissue. In fa
t very little is known on this phenomenon that in most 
ases leads to the
omplete failure of the stru
ture with 
atastrophi
 
onsequen
es in term of loss of livesand e
onomi
 damage.The prin
ipal aim of the present work is the development of a 
omputational methodto simulate the overtopping and the beginning of failure of the downstream shoulder ofa ro
k�ll dam. The whole phenomenon is treated in a 
ontinuous framework.The �uid free surfa
e problem outside and inside the ro
k�ll slope is treated using aunique Eulerian �xed mesh formulation. A level set te
hnique is employed to tra
k theevolution of the free surfa
e. The traditional Navier-Stokes equations are modi�ed inorder to automati
ally dete
t the presen
e of the porous media. The non-linear seepageis evaluated using a quadrati
 form of the resistan
e law for whi
h the Ergun's 
oe�
ientshave been 
hosen.The stru
tural response of the solid skeleton is evaluated using a 
ontinuum vis
ousmodel. A non-Newtonian modi�ed Bingham law is proposed for the simulation of thebehaviour of a granular non-
ohesive material. This approa
h has the possibility of
onsidering a pressure sensitive resistan
e 
riterion. This is obtained inserting a Mohr-Coulomb failure 
riterion in the Bingham relation. Due to the large deformation of themesh during the failure pro
ess, a Lagrangian framework is preferred to a �xed meshone: the Parti
le Finite Element Method (PFEM) is therefore used. Its spe
i�
 featuresmake it appropriate to treat the ro
k�ll material and its large deformations and shape
hanges.



Finally a tool for mapping variables between non-mat
hing meshes is developed to allowpassing information between the �uid �xed and the dam moving meshes.All the numeri
al results are 
ompared with experiments on prototype ro
k�ll dams.



Resumen
Hoy en día las presas de es
ollera resultan a menudo una ele

ión preferible respeto alas tradi
ionales presas de hormigón por su menor impa
to e
onómi
o y, sobretodo, porsu mayor �exibilidad de diseño gra
ias a los grandes avan
es al
anzados en geo
ien
iasy en geome
áni
a.Sin embargo, desafortunadamente su 
omportamiento frente a un sobrevertido siguesiendo un aspe
to des
ono
ido y muy difí
il de analizar. Cuando el nivel de agua superala 
orona
ión, en la mayoría de los 
asos se produ
e la rotura 
ompleta de la presa 
on
onse
uen
ias 
atastró�
as tanto en términos de perdida de vidas humanas 
omo entérminos e
onómi
os.El prin
ipal objetivo de este trabajo es el desarrollo de un método 
omputa
ional quepueda simular el sobrevertido y el prin
ipio de la rotura del espaldón aguas abajo deuna presa de es
ollera. Todo el fenómeno se trata 
on modelos 
ontinuos.El problema de �ujo en super�
ie libre tanto fuera 
omo dentro de la es
ollera se trata
on una úni
a formula
ión usando un método Euleriano de malla �ja y una té
ni
a delevel set para trazar la evolu
ión de la super�
ie libre. Se han modi�
ado las 
lási
ase
ua
iones de Navier-Stokes de manera que se dete
te automati
amente la presen
iade un medio poroso. La �ltra
ión no lineal se evalúa mediante una ley de resisten
ia
uadráti
a en la 
ual se han empleado los 
oe�
ientes de Ergun.La respuesta estru
tural se evalúa usando un modelo 
ontinuo vis
oso. Se proponeuna versión modi�
ada de la ley de Bingham para �uidos no Newtonianos que permitesimular el 
omportamiento granular no 
ohesivo de la es
ollera. La diferen
ia de esteenfoque 
onsiste en la posibilidad de 
onsiderar un 
riterio de resisten
ia que sea fun
iónde la presión. Esto se obtiene insertando un 
riterio de fallo de Mohr Coulomb en larela
ión de Bingham. Debido a las grandes deforma
iones a las que se ve sometida



la malla durante el pro
eso de rotura se ha preferido usar un método Lagrangianorespe
to a uno de malla �ja: el Métodos de Elementos Finitos y Partí
ulas (PFEM). Sus
ara
terísti
as lo ha
en apropiado para simular la es
ollera y sus grandes deforma
ionesy 
ambios de forma.Finalmente se ha desarrollado una herramienta para interpolar datos entre mallas no
oin
identes para permitir la transferen
ia de informa
iones entre el modelo �uido demalla �ja y el modelo de la presa 
on malla en movimiento.Todos los resultados numéri
os se han 
omparado 
on experimentos he
hos sobre presasprototipo.
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Chapter 1Introdu
tionThe rehabilitation of existing dams and their safety analysis are nowadays open �elds ofresear
h. In fa
t in many 
ountries the design 
riteria of these stru
tures have re
entlybeen reviewed with the intention of in
reasing safety level fa
ing an ex
eptional �ooding.This is justi�ed 
onsidering that many dams and dikes exhibit now a higher potentialto experien
e overtopping during ex
eptional �ood events. Climate 
hange indu
edby global warming is, for instan
e, one of the main 
auses that might lead to moredevastating �ooding than ever [128℄.While in a 
on
rete dam, an over�ow does not easily a�e
t the integrity of the stru
ture,in an embankment dam in most 
ases it 
ompromises the dam body [64℄. If a dam ordike fails, loss of life and e
onomi
 damage are dire
t 
onsequen
es of su
h event. Earlywarning is therefore 
ru
ial for saving lives in �ood-prone areas. That is the reasonwhy an in
reasing interest is rising on the study of ro
k�ll and earth�ll dams, termedembankment dams, during extreme phenomena.The analysis of the possible 
onsequen
es of an a

idental overspill is still impossibleor very impre
ise and the ne
essary e
onomi
al measures for solving the problem arethen ine�
ient. An appropriate 
omputational method will help to redu
e the e
onomi
impa
t of the investments in dam safety and in emergen
y plans for embankment dams.The possibility of studying the behavior of water throughout and over the dam in 
aseof sudden 
hange of upstream 
onditions and of his e�e
t on the ro
k�ll is 
urrentlylimited by the absen
e of a suitable numeri
al tool. It should simulate the suddendynami
 
hange in the seepage and �ow 
ondition and predi
t the subsequent onset andevolution of brea
hing in the ro
k�ll slope. The 
urrent work aims to give a 
ontribution



2 Introdu
tionto this �eld, 
reating and validating a new 
omputational method of general appli
abilityfor simulating, with a unique formulation, the �ow throughout and over the dam whilefailure o

urs together with the dam stru
tural response.1.1 Embankment damsIn re
ent years te
hnology on embankments dams has developed sensibly due to theadvan
es in soil me
hani
s knowledge and in all related s
ien
es. This, 
ombined withthe evident e
onomi
 advantage of 
onstru
tion, make often this kind of stru
ture a moreappealing 
hoi
e than the traditional 
on
rete dams [64℄. The design of embankmentdams is in fa
t very �exible and makes use of di�erent shapes and materials, that
an often be found in situ. The tallest dams in the world are embankment dams (i.e.Rogún dam (335m) or Nurek dam (300m)) and their number ex
eed that of the 
lassi
al
on
rete dam stru
ture [64℄.Nevertheless the vulnerability of embankment dams to overtopping still remains theirweakest point. In fa
t, a

ording to the ICOLD bulletin [64℄, this is their prin
ipalor se
ondary 
ause of failure in 31% and 18% of 
ases respe
tively. In 
on
rete dams,on the 
ontrary, the e�e
ts of an over�ow usually does not 
ompromise the stru
tureintegrity and the 
auses of failure should be found in other reasons, often 
onne
tedwith problems in the foundations.Several examples of dam failures as a 
onsequen
e of overtopping 
an be found in theliterature. Usually the 
auses of the over�ow are an extreme meteorologi
al event, oftena

ompanied by malfun
tioning of the spillway 
apa
ities.By far the most 
atastrophi
 dam disaster ever happened was the failure of the Banqiaodam (see Figure 1.1). It was a 118 m high embankment dam built in the early 1950. Itwas designed to support the on
e-in-1000-years-�ood. Nevertheless in 1975, due to theTyphon Nina the on
e-in-2000-years-�ood was rea
hed and Banqiao dam failed (followedby the failure of other 62 dams of the same basin). 62 000 people died be
ause of the�ood and around 145 000 be
ause of famine and epidemi
s. This event is, for damengineering, what Chernobyl and Bhopal have represented for the nu
lear and 
hemi
alindustry respe
tively [128℄.Among others, the failure of the Tous dam in Valen
ia should be mentioned. In O
tober1982, a tsunami of 20 million of m3 of water �owed through the Comunidad Valen
iana(Figure 1.2). In that 
ase the 
ause of the ex
eptional �ooding was a parti
ular mete-
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Figure 1.1: Image of Banqiao dam. Image taken from [1℄.

Figure 1.2: Image of Tous dam after the overtopping of O
tober 19th, 1982.



4 Introdu
tionorologi
al 
ondition 
alled �gota fria� whi
h 
onsists of a 
old high-altitude depressionsurrounded by warm air with high moisture 
ontent that leads to extremely heavy rainfall in the hinterland of the Mediterranean 
oast of Spain.These and many other similar histori
al events demonstrate that when the water ex
eedsthe 
rest of the dam, the 
onsequen
es 
an be 
atastrophi
. An ex
eptional �ooding
ompromises seriously the stru
ture, leading, in almost all 
ases, to its failure. Nev-ertheless the brea
hing formation is a relatively slow pro
ess. It is never an explosivesudden failure. Chanson in [30℄ for example, reported that in the 
ase of the Glashüttedam (Figure 1.3), the 
omplete failure of the stru
ture o

urs 4 hours later the begin-ning of the overtopping. In the 
ase of the Teton dam the reservoir was drained afterapproximately 12 hours.

Figure 1.3: Glashütte embankment dam (Germany). Image taken from [30℄.When the water overpasses the 
rest of the dam a seepage pro
ess begins in the down-stream slope that leads to its progressive saturation. The �rst brea
h usually appearsat the toe of the dam, where the resistan
e is lower. A

ording to Toledo [122, 123℄, twoare the main me
hanisms that 
ompromise the ro
k�ll:
• Mass sliding or loss of stability of a part of the downstream region due to the landslide. This is the predominant failure me
hanism when the downstream slope isvery steep. The saturation of the ro
k�ll leads to a redu
tion of e�e
tive stressesthat, together with seepage, indu
e the formation of a failure 
ir
le that abruptly
rumbles. This phenomenon usually a�e
ts the whole width of the dam as 
an beobserved in Figure 1.4(a).
• Super�
ial dragging of ro
k�ll parti
les. When the downstream slope is �at (1V :



The XPRES and E-DAMS proje
ts 5
3H for instan
e) this is the predominant failure me
hanism. The water 
oming outfrom the toe of the dam drags away the super�
ial ro
ks. It leads to the formationof 
hannels in the downstream slope (see for instan
e Figure 1.4(b)).

(a) Mass sliding failure. (b) Super�
ial dragging failure.Figure 1.4: The images show two experiments 
arried out at the UPM laboratories. Onthe left an example of mass sliding failure (initial slope 1V : 1.5H) whereas on the rightthe failure is mainly due to super�
ial dragging of parti
les (initial slope 1V : 3H).These two me
hanisms usually a
t in a 
ombined way depending on the failure pro
essevolution [122℄.The 
lay 
ore represents an additional barrier before the 
omplete failure of the stru
turewhen the prote
tion given by the ro
k�ll is no longer present (see Figure 1.5 for a typi
al
ross se
tion of a ro
k�ll dam). Its failure 
an be the 
onsequen
e of surfa
e erosion orof me
hani
al fra
ture of the same under the pushing of the water retained upstream.
CLAY CORE

ROCKFILL

FILTER

ROCKFILL

Downstream toeUpstream toeFigure 1.5: S
hemati
 
ross se
tion of a ro
k�ll dam.1.2 The XPRES and E-DAMS proje
tsIn the last years the Spanish Ministry of S
ien
e and Innovation has been fundingthe XPRES [127℄ and E-DAMS [53℄ proje
ts, a joint work between the Polyte
hni




6 Introdu
tionUniversity of Madrid (UPM), the Centre for Hydrographi
al Studies of CEDEX and theInternational Centre for Numeri
al Methods in Engineering (CIMNE).The prin
ipal aim is the study of beginning and evolution of the brea
h 
aused by anovertopping on ro
k�ll prototype dams both from a physi
al and numeri
al point ofview.UPM and CEDEX team have a wide experien
e on this topi
 and their e�ort hasbeen addressed to rea
h a better 
hara
terization of the failure in fun
tion of a seriesof parameters. These are for examples, the downstream slope, the impervious systemadopted, the material used for the experiments and so on.Their extensive experimental 
ampaign 
onsists of more than 100 experiments. Furtherinformation 
an be found in Chapter 5 of the present work and for more details on thetopi
, the 
onsultation of [21, 76℄ is re
ommended.All the experiments have been performed in three �umes of di�erent dimensions shownin Figure 1.6.

(a) Small 
hannel.0.4m width, 0.6mheight, 12m long. (b) Medium 
hannel.1.0m width, 1.1mheight, 16m long. (
) Large 
hannel. 2.48mwidth, 1.4m height, 13.7mlong.Figure 1.6: UPM and CEDEX experimental 
hannels used for XPRES and E-DAMSproje
ts.
The experimental data in terms of bottom pressure distribution and evolution of theseepage line, have been largely used in this work to validate the numeri
al approa
hof the .. 
ode during its development. Some examples of validation are presented inChapter 5.



Obje
tives 71.3 Obje
tivesThis work fa
es the problem of the numeri
al simulation of the overtopping and begin-ning of failure in a prototype ro
k�ll dam.This leads to the development of two di�erent numeri
al tools:1. A �uid 
ode to simulate a free surfa
e �ow in a variable porosity medium in orderto a

urately predi
t the hydrodynami
 for
es a
ting on the ro
k�ll slope;2. A 
oupled �uid-stru
ture analysis 
ode to simulate the beginning of failure in 
aseof overtopping.The idea is to solve both problems (seepage and unset and evolution of failure), usinga 
ontinuous approa
h and to integrate an Eulerian �uid model with a Lagrangianstru
tural one. This is done in order to minimize the 
omputational e�ort for the�uid 
al
ulation and to have a Lagrangian tool whi
h 
an naturally following the largedeformation of the ro
k�ll slope.Three are the main developments to be done in this work in order to a
hieve its obje
-tives:
• A free surfa
e �uid model able to take into a

ount the presen
e of a porous media.It should work with any variable in
oming dis
harge 
ondition.
• A stru
tural model to simulate the behaviour of a ro
k�ll slope in presen
e (ornot) of variable hydrodynami
 for
es.
• A 
oupling tool to integrate the previously mentioned models and to simulatethe whole transitory phenomenon of failure of a ro
k�ll slope due to ex
eptional�ooding.The assumption of a Newtonian in
ompressible vis
ous �uid is taken for the �ow ofwater. The solution system is a modi�ed form of the traditional Navier-Stokes equations.The e�e
t of porosity is impli
itly taken into a

ount using the Dar
y velo
ity as avariable of the problem and adding the 
orresponding extra term in the momentumequations. This term takes into a

ount the seepage for
es.For the study of the �uid behavior in a variable porosity medium an Eulerian approa
hwith a �xed mesh is 
hosen. A level set te
hnique is used for the tra
king of the evolutionof the free surfa
e.



8 Introdu
tionA Non-Newtonian 
onstitutive law is used to simulate the behaviour of a ro
k�ll slope.A Bingham plasti
 with a variable yield threshold is proposed to a

urately identifythe beginning of failure of the slope material, a

ording to a Mohr Coulomb failure
riteria. The Parti
le Finite Element Method (PFEM) is the te
hnique used for thestru
tural analysis. Its Lagrangian approa
h is a key feature to a

urately follow thelarge distortion of the slope in 
ase of failure.The presen
e of water should be taken into a

ount in terms of variable hydrodynami
for
es. The problem is always fully drained sin
e the pores 
an be 
onsidered inter
on-ne
ted a

ording to experimental results.The 
oupling of the two models is done in an expli
it staggered way by proje
tinginformation between the Eulerian and the Lagrangian models. For that purpose a toolto proje
t information between non-mat
hing meshes is developed.The obje
tives of this work 
an be 
onsidered ful�lled when the experiments on theprototype ro
k�ll dams 
arried on by UPM and CEDEX 
an be reprodu
ed.All the algorithms presented in this work have been implemented in Kratos [47, 48℄, aframework for developing �nite element 
odes for multiphysi
s problems.1.4 Layout of the do
umentThe layout of the do
ument is the following:Chapter 2. The physi
al problem of seepage in ro
k�ll is des
ribed and the non linearform of the resistan
e law governing the phenomena is 
hosen. A brief overviewof the state of the art is presented. The governing equations are derived and thenumeri
al formulation is presented in detail. Two di�erent Eulerian approa
hesare des
ribed, a traditional element-based approa
h and an edge-based one. Inboth 
ases the level set te
hnique is used to tra
k the evolution of the free surfa
e.Chapter 3. The behaviour of the ro
k�ll material is treated as a non-Newtoniangranular �uid. After an overview of traditional non-Newtonian materials, a regu-larized Bingham model is presented. This 
lassi
al approa
h is modi�ed to takeinto a

ount the variability of the yield stress in a granular non 
ohesive mate-rial. A Lagrangian kinemati
al des
ription is adopted and PFEM is used for thestru
tural analysis.Chapter 4. The governing equations of the monolithi
 
oupled problem are presented



Layout of the do
ument 9and the balan
e equation of the �uid and stru
ture models are derived The 
ou-pling is performed in a fully staggered way using a tool to manage the transferof informations between the two models. This is done using an algorithm thatallows the data mapping between non mat
hing meshes, des
ribed at the end ofthe 
hapter.Chapter 5. The 
ode is validated by reprodu
ing experiments 
arried out by UPMand CEDEX using either 2D and 3D models. Di�erent prototype dam models are
onsidered in the examples.Chapter 6. The summary of the a
hievements is des
ribed and the main points of thefuture resear
h work are outlined.Appendix A. The main features of Kratos Multiphysi
s are brie�y presented.





Chapter 2The �uid problemIn this 
hapter the numeri
al algorithm developed for the simulation of the free surfa
e�ow in presen
e of a variable porosity medium is des
ribed.First, a brief overview of the traditional studies of �ux in porous media is performed inorder to 
hose a suitable resistan
e law for the problem of interest. The balan
e equationsare obtained and two solution strategies are adopted for their numeri
al treatment. Anelement-based formulation and an edge-based approa
h are studied and implemented.The 
hoi
e of a �xed mesh method leads to the need of tra
king the evolution of thefree surfa
e. The level set te
hnique adopted for this purpose is des
ribed in the lastpart of the 
hapter. The 
hapter �nishes with a series of examples that aim to 
he
kthe 
orre
t behavior of the presented algorithms.2.1 Introdu
tionThe 
lassi
al approa
hes of �uid �ow in porous media are not appli
able for the analysisof the water motion within the ro
k�ll of a dam. Traditionally water is 
onsidered inslow motion or as a stationary load [130℄. On the 
ontrary in the 
ase of an overtopping,the possibility to follow the rapid transition of the water level in the downstream slopeis a key point for the identi�
ation of the beginning of the failure me
hanism.On the other hand, the typi
al problem of evaluating the saturation level of the poresloses its importan
e in the 
ase studied, due to the large dimension of the granularmaterial. Under these 
ir
umstan
es, in fa
t, the pores 
an be 
onsidered always inter-
onne
ted and the problem fully drained [122℄.



12 The �uid problemA

ording to traditional studies of �ow in porous media [117, 122℄, at a mi
ro levelthe �ux between the ro
ks is assimilated to �ow in pipes. This analogy is used for thederivation of the resistan
e law used for the 
al
ulation of the hydrauli
 gradient1 dueto seepage. The well known Dar
y law is not appli
able to the analyzed problem. Inthe following se
tions it is explained how to obtain a suitable resistan
e law to be usedin the balan
e equations.It should be pointed out that a key point for the 
omplete simulation of the hydro-dynami
 e�e
t of an overtopping is the 
apability of the 
ode for simulating at on
e,not only the seepage, but also the �uid �ow upstream, downstream and over the dam.For that purpose the balan
e equations are derived 
onsidering the �ow inside a generi
porous material. The key point is represented by the fa
t that they automati
ally redu
eto the 
lassi
al Navier-Stokes equations when porosity is equal to one; that is when noporous medium is present. The resistan
e law is inserted in the balan
e equation as well.Its 
ontribution goes to zero out of the granular material. A similar approa
h has beenused by Nithiarasu and 
oworkers [88�90℄ to study the natural and for
ed 
onve
tive�ux in a 
avity �lled by a variable porosity medium.The easy de�nition of a 
ontrol domain and of spatial variables (like for instan
e theporosity, de�ning the presen
e of a granular material), indu
es to 
hoose an Eulerian�xed mesh approa
h. Moreover this kinemati
al framework is also more e�
ient allowingan easier parallelization of the 
ode.This 
hoi
e leads to the need of 
hoosing a level set te
hnique for tra
king the evolutionof the free surfa
e.Two di�erent solution strategies are presented in the 
hapter, an element based and anedge based approa
h. After a 
omparative analysis of both methodologies, the latter is
hosen for being implemented in 3D and being 
oupled with the stru
tural 
ode.
2.1.1 Flow in ro
k�ll materialThe �ux in porous media is traditionally studied using the empiri
al relation that Dar
yobtained in 1856. Studying the �ow of water through a sand-�lled 
olumn he dis
overedthat the pressure drop (i) and the velo
ity of water inside a porous material (u) are1The hydrauli
 gradient is the measure of the variation of the hydrauli
 head for unit length [58℄.
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tion 13linearly related. This observation leads to the formulation of the well known Dar
y law,
i =

µ

k
u. (2.1)where µ is the water dynami
 vis
osity and k is the permeability of the porous media[12℄.Relation 2.1 was derived studying the unidire
tional �ux in sand at low Reynolds num-bers. On the 
ontrary,in the 
ase of �ux through ro
k�ll material, the lo
al �uid ve-lo
ities were observed not to be linearly related to the pressure drop. In fa
t it wasexperimentally proved that over 
ertain average dimension of the parti
les, equation 2.1is not anymore valid.Many authors have deeply studied this aspe
t with essentially two obje
tives:- Dis
over the range of validity of Dar
y's law (equation 2.1).- De�ne an alternative resistan
e law2 in 
ase equation 2.1 is not anymore valid.Remark 1. Velo
ity u in equation 2.1 is by de�nition the Dar
y velo
ity, i.e. the �uidvelo
ity averaged over the total 
ontrol volume Ω (often 
alled ma
ros
opi
 velo
ity orunit dis
harge being the dis
harge per unit volume), whereas the �uid velo
ity u isaveraged over the empty part of Ω (
alled ΩE). Their relation is stated by the Dupuit-For
hheimer equation [87℄:

u = nu (2.2)where n is the porosity that, by de�nition 3 is
n :=

ΩE

Ω
. (2.3)See Figure 2.1 for a graphi
al explanation.2Equation 2.1 and all the alternative non linear formulations that are presented in the next se
tionsare 
ommonly 
alled resistan
e laws be
ause they measure the resistan
e made by the porous matrixto the �uid �ow.3 Equation 2.3 is by de�nition the volumetri
 porosity nv whereas in Figure 2.1 a 
ross se
tion ofthe 
ontrol volume is 
onsidered and a se
tional porosity na := AE/A should be de�ned like the ratiobetween the area of pores and the total 
ross se
tion area. Consequently, a lineal porosity 
an be alsode�ned as the ratio between the length of pores over the total length (nl := lE/l). Fortunately Bearsin [12℄ demonstrated that in a porous medium this distin
tion is unne
essary being

nv = na = nl.
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Darcy velocityFluid velocityFigure 2.1: Graphi
al des
ription of �uid velo
ity u (averaged over the empty volume
ΩE) and Dar
y velo
ity u (averaged over the total 
ontrol volume Ω).Remark 2. Permeability k introdu
ed in 2.1, also 
alled intrinsi
 permeability, ismeasured in squared meters (m2) and is de�ned as

k :=
n3D2

p

5(1− n)2θ
(2.4)where Dp is an equivalent diameter of the porous material4, whereas θ is a shape 
oef-�
ient of the parti
les. It is important to stress that the Dar
y's law 
an also be foundin the form

i =
1

K
u.where K is the permeability 
oe�
ient, often 
alled simply permeability as well, whi
hrepresents the hydrauli
 
ondu
tivity and has the dimension of a velo
ity (m/s). In this
ase i is not any more the pressure drop i (measured in Pa/m), but it represents thehead loss per unit length, that is the hydrauli
 gradient and it is dimensionless.2.1.2 Analogy between �ow in porous media and pipes �owIt is generally a

epted to 
onsider the �ow in the pores of ro
k parti
les essentiallysimilar to �ow in a pipe network but with a more 
ompli
ated 
on�guration [117, 122℄.All the empiri
al formulae to evaluate the pressure drop due to fri
tion in pipes have beenused and adapted to get similar empiri
al relationships in the 
ase of porous material4Dp is the diameter of the sieve at whi
h the p% of the material passed.
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tion 15[50, 79, 125℄.Some brief re
all of �ow in pipesThe Dar
y-Weisba
h formula is traditionally used for the evaluation of the hydrauli
gradient i in pipes (only in a se
ond time it was adapted to be used in open 
hannel�ows). It states
i =

fd
4 rH

u2

2g
; (2.5)where fd if the Dar
y-Weisba
h fri
tion 
oe�
ient, rH is the hydrauli
 radius5 (in pipesof diameter D is rH = D/4), g is the gravity a

eleration and u is the velo
ity.In general fd is fun
tion of the Reynolds number6(Re) and of the roughness of the pipe(e). It is demonstrated [58℄ that:- In laminar regime fd is a fun
tion of Re only,

fd =
64

Re
.- In turbulent regime fd is 
onstant

fd = const.- In the transition regime
fd = fd(Re, e).Above explanations imply that the hydrauli
 gradient, using equation 2.5, 
an be 
al-
ulated as follow- For laminar regime
i =

64µ

2gD2
pρ

u. (2.6)- For turbulent regime
i =

const

2g Dp
u2. (2.7)5The hydrauli
 radius is de�ned as the ratio between the �uid area and the wet perimeter.6The Reynolds number is the dimensionless 
oe�
ient that, being the ratio between inertia andvis
ous for
es, quanti�es the relative importan
e of ea
h one for a given �ow [58℄. It is de�ned as ρu l

µwhere ρ is the �uid density and l is a 
hara
teristi
 length (in pipes it 
oin
ide with the diameter).



16 The �uid problemTherefore in 
ase of laminar regime, the relation between the hydrauli
 gradient andvelo
ity is linear (like it is in Dar
y's law), whereas in turbulent regime it be
omesquadrati
. Hen
e, as a preliminary 
on
lusion, the possibility to 
lassify whether theregime of the �ux is turbulent or laminar seems to be very important to de�ne the rangeof validity of Dar
y's law. Even though, as explained in the next se
tions, this is notthe only aspe
t to be taken into a

ount.De�nition of the range of validity of Dar
y's lawMany di�erent approa
hes are present in literature on the appli
ation of the Dar
y-Weisba
h relation to �ow in porous media to de�ne the range of appli
ation of Dar
y'slaw. The deep analysis of ea
h of them is not relevant for the aim of this work andthe 
onsultation of [79, 122℄ is re
ommended for a more 
omprehensive understandingof the topi
. Nevertheless some important aspe
ts that led to the de�nition of di�erentresistan
e law are reported here to fully introdu
e the problem.The main issue is related to the de�nition of the Reynolds number Re in a porousmaterial. In fa
t the following aspe
ts have to be taken into a

ount:- Whether to take the velo
ity of equation 2.5 equal to the Dar
y velo
ity (u) or tothe �uid velo
ity (u). This 
hoi
e leads to a di�erent de�nition of the Reynoldsnumber
Re(u) =

u l

ν
=

nu l

ν
= nRe(u); (2.8)(equation 2.2 has been used).- How to de�ne the 
hara
teristi
 length l in equation 2.8. Some authors prefer to
hose an equivalent diameter Dp (often the 
hoi
e is D10 or D50). In fa
t it iseasier to measure the granular dimension than the dimension of the pores. Othersde�ne l ≈ rH arriving to express l as a fun
tion of the permeability k.- Finally it is important to remember that equation 2.5 is one of the most popular,but not the only possible 
hoi
e for the 
al
ulation of the hydrauli
 gradient [50℄.Di�erent 
hoi
es lead to di�erent values of Re. Nevertheless all authors agree that thebeginning of appearan
e of turbulen
e is for values of Re in the range 60 − 150 (not

2000 like in pipes).



Introdu
tion 17Many authors think that the range of validity of Dar
y's law 
oin
ides with the laminarregime, 
onsidering that turbulen
e appears at lower Re for higher Dp. Neverthelessa

ording to [122℄, the experimental results put in eviden
e that:- The transition between the linear and the non linear relation between i and u isgradual (di�erently from the transition from laminar to turbulent regime in pipes);- The starting point of non-linear behavior appears for Re ∈ [1 − 10] whereas tur-bulent phenomena appear for Re ∈ [60− 150].Following [122℄, S
heideger justi�es the �rst aspe
t with the 
o-presen
e of a laminarregime in the thinner �porous 
hannels� and a turbulent one in the thi
ker ones. Onthe other hand, non-linearity is often attributed to the presen
e of inertial for
es thatare usually small but 
an be important for low Re in 
omparison with the vis
ous one.Considering that inertia for
es are proportional to the square of velo
ity, a quadrati
relation between velo
ity and pressure drop is justi�ed.In Figure 2.2 some 
lassi�
ation of the range of validity of Dar
y law are shown. Formore details on how they are obtained the 
onsultation of [79, 122, 125℄ is re
ommended.

(a) E. Prinz diagram (taken from [77℄). (b) J. Bear diagram (taken from [12℄).Figure 2.2: Range of validity of Dar
y law in its linear form.2.1.3 Resistan
e lawsFor
hheimer was one of the �rst authors in proposing in 1901 a quadrati
 resistan
e lawlike
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i = αu+ βu2; (2.9)where 
onstants α and β depend only on the 
hara
teristi
s of ro
k�ll material. Alter-natively Prony in 1804 and Jeager in 1956 proposed an exponential law like

i = γuη; (2.10)where γ and η depend on the �ow 
ondition, the 
hara
teristi
s of the porous mediumand the �uid.Both the quadrati
 and the power relationships are based on experimental results al-though some theoreti
al basis have been provided for their justi�
ation [79℄. Nowadaysboth equations 2.9 and 2.10 are a

epted and widely used. In re
ent years almost alle�orts have been addressed in determining the α and β or γ and η 
onstants.In fa
t in some of the formulae the 
oe�
ients depend on physi
al parameters of thero
k�ll material only, su
h as the size of the parti
les, porosity and the parti
le shape(following [122℄ this is the 
ase of Ergun (1952), Wilkins(1956), M
Corquodale (1978),Stephenson(1979), Martins (1990) and Gent (1991)). In other 
ases, the 
oe�
ients de-pend on the experimental value of the hydrauli
 
ondu
tivity. Sin
e building prototypesfor estimating these parameters 
an be very expensive, it is often easier and 
heaper to
hoose one of the �rst group of formulae.A 
omprehensive overview of the di�erent models 
an be found in [79, 122, 125℄.Sele
tion of the seepage model: Ergun's 
orrelationIn the previous paragraphs an overview of the state of the art of seepage models hasbeen presented. In order to 
hoose the suitable non-linear resistan
e law to be used inthis work, some additional remarks should be done.- The obje
tive of the model is to develop a tool to simulate the free surfa
e �owthrough the ro
k�ll and outside of the same, so an essential requirement for theresistan
e law is that it should automati
ally go to zero when n = 1.- The quadrati
 form of the resistan
e laws is easier to implement than the expo-nential one;Colle
ting the previous 
onsiderations, a quadrati
 form of the non-linear resistan
elaw is adopted and the Ergun's de�nition of the 
onstant 
oe�
ients is 
hosen [57℄.



Continuous form 19Therefore, the pressure drop is
i = E1u+ E2u

2; (2.11)Following Ergun theory and 
alling Dp the average diameter of the granular material(Dp ≡ D50), E1 and E2 
oe�
ients are de�ned like
E1 = 150 · (1− n)2

n3
· µ

D2
p

; (2.12)and
E2 = 1.75 · (1− n)

n3
· ρ

Dp
; (2.13)De�ning the permeability shape 
oe�
ient θ = 30 of equation 2.4, the permeability k
an be 
al
ulated as a fun
tion of n and Dp

k =
n3D2

p

150(1− n)2
. (2.14)The �nal form of the resistan
e law 
hosen in this work is then:

i =
µ

k
u+

1.75√
150

ρ√
kn3/2

u2. (2.15)It is interesting to observe that the linear part of equation 2.15 is equivalent to theDar
y's law
2.2 Continuous formOn
e the resistan
e law has been 
hosen, the balan
e of linear momentum and the
ontinuity equation for an in
ompressible �uid 
an be derived. The prin
ipal obje
tiveof the present approa
h is to de�ne a unique set of balan
e equations governing both thefree surfa
e �ow and the seepage problem. In other words the governing equations haveto be able to reprodu
e the free surfa
e �ow in a variable porosity medium (
onsideringthe open air as a porous medium with porosity n = 1).An approa
h similar to the one presented in the following se
tions, 
an be found in
hapter 5 of the 5th edition of [132℄. This methodology is largely used for the treatmentof heat transfer in a �uid saturated porous media [8, 88, 89, 124℄.



20 The �uid problem2.2.1 Variables of the problemThe unknowns of the problem are:- u, �uid Dar
y velo
ity (see equation 2.2 for its de�nition).- p, �uid pressure;Other parameters are:- ρ is the �uid density. In the present work water is treated as an in
ompressible�uid with 
onstant density over the whole �uid domain, regardless of the presen
eof a porous medium.- µ is the �uid dynami
 vis
osity.- n is the porosity (see equation 2.3 for its de�nition). In the most general 
ase itis a fun
tion of spa
e and time:
n = n(x, t); (2.16)In the present work, a

ording to experimental analysis, the variation of porosityin time, within the �uid solver, 
an be negle
ted, 
onsidering only its variationin spa
e. Nevertheless it should be remarked that porosity does 
hange in timea

ording to the stru
tural deformation of the porous material, whi
h will beexplained in 
hapter 3 and has been 
onsidered in the 
oupled problem des
ribedin 
hapter 5.Therefore, as a �uid variable, n is only fun
tion of the spatial 
oordinates
n = n(x); (2.17)The �uid is 
onsidered here as a 
ontinuum and the presen
e of a porous matrix isimpli
itly taken into a

ount via the porosity n as will be explained in se
 2.2.3.2.2.2 Constitutive law. Water as a Newtonian in
ompressible�uidThe water is treated as a Newtonian in
ompressible �uid. In general a �uid at rest doesnot present shear stresses and the Cau
hy stress tensor takes the form σ = −pI. The



Continuous form 21tangential stresses are non zero in a �uid in motion and the stress tensor be
omes
σ := −pI+ τ (2.18)where τ is the deviatori
 part. The latter is linearly related to the strain rate tensorthrough vis
osity whi
h is assumed to be 
onstant.Therefore the stress tensor for a Newtonian �uid is

σ := −pI+ 2µ∇su; (2.19)where µ is the dynami
 vis
osity and
(∇su)kl :=

1

2

(
∂uk

∂xl
+

∂ul

∂xk

)

; (2.20)is the symmetri
 part of the velo
ity gradient [51, 132℄. It should be observed thatequation 2.19 does not take into a

ount the possible presen
e of a porous medium. Amore general form of the same will be derived in the next se
tions in order to have arelation that holds both for the 
ase of free �uid and of �ow in ro
k�ll material.2.2.3 Modi�ed form of the Navier-Stokes equationsIn order to take into a

ount the �ow in a variable porosity medium, some modi�
ationsshould be introdu
ed in the traditional form of the Navier-Stokes equations. The mod-i�ed system of solution equations is derived here imposing 
ontinuity and 
onservationof linear momentum within a �xed 
ontrol volume.In the following se
tions a balan
e on a �nite volume is �rst 
arried out and broughtlater to the in�nitesimal form.Remark 3. It is important to stress that it is always used a 
ontinuous approa
h totreat the �uid in the whole domain regardless of it is inside or not the porous media.Continuity equationLet us 
onsider a 2D square �nite 
ontrol volume dxdy as the one plotted in Figure2.3, and let's de�ne dxdy = n dxdy as the empty part of it, that is the portion of thisvolume that 
an be o

upied by the �uid (see the de�nition of porosity at equation 2.3).
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Figure 2.3: Balan
e of 
onservation of mass in a dis
rete volume dx dy. dxdy = n dx dyis the empty volume where the �uid 
an 
ir
ulate.Imposing the 
ontinuity of the �uid �eld velo
ity u = [u, v] over the �uid 
ontrol domain
dxdy, yields

ρ

(

u+
∂u

∂x
dx

)

dy − ρudy + ρ

(

v +
∂v

∂y
dy

)

dx− ρvdx+
dρ

dt
dxdy = 0; (2.21)Considering that the �uid is in
ompressible, equation 2.21 
an be rewritten as

∂u

∂x
dxdy +

∂v

∂y
dxdy =

∂u

∂x
dxdy +

∂v

∂y
dxdy = 0.

(2.22)where the de�nition of the Dar
y velo
ity u = [u, v] (equation 2.2) has been used.Therefore the 
ontinuity equation is
∂u

∂x
+

∂v

∂y
= 0; (2.23)that 
an be rewritten as

∇ · u = 0; (2.24)



Continuous form 23Momentum equationThe balan
e of linear momentum in the i− th dire
tion is
ρ
dui

dt
dxdy − ∂σij

∂xj
dxdy − ρf ext

i dxdy = 0; (2.25)where f ext are the volumetri
 for
es and the sum over j spatial index is supposed.Observing Figure 2.4 and remembering that the 
onstitutive equation 2.19 is
[

σx τxy

τxy σy

]

= −
[

p 0

0 p

]

+ 2µ

[

∂u/∂x 1/2 (∂u/∂y + ∂v/∂x)

1/2 (∂u/∂y + ∂v/∂x) ∂v/∂y

](2.26)

Figure 2.4: Balan
e of 
onservation of linear momentum in a dis
rete volume dx dy.
dxdy = n dx dy is the empty volume where the �uid 
an 
ir
ulate.the balan
e equation in x-dire
tion be
omes
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ρ
∂u

∂t
dxdy + ρu

∂u

∂x
dxdy ++ρv

∂u

∂y
dxdy

−∂σx

∂x
dxdy +

∂τxy
∂y

dxdy − ρbxdxdy + D̂xdxdy = 0;
(2.27)where the D̂x represents the x 
omponent of the hydrauli
 gradient due to seepage, e.g.the resistan
e law dis
ussed in Se
tion 2.1.3 (i.e. equation 2.15). Its matri
ial form willbe detailed at the end of this se
tion. In equation 2.27 the de�nition of material timederivative has been impli
itly taken into a

ount (ρdui

dt
= ρ

∂u

∂t
+ ρu

∂u

∂x
++ρv

∂u

∂y

).Substituting dxdy = n dxdy into equation 2.27 and inserting the de�nition of Dar
yvelo
ity gives
ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ n

∂p

∂x

−2µ∂
2u

∂x2
− µ

(
∂2u

∂x∂y
+

∂2v

∂x2

)

n− ρbxn+ nD̂x = 0;
(2.28)This expression holds for any in�nitesimal domain dxdy.Finally, 
alling Dy = nD̂y, and using the same pro
edure in the other spatial dimensionleads to analogous results. In summary the equation of balan
e of linear momentum iswritten as

ρ∂tu+ ρu · ∇u + n∇p− 2∇ · µ∇su− ρbn +D = 0; (2.29)where ∂tu =
∂u

∂t
. In equation 2.29 D is the matri
ial form of the resistan
e law 2.15or, what is the same, the Dar
y term. It represents the dissipative e�e
ts due to theintera
tion between the solid and the �uid part. Details of this term 
an be found inSe
tion 2.1.3. The matri
ial form of the non-linear Dar
y's law 2.15 is

D =
nµ

k
u+

1.75√
150

ρn√
k

|u|
n3/2

u. (2.30)
Remark 4. Let us de�ne the Ergun 
oe�
ients E1 and E2 per unit density as

E1 = 150 · (1− n)2

n2
· µ

D2
pρ

; (2.31)
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E2 = 1.75 · (1− n)

n2
· 1

Dp
. (2.32)These expressions will be useful in the next 
hapter espe
ially during the explanationof the stabilization te
hniques.Remark 5. A more general form of the 
onstitutive equation of water 
an be nowformulated as

σ := −npI + 2µ∇su. (2.33)This equation automati
ally redu
es to equation 2.19 if the porosity is equal to one (i.e.the free surfa
e �ow problem is 
onsidered).2.3 Weak formEquation 2.24 and 2.29 represent the modi�ed form of the Navier-Stokes problem. Theytake into a

ount the presen
e of a porous medium and redu
e to the 
lassi
al NavierStokes equations when the porosity is n = 1 (free �uid �ow). The equations to be solvedare therefore
ρ∂tu+ ρu · ∇u+ n∇p− 2∇ · µ∇su

−ρbn + E1u+ E2|u|u = 0 in Ω, t ∈ (0, T );

∇ · u = 0 in Ω, t ∈ (0, T ).

(2.34)where Ω ⊂ R
d (where d is the spa
e dimension) is the �uid domain in a time interval

(0, T ).The boundary and initial 
ondition of the previous problem are:
u(x, 0) = u0(x) in Ω;

u(x, t) = g(x, t) on ∂ΩD , t ∈ (0, T );

n · σ(x, t) = t(x, t) on ∂ΩN , t ∈ (0, T );

(2.35)where σ is de�ned by equation 2.33 and ΩD and ΩN are the Diri
hlet and Neumannboundary respe
tively.Remark 6. Note that n indi
ates the outer unit normal ve
tor whereas n is de�ned inequation 2.3 and indi
ates the porosity.



26 The �uid problemThe weak form of equations 2.34 is derived next using a Galerkin formulation. A mixed�nite element method is obtained, that is the approximation of both the velo
ity 
ompo-nents and the pressure (and their respe
tive weighted fun
tions) need to be introdu
ed.The weak form of equation 2.34 is
∫

Ω

wρ∂tudΩ +

∫

Ω

wρu · ∇udΩ+

∫

Ω

wn∇pdΩ

−
∫

Ω

w∇ · 2µ∇sudΩ+

∫

Ω

w(E1u+ E2|u|u)dΩ−
∫

Ω

wρnbdΩ = 0 ∀w ∈ V;
∫

Ω

q∇ · u = 0 ∀q ∈ Q;

(2.36)
where, for a �xed t ∈ (0, T ), u is assumed to belong to the velo
ity spa
e V ∈ [H1(Ω)]dof ve
tor fun
tions whose 
omponents and their �rst derivatives are square-integrable,and p belongs to the pressure spa
e Q ∈ L2 of square-integrable fun
tions. w and qare velo
ity and pressure weighting fun
tions belonging to the velo
ity and the pressurespa
es respe
tively. Integrating by parts the pressure and 
onve
tive terms, 
alling
Γ = ∂Ω gives

∫

Ω

wn∇pdΩ = −
∫

Ω

np∇ ·wdΩ+

∫

∂Ω

w · npndΓ;
∫

Ω

w∇ · 2µ∇sudΩ = −2
∫

Ω

∇w : µ∇sudΩ+

∫

∂Ω

w · (2µn · ∇su)dΓ;
(2.37)where n is the outer normal ve
tor (see remark 6). Substituting relations 2.37 intoequations 2.36 and 
onsidering the Neumann boundary 
ondition, the system to besolved be
omes

∫

Ω

wρ∂tudΩ +

∫

Ω

wρu · ∇udΩ−
∫

Ω

np∇ ·wdΩ

+2

∫

Ω

∇w : µ∇sudΩ +

∫

Ω

w(E1u+ E2|u|u)dΩ

−
∫

Ω

wρnbdΩ−
∫

∂ΩN

w · tdΓ = 0 ∀w ∈ V;
∫

Ω

q∇ · udΩ = 0 ∀q ∈ Q;

(2.38)
Let Vh be a �nite element spa
e to approximate V, and Qh a �nite element approxima-



Element-based approa
h: monolithi
 solver 27tion to Q. The problem is now �nding uh ∈ Vh and ph ∈ Qh su
h that
∫

Ω

whρ∂tuhdΩ+

∫

Ω

whρuh · ∇uhdΩ−
∫

Ω

n ph∇ ·whdΩ

+2

∫

Ω

∇wh : µ∇suhdΩ+

∫

Ω

wh(E1uh + E2|uh|uh)dΩ

−
∫

Ω

whρnbdΩ−
∫

∂ΩN

wh · thdΓ = 0 ∀wh ∈ Vh;
∫

Ω

qh∇ · uhdΩ = 0 ∀qh ∈ Qh;

(2.39)
In the next se
tions the two di�erent solution strategies developed in the present workare des
ribed:
• An element-based solver;
• An edge-based solver;The traditional �nite element (i.e. element-based) approa
h implies a loop over theelements in order to re
al
ulate all the elemental 
ontributions at ea
h iteration of ea
htime step. In the 
al
ulation of the elemental 
ontributions a gather/s
atter pro
edure,from nodal to elemental to nodal information is needed in order to build the global solu-tion system together with an assembling solution pro
edure. Löhner [81℄, demonstratedthat these indire
t addressing operations are very time 
onsuming and 
an be redu
edusing an edge-based data stru
ture. Nevertheless, the simpli
ity and the a

ura
y of anelement-based formulation makes it a very attra
ting 
hoi
e. Advantages and drawba
ksof both te
hnologies are detailed in the following pages.2.4 Element-based approa
h: monolithi
 solverA traditional element based approa
h is presented here. Equations 2.39 are solved usinga monolithi
 s
heme. Namely velo
ity and pressure are 
al
ulated at the same time.The nodal degrees of freedom (velo
ity u and pressure p) form the ve
tor of unknowns ofthe solution system. The Navier-Stokes equations are stabilized with an ASGS te
hniquepresented in Se
tion 2.4.1 and a parti
ular form of the generalized α time integrations
hemes is used: the Bossak method, as explained in Se
tion 2.4.3. The linearization isa
hieved with a quasi Newton method using a residual based approa
h and a predi
tormulti-
orre
tor s
heme.



28 The �uid problemRemark 7. All the material variables (density ρ, dynami
 vis
osity µ, porosity n andaverage diameter D50) that appear in the solution equations have to be understood aselemental variables although, for reason of simpli
ity, the upper index el will be omitted.A short remark should be made on the evaluation of elemental porosity of boundaryelements. Porous nodes are 
hara
terized by n < 1 whereas non-porous ones have n = 1.In the present work a dominant porosity approa
h is used: if the element has one nodewhi
h is non-porous, then the elemental porosity is n = 1. This 
an be done be
auseporosity is assigned on geometri
 entities that are then meshed inserting nodes on theboundary of the obje
ts (�gure 2.5 shows a graphi
al example). This will lead to anerror in 
ase of variable geometry of the porous material. For instan
e, this is the 
aseof the 
oupled problem treated in Chapter 4 where this error is a

epted.

(a) Geometri
al Entities (b) Nodal porosity (
) Elemental porosityFigure 2.5: De�nition of elemental porosity with a dominant porosity 
riteria.2.4.1 Stabilized formulationThe instabilities 
onne
ted with the 
onve
tion term in a 
onve
tion-dominated problemand the violation of the inf-sup 
ondition are the two well known 
auses of instabilityof the numeri
al solution of the Navier-Stokes equations. The �rst problem is indu
edby the Galerkin approximation itself, whose trun
ation error appears in the form ofa negative di�usion operator. This la
k of di�usion leads to serious os
illations when
onve
tion dominates. This is measured by the mesh Pé
let number (Pe) that is an non-dimensional 
oe�
ient expressing the ratio between 
onve
tive and di�usive transport.Considering u the 
onve
tive velo
ity and h the dimension of the mesh, the solution
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 solver 29presents a la
k of di�usion if
Pe :=

uh

2µ
≥ 1;i.e. when 
onve
tion dominates over di�usion [51℄.The se
ond reason of instability is 
onne
ted with the 
hoi
e of the �nite element spa
efor pressure and velo
ity.In order to better understand the origin of this kind of instability it is 
onvenient tore
all the 
lassi
al stationary Stokes problem

−ν∆u +∇p = b;

∇ · u = 0;
(2.40)that, in matrix form, be
omes

[

K G

D 0

] [

u

p

]

=

[

F

0

] (2.41)where K = −νL ← −ν∆ is the vis
ous operator (being L the Lapla
ian), G is thedis
rete gradient operator, D is the divergen
e operator (D = GT ) , u is the ve
tor ofnodal velo
ities, p is the ve
tor of nodal pressures and F is the external for
e ve
tor.The zero matrix on the lower diagonal position of the system matrix, derived from theimposition of the in
ompressibility 
onstrain, leads to some restri
tions in the numeri
alsolvability of the problem. It 
an be shown that the solution of system 2.41 exists and itis unique (i.e. the global matrix 2.41 is non-singular) if the kernel7 of matrix G is zero.In fa
t from the �rst equation it is possible to get u = K−1(F −Gp) that substitutedin the se
ond equation leads to
(DK−1G)p = (DK−1F);where DK−1G is symmetri
, being K symmetri
, but it is positive de�nite only if

ker G = 0. In the latter 
ase the pressure matrix is non singular and the value of p 
anbe 
al
ulated and substituted in order to evaluate u [51℄.Ladyzhenskaya - Babu�ska - Brezzi demonstrated that both the 
ontinuous and thedis
rete spa
e of velo
ity and pressure (see Se
tion 2.3 for their de�nition) 
annot bearbitrarily 
hosen but they have to satisfy the so 
alled inf-sup (or LBB from the initials7 The kernel of a matrix A is de�ned as kerA := {q | q ∈ R
d and Aq = 0}.



30 The �uid problemof the authors) 
ondition. It states that a stable �nite element solution uh,ph to theStokes problem exists if it is ensured that
∀ ph ∈ Qh ∃ uh ∈ Vh su
h that β||ph|| ||uh||H1 ≤ b(ph,uh); (2.42)or equivalently

inf
ph∈Qh

sup
uh∈Vh

b(ph,uh)

||ph|| ||uh||H1

≥ β; (2.43)where b(, ) is the bilinear form b(ph,uh) = −
∫

Ω
ph∇ · uhdΩ and || || is the L2 normwhereas || ||H1 is the H1 norm [9, 16℄.There are several pairs of pressure velo
ity interpolations that allow the satisfa
tionof 2.43 like for instan
e the Q1/P0 element (
ontinuous bilinear velo
ity, dis
ontinuous
onstant pressure), or the Q2/P1 multiquadrati
 velo
ity, pie
ewise linear pressure or,among the 
ontinuous pressure interpolations, the so 
alled mini-element (P1 + /P1)for example, with a linear velo
ity enri
hed with an internal bubble and linear pressure.More details 
an be found in [10, 42, 51, 106℄.Unfortunately the simplest element, the P1/P1 (pie
ewise linear velo
ity and pressure),whi
h is used in the present work for pra
ti
al reasons, does not satisfy the inf-sup
ondition and a stabilization te
hnique is ne
essary to �xed both sort of instability.A wide range of stabilization te
hniques 
an be found in literature. One of the �rst ideasto over
ome numeri
al os
illations on 
onve
tion dominated problems, was to introdu
edi�usion on the dire
tion of the stream lines. This led to the 
lassi
al and extensivelyused streamline-upwind/Petrov-Galerkin (SUPG) method by Brooks and Hughes [17℄.A generalization of SUPG for Stokes �ows was proposed by Tezduyar [120, 121℄: thepressure-stabilizing/Petrov-Galerkin (PSPG). In this 
ase the stabilization term varieswith the Reynolds number. In the zero Reynolds number limit, the PSPG stabilizationterm redu
es to the SUPG one. Another, more general, stabilization approa
h wasproposed by Hughes [63℄ (the Galerkin least-squares or GLS). He found out a wayto use an equal order interpolation for velo
ity and pressure for the Stokes problemfor in
ompressible �uids just adding the pressure gradient in the stabilizing terms in aSUPG-like strategy. The GLS method for time dependent problems uses both spa
e andtime �nite elements dis
retization leading to a spa
e-time �nite element formulation ofthe problem.So far all the stabilization te
hniques presented require the addition of some arti�
ialdi�usion term. As an alternative Oñate derived the stabilization terms using a Finite
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al
ulus (FIC) approa
h based on imposing the balan
e equations over a �nite domain[92, 93, 97, 101℄. This approa
h allows to reinterpret the stabilization terms as anintrinsi
 and natural 
ontribution to the original di�erential equations, instead of a
orre
tion term introdu
ed at dis
rete level. With this natural stabilization approa
hmany of the already existing stabilization te
hniques 
an be reinterpreted in a morephysi
al manner.A popular family of stabilization methods is derived by the so 
alled subgrid s
ale (SGS)approa
h, introdu
ed by Hughes in [62℄. His novel idea is to split the unknowns (u) intoa part that 
an be represented by the �nite element mesh (uh) and another part thata

ounts for the unresolvable s
ale (ũ), that is for the variation of the unknown that
annot be 
aptured by the �nite element mesh. This 
orresponds to a splitting of thespa
e V into the spa
e of the �nite elements (Vh) and the subgrid spa
e (Ṽ) as
V = Vh ⊕ Ṽ ; (2.44)Among the di�erent SGS methods, two are the 
hosen te
hniques used in this work:- The Algebrai
 Sub-Grid S
ale stabilization (ASGS) that has been implemented inthe element based formulation;- The Orthogonal Subgrid S
ale (OSS) te
hnique that has been employed to stabilizethe edge-based equations (see Se
tion 2.5.1).The main di�eren
e between these two te
hniques is that in ASGS the whole residualis used to approximate the sub-s
ales whereas in OSS only its orthogonal proje
tion isused.Typi
ally, stabilized methods add to the left hand side of the dis
rete residual of theproblem (i.e. the dis
retized weak form), a term of the form

r̃(uh,wh) =
∑

el

∫

Ωel

Pel(wh)
T τ elRel(uh)dΩ; (2.45)where the so 
alled intrinsi
 time, τ el is an algorithmi
 parameter with dimension oftime, Pel(wh) is a 
ertain operator applied to the test fun
tion (it will be de�ned lateron) and Rel(uh) is the residual of the di�erential equation to be solved. The upper index

el in equation 2.45 indi
ates that the 
ontribution is element-wise and will be omittedlater on for the sake of simpli
ity.



32 The �uid problemLet us introdu
e the stabilized form of equation 2.39 using an ASGS te
hnique.Referring to equation 2.45 Table 2.1 
an be obtained. α ∈ [0, 1] is an input parameterto 
ontrol the in�uen
e of dynami
 
ontribution, h is the element length8. The upper-indexes m and c refer to the momentum and the 
ontinuity equation respe
tively
Momentum equation

Pm(wh) uh · ∇wh +∇qh

τ1

(
α

∆t
+

4ν

h2
+

2|uh|
h

+ E1 + E2|uh|
)−1

Rm(uh) ∂tuh + uh · ∇uh − ν∆uh + n∇ph + E1uh + E2|uh|uh − nbContinuity equation
Pc(wh) ∇ ·wh

τ2
µ

ρ
+

h|uh|
2

Rc(uh) ∇ · uhTable 2.1: Stabilizing elemental terms in the ASGS method.
Therefore the stabilized problem be
omes:
∫

Ω

whρ∂tuhdΩ +

∫

Ω

whρuh · ∇uhdΩ−
∫

Ω

n ph∇ ·whdΩ

+2

∫

Ω

∇wh : µ∇uhdΩ +

∫

Ω

wh(E1uh + E2|uh|uh)dΩ

−
∫

Ω

whρnbdΩ−
∫

∂ΩN

whthdΓ +
∑

el

∫

Ωel

τ1Pm · RmdΩ = 0 ∀wh ∈ Vh;
∫

Ω

qh∇ · uhdΩ+
∑

el

∫

Ωel

τ2Pc · RcdΩ = 0 ∀qh ∈ Qh;

(2.46)
8The element length is de�ned as the edge of a regular triangle in 2D (or of a regular tetrahedronin 3D), ins
ribed in the 
ir
umferen
e (sphere in 3D) that 
ir
ums
ribes the element itself.



Element-based approa
h: monolithi
 solver 332.4.2 Dis
retization pro
edureCalling u and p the ve
tor of nodal velo
ities and pressures respe
tively, system 2.46 inits matri
ial form is expressed as
[

M 0

0 0

]

·
[

u̇

ṗ

]

+

[

K G

D 0

]

·
[

u

p

]

=

[

F

0

] (2.47)where the 
orresponden
e between the blo
k matri
es of 2.47 and the 
ontinuum formof the solution equation 2.39 
an be seen in Table 2.2. Every blo
k matrix is obtained, asusual, from the assembling of elemental 
ontributions. Ea
h node has as many degreesof freedom as the spa
e dimension (nsd) plus 1. That is the upper left elemental blo
kmatrix (K) has dimensions nsd × nsd and G is a nsd × 1 matrix (
onsequently D is a
1×nsd). Therefore the global sti�ness matrix is a square matrix of npts · (nsd+1)×npts ·
(nsd + 1) (where npts is the number of nodes). The nonlinear terms are treated usingthe Pi
ard method and they are evaluated at the element Gauss points at the previousiterations.The matrix form of the stabilized system of equation 2.46 
an be written as:
[

M+ SM
wu 0

0 0

]

·
[

u̇

ṗ

]

+

[

K+ Swu + Sc G+ Swp

D+ Squ Spq

]

·
[

u

p

]

=

[

F+ Sf
w

Sf
q

] (2.48)where all the stabilization matri
es are inserted. Their detailed meaning 
an be foundin Table 2.3 where Swv = SC
wv + Sµ

wv + SD
wv and Squ = SC

qu + Sµ
qu + SD

qu.Equation 2.48 
an be written in 
ompa
t form as
Mv̇ + fint(v(t), t) = fext(t); (2.49)where vT = [u, p] and v̇T = [u̇, ṗ] are the ve
tor of unknowns and their time derivativesrespe
tively.
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Matri
ial term Continuum term
Mu̇

∑

el

∫

Ωel

whρ∂tuhdΩ

KCu
∑

el

∫

Ωel

whρuh · ∇uhdΩ

Ku Kµu −2
∑

el

∫

Ωel

wh∇wh : µ∇uhdΩ

KDu
∑

el

∫

Ωel

wh(E1uh + E2|uh|uh)dΩ

Gp −
∑

el

∫

Ωel

n ph∇ ·whdΩ

Du
∑

el

∫

Ωel

qh∇ · uhdΩ

F
∑

el

∫

Ωel

whρnbdΩTable 2.2: Matri
es and ve
tors of system 2.48 without stabilization terms.
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Momentum equationMatri
ial term Continuum term

SM
wuu̇

∑

el

∫

Ωel

τ1uh · ∇wh∂tuhdΩ

SC
wuu

∑

el

∫

Ωel

τ1uh · ∇whuh · ∇uhdΩ

Swuu Sµ
wuu −

∑

el

∫

Ωel

τ1uh · ∇whν∆uhdΩ

SD
wuu

∑

el

∫

Ωel

τ1uh · ∇wh(E1uh + E2|uh|uh)dΩ

Swpp
∑

el

∫

Ωel

τ1uh · ∇whn∇phdΩ

Sf
w −

∑

el

∫

Ωel

τ1uh · ∇whnbdΩ

SC
quu

∑

el

∫

Ωel

τ1∇qhuh · ∇uhdΩ

Squu Sµ
quu −

∑

el

∫

Ωel

τ1∇qhν∆uhdΩ

SD
quu

∑

el

∫

Ωel

τ1∇qh(E1uh + E2|uh|uh)dΩ

Spqp
∑

el

∫

Ωel

τ1∇qhn∇phdΩ

Sf
q −

∑

el

∫

Ωel

τ1∇qhnbdΩContinuity equation
Scu

∑

el

∫

Ωel

τ2∇ ·wh∇ · uhdΩTable 2.3: Stabilization matri
es and ve
tors of system 2.48.



36 The �uid problem2.4.3 Bossak time integration s
hemeThe Navier-Stokes equations are solved in time using a Bossak s
heme. First of all, letus re
all the Newmark s
heme from whi
h it takes its origin. This is one of the mostpopular time integration pro
edures in stru
tural dynami
s and it is used with su

essin the linear regime. Its use in non-linear problems is possible, however in presen
e oflarge geometri
 non-linearities it is known to lead to unstable results unless the time stepis severely redu
ed. This drawba
k derives form the fa
t that, in the stability of linearproblems, the balan
e of energy equation implies an upper bound to the solutions. Onthe 
ontrary, in a non linear regime this is not automati
ally veri�ed when a linearizationis performed. A stable algorithm 
an diverge in problems in whi
h energy 
an grow upunlimitedly. It is therefore ne
essary to introdu
e some parameters in the time s
hemeable to lead to energy dissipation in high frequen
y modes [61, 118℄.The momentum equation in stru
tural problems is written in the general form as
Mẍ +Cẋ +Kx = f ext; (2.50)where x is the ve
tor of displa
ements and M, C, K are the stabilized mass, dampingand sti�ness matri
es respe
tively. The overbar is used to distinguish the stabilizedoperators from those presented in equation 2.47.Let's 
all vT = [u, p] and v̇T = [u̇, ṗ] the ve
tor of unknowns and their time derivativesrespe
tively. Equation 2.50, rewritten in terms of v and its derivative, represents the
ompa
t form of equations 2.48. It is

Mv̇ + fint(v(t), t) = fext(t); (2.51)where M is the mass matrix. fint takes into a

ount of all the terms that dependson velo
ity and pressure (the internal for
es) and fext is the ve
tor of external for
es,in
luding all the 
ontributions independent from the unknowns. Let's remark thatequation 2.51 is an alternative way of writing equation 2.48.Following the Newmark formulation v and x 
an be obtained at time step n+ 1 as
vn+1 = vn + (1− δ)∆t v̇n + δ∆tv̇n+1; (2.52a)
xn+1 = xn +∆tvn +

(
1

2
− β

)

∆t2v̇n + β∆t2v̇n+1; (2.52b)
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ontrol the stabilityand a

ura
y of the s
heme [116, 118℄. The Newmark family of methods has its originfrom the di�erent 
hoi
es of δ and β.In impli
it s
hemes, for instan
e, stability is ensured by
2β ≥ δ ≥ 1

2
;that leads to an un
onditionally stable method. Alternatively, using

δ ≥ 1

2
β ≤ δ

2
;leads to a 
onditionally stable method. The stability 
ondition in this 
ase gives anupper bound to the natural frequen
y times the time step.Calling v̂n+1 and x̂n+1 the predi
tion of the unknowns and displa
ements in terms ofthe known variables at time step n, equations 2.52 
an be rewritten as

vn+1 = v̂n+1 + δ∆t v̇n+1; (2.53a)
xn+1 = x̂n+1 + β∆t2 v̇n+1. (2.53b)Equation 2.53a 
an be alternative written as
v̇n+1 =

1

δ∆t

(
vn+1 − v̂n+1

)
. (2.54)Finally inserting equation 2.54 in equation 2.51 it gives

1

δ∆t
M
(
vn+1 − v̂n+1

)
+ fn+1

int = fn+1
ext ; (2.55)whose residual 
an be de�ned as

r(vn+1) = − M

δ∆t

(
vn+1 − v̂n+1

)
− fn+1

int + fn+1
ext . (2.56)The de�nition of the residual of the solution system (equation 2.56) dis
loses the residualbased approa
h that is used in the predi
tor 
orre
tor solution strategy to solve thelinearized system. This will be 
lari�ed in the next pages.



38 The �uid problemThe α-method Hilber Hughes and Taylor in 1977 presented the α−method able tointrodu
e numeri
al dissipation at high frequen
y modes without degrading the order ofa

ura
y of the solution [60℄. The unknowns and their derivatives are 
al
ulated througha weighted average of their values at time step n and n+ 1. For instan
e in the 
ase ofa velo
ity formulation, the ve
tor of unknowns is de�ned as
vn+1+αH = (1 + αH)v

n+1 − αHv
n; (2.57)that redu
es to the Newmark method if αH = 0.In equation 2.57 the 
hoi
e

αH ∈
[

−1
3
, 0

]

, δ =
1− 2αH

2
, β =

(1− αH)
2

4
; (2.58)retains the se
ond order a

ura
y and the un
onditional stability. Maximum dissipationis obtained for αH = −1/3. In this s
ope the residual is slightly di�erent form equation2.56, taking the following form:

r(vn+1+αH ) = −M
[
1 + αH

δ∆t

(
vn+1 − v̂n+1

)
− αH v̇

n

]

−fn+1+αH

int + f
n+1+αH

ext .

(2.59)
Bossak s
heme The Bossak s
heme follows a similar approa
h, but the modi�
ationa�e
ts ex
lusively the term related to the inertia for
es. In fa
t

v̇n+1−αB = (1− αB)v̇
n+1 + αBv̇

n; (2.60)and the residual form of the equilibrium equation is expressed as
r(vn+1−αB) = −M

[
1− αB

δ∆t

(
vn+1 − v̂n+1

)
+ αBv̇

n

]

− fn+1
int + fn+1

ext ; (2.61)Introdu
ing the predi
tion of velo
ity stated by equations 2.52a and 2.53a and groupingthe unknowns at time n + 1 the �nal expression of the residual linearized in time usedin this work is
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r(vn+1−αB) = −M

(
1− αB

δ∆t
vn+1

)

− fn+1
int + fn+1

ext

−M
[
1− αB

δ∆t
vn +

(

αB −
(1− αB)(1− δ)

δ

)

v̇n

]

;

(2.62)Also in this 
ase the un
onditional stability and 2nd order a

ura
y are a
hieved withthe following values of the parameters
αB ∈

[

−1
3
, 0

]

, δ =
1− 2αB

2
, β =

(1− αB)
2

4
; (2.63)The α−method was proven to be more a

urate than Bossak s
heme when the numeri
aldissipation is maximal [61, 126℄. However the latter presents some implementationadvantages for non-linear problems as explained in [6℄. These are the reasons for the
hoi
e of the Bossak s
heme in this work.

Predi
tor multi 
orre
tor residual based strategyThe solution of the non linear problem is a
hieved using a residual based approa
h. Aquasi Newton method allows the linearization of the non linear terms. Using a Taylorexpansion of equation 2.62 at iteration k, the residual at iteration k+1 is obtained andis imposed to be zero, i.e.
r(vn+1,k+1) = r(vn+1,k) +

∂r(vn+1,k)

∂vn+1
∆vk +O(∆vk)2 = 0; (2.64)where ∆vk = vn+1,k+1 − vn+1,k and

∂r(vn+1,k)

∂vn+1
= − M

δ∆t
− ∂f ,n+1,k

int

∂vn+1
; (2.65)The �nal solution system is

−∂r(v
n+1,k)

∂vn+1
︸ ︷︷ ︸

LHS

∆vk = r(vn+1,k)
︸ ︷︷ ︸

RHS

; (2.66)



40 The �uid problemwhere LHS stands for left hand side and it is the matrix of the derivative of the residualat the 
urrent iteration with respe
t to the unknowns. Whereas RHS stands for righthand side, it is the ve
tor of the residual of momentum and 
ontinuity equations at theprevious iteration.The basi
 steps of the Newton-Raphson solution pro
edure are:1. Predi
tion vn+1,k+1 = vn+1,k;2. Solve the system in its residual based form (equation 2.66);3. Update vn+1,k+1 = vn+1,k +∆vk;4. Che
k 
onvergen
e;5. Go ba
k to step 2 till 
onvergen
e is a
hieved.
2.5 Edge-based approa
h: fra
tional step solverCon
erning the element-based approa
h presented in the previous se
tions, two set ofvariables are ne
essary in the evaluation of the right hand side (RHS): the nodal variableslike velo
ities and pressure and the elemental 
ontributions like elemental volumes, shapefun
tions and shape fun
tion derivatives.The main steps of the evaluation of the residual in an element-based formulation are:1. Gather nodal information into the element;2. Operate on element-data to evaluate the elemental residual;3. S
atter the elemental information to point-data in order to obtain the global RHS;The 
ost of addressing operations in steps 1 and 3 
an be drasti
ally redu
ed usingan edge-based approa
h. With this di�erent data stru
ture some redundant opera-tions are avoided. Löhner and 
o-workers demonstrated that the FLOPs (�oating pointoperations) overhead ratio between element-based and edge-based formulation is ap-proximately 2.5 [115℄. All the matrix operators (mass, Lapla
ian, strong and weakgradient and divergen
e) 
an be 
al
ulated only on
e at the beginning of the run in the
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ase of a �xed mesh approa
h, like the one 
onsidered in the present work, be
ause the
onne
tivities between nodes do not 
hange along the 
al
ulation [115℄ .The idea is to express all the integral operators of the 
lassi
al Galerkin dis
retizationin terms of the neighboring 
ontributions a

essing ea
h node only on
e and takingadvan
e of the Compressed Sparse Row (CSR) matrix storing format9.Sin
e symmetry is not exploited in the present implementation, the parallelization ofan edge-base 
ode is straight forward. Two nested loops are performed, the main loop(whi
h is the one to parallelize) is made over the mesh node i, and the inner one is madeover node j surrounding node i (the edges 
onne
ted to node i). The 
ontributions ofthe edge ij are 
omputed only when the node i is a

essed (edge ji for simpli
ity is
onsidered di�erent from edge ij). On the 
ontrary in an element-based approa
h edge
ij is a

essed more than on
e being part of at least two di�erent elements (see Figure2.6). This implies that the 
ontribution ij of every matrix 
omes from more than oneelement, thereby introdu
ing some di�
ulties in parallelizing the elemental loop.

Figure 2.6: Build up 
ontribution in an edge-based data stru
ture for the elemental
ontribution.9In CSR format, suitable for sparse matri
es, only the non zero entries of the matrix are stored.Considering for example matrix A below. It 
an be stored in a CSR format through ve
tors aij , j and
i that are the ve
tor of the non zero entries of A, the ve
tor of the 
olumn indexes of every non zeroentry of A and the position of the �rst non zero entry of ea
h row of A in aij respe
tively, i.e.

A =







5 7 0 1
0 0 0 3
0 1 0 4
0 0 9 0







aTij = {5 7 1| 3| 1 4| 9}

jT = {0 1 3| 3| 1 3| 2}

iT = {0| 3| 4| 6| 6}



42 The �uid problem2.5.1 Stabilized formulationAs already mentioned in Se
tion 2.4.1 in the edge-based approa
h, as well as in theelement-based one, SGS methods are employed to stabilize equations 2.39. In the presentwork the Orthogonal sub-grid s
ale OSS method introdu
ed by Codina [34, 38℄ is used.In this 
ase the spa
e for the sub-grid s
ale is taken orthogonal to the �nite element one.Following stri
tly the operations outlined in [39, 41, 115℄, the problem already presentedin equation 2.39, with the insertion of the 
onve
tion and in
ompressibility stabilizationterms, is: �nd (uh, ph,πh, ξh) in Vh ×Qh × Vh × Vh su
h that
∫

Ω

wh∂tuhdΩ +

∫

Ω

whuh · ∇uhdΩ

−
∫

Ω

nph(∇ ·wh)dΩ + 2

∫

Ω

∇wh : ν∇uhdΩ

+

∫

Ω

wh(E1uh + E2|uh|uh)dΩ−
∫

Ω

whnbdΩ

−
∫

Ω

τ(uh · ∇wh)Ph
⊥(uh · ∇uh + E2|uh|uh)dΩ = 0 ∀wh ∈ Vh;

∫

Ω

qh∇ · uhdΩ+

∫

Ω

τ∇qhPh
⊥(n∇ph)dΩ = 0 ∀qh ∈ Qh;

(2.67)
where Ph

⊥ is the spa
e of orthogonal proje
tions Ph
⊥ = I − Ph and Ph is the L2 −

projection onto Vh. That is
Ph

⊥(uh · ∇uh + E2|uh|uh) = uh · ∇uh + E2|uh|uh − πh; (2.68a)
Ph

⊥(∇ph) = n∇ph − ξh; (2.68b)with πh and ξh de�ned as
∫

Ω

whπhdΩ =

∫

Ω

wh(uh · ∇uh + E2|uh|uh)dΩ; ∀wh ∈ Vh (2.69a)
∫

Ω

whξhdΩ =

∫

Ω

whn∇phdΩ; ∀wh ∈ Vh (2.69b)The additional unknowns ξ and π 
an be easily expressed in fun
tion of velo
ity andpressure through this equations.Remark 8. A split-OSS is implemented. The 
orre
t form of applying OSS to themomentum equation would be to 
onsider a stabilization term like equation 2.45 where
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orrespond to those presented in Table 2.1 for ASGS. The di�eren
eis represented by the 
hoi
e of the Rm(uh) term. Instead of taking the whole residuumof the momentum equation, only its orthogonal proje
tion (the proje
tion onto Ph
⊥) istaken into a

ount. Two 
onsiderations should be made:- The inertia term, the body for
e term and the linear part of the Dar
y term belongto the �nite element spa
e Vh (i.e. their proje
tion onto Ph

⊥ is zero);- The vis
ous term disappears using linear elements (i.e. the Lapla
ian of a linearfun
tion is zero);Therefore Rm(uh) takes the form
Rm(uh) = Ph

⊥(uh · ∇uh + E2|uh|uh +∇ph); (2.70)and the stabilization term should be
∫

Ω

τ(uh · ∇wh +∇qh)Rm(uh)dΩ; (2.71)whi
h is di�erent from
∫

Ω

τ(uh · ∇wh)Ph
⊥(uh · ∇uh + E2|uh|uh)dΩ +

∫

Ω

τ∇qhPh
⊥(∇ph)dΩ; (2.72)In pra
ti
e this se
ond form has been seen to be very e�e
tive [115℄ and it is the oneimplemented in this work.An error analysis leads to the de�nition of τiin fun
tion of the parameters of the di�er-ential equation (like adve
tive velo
ity u or kinemati
 vis
osity ν) [51℄. Following theanalysis of Codina [35, 37℄, and 
onsidering the additional presen
e of the Dar
y term,

τ is de�ned as
τi =

(
α

∆t
+

4νi
h2
i

+
2|ui|
hi

+ (E1 + E2|ui|)
)−1 (2.73)where hi is the mesh size taken equal to the minimum edge length (lij) of the edges ijsurrounding node i. α is a parameter that 
ontrols the importan
e of the dynami
 termin the stabilization (α ∈ [0, 1]). In the 
ase of pressure stabilization the optimal α valueis 1, whereas for the 
onve
tive term, α it is taken equal to 0.01 therefore de
reasing theimportan
e to a 1%. Finally E1 and E2 are the Ergun's 
oe�
ients de�ned in 2.31 and2.32 respe
tively.
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retization pro
edureSystem 2.67 
an be rewritten in a semi dis
rete form as
M̃∂tu+ K̃C (u)u− G̃p+ K̃µu+ K̃D (u)u+ Suu− Sππ − F̃ = 0; (2.74a)

D̃u+ Spp− Sξξ = 0; (2.74b)
M̃π − K̃C(u)u = 0; (2.74
)

M̃ξ − ∇̃p = 0; (2.74d)where u is the ve
tor of nodal velo
ities and p the ve
tor of nodal pressures. Theoperators take the form presented in Table 2.4 and the stabilization operators Si arede�ned as shown in Table 2.5.In order to simplify the problem, equations 2.74
 and 2.74d 
an be substituted inequations 2.74a and 2.74b respe
tively, giving
M̃∂tu+ K̃C (u)u− G̃p+ K̃µu

+K̃D (u)u+ Suu− SπM̃−1K̃C(u)u− F̃ = 0; (2.75a)
D̃u+ Spp− SξM̃−1

∇̃p = 0; (2.75b)The residual of the momentum equations without the dynami
 term is de�ned as
r̃ (u,p) := K̃C (u)u− G̃p+ K̃µu

+K̃D (u)u+ Suu− SπM̃−1K̃C(u)u− F̃;

(2.76)Remark 9. The tilde super-index over the matrix operators emphasizes the di�eren
ebetween the same operators in the element-based formulation presented in Table 2.2.
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Matri
ial term Continuum term

M̃ij

∑

j

∫

Ω

NiNjdΩ;

K̃C
ij(u)

∫

Ω

Ni (ug · ∇Nj) dΩ;

K̃ij K̃
µ
ij

∫

Ω

νi∇Ni · ∇NjdΩ;

K̃D
ij (u)

∑

j

∫

Ω

NiugNjdΩ

G̃ij

∫

Ω

ni∇NiNjdΩ;

∇̃ij

∫

Ω

niNi∇NjdΩ;

D̃ij

∫

Ω

Ni∇NT
j dΩ;

F̃i

∫

Ω

niNidΩTable 2.4: Matri
es and ve
tors of the semi dis
rete form of equations 2.75.
Matri
ial term Continuum term

Su
ij

∫

Ω

τi(ug · ∇Ni)(ug · ∇Nj + E2|ug|Nj)dΩ

Sπ
ij

∫

Ω

τiNi(ug · ∇Nj + E2|ug|Nj)dΩ

S
p
ij

∫

Ω

τi∇Ni · ∇NjdΩ

S
ξ
ij

∫

Ω

τiNi∇NjdΩTable 2.5: Stabilization matri
es and ve
tors of system 2.75.



46 The �uid problem2.5.3 Fra
tional step solver using an expli
it 4th order RungeKutta time s
hemeThe modi�ed form of the Navier-Stokes equations are solved using a fra
tional step algo-rithm. Pressure-splitting approa
hes of the fra
tional-step type are very 
onvenient dueto their high 
omputational e�
ien
y for �ows at high Re, and have enjoyed widespreadpopularity sin
e the original works of Chorin [33℄ and Temam [119℄. The fundamentalidea is to solve the momentum equation keeping �xed the pressure and later 
orre
tingthe pressure so as to guarantee the satisfa
tion of the divergen
e 
onstraint. A modernalgebrai
 presentation of the method 
an be found in [36℄. The fra
tional step approa
his traditionally presented in an impli
it 
ontext, typi
ally using a �rst or se
ond orderBa
kward Di�erentiation Formula (BDF1 or BDF2 algorithm respe
tively) for the timeintegration of the momentum equation. In dealing with free-surfa
e problems unfortu-nately, the shape of the �uid domain, and 
onsequently the boundary 
onditions on thefree surfa
e, are subje
ted to frequent and radi
al 
hanges. This implies that, to allowa satisfa
tory representation of the solution, an a

urate tra
king should be performed.In pra
ti
e, it is typi
ally observed that, even fully impli
it s
hemes are pra
ti
ally lim-ited to time steps for whi
h the free surfa
e approximately moves of one element lengthper time step. Su
h heuristi
 
onstraint is equivalent in essen
e, to a restri
tion onthe pra
ti
al CFL (Courant Friedri
hs Lewy)10 number to values in the order of unity.This observation e�e
tively implies that expli
it s
hemes will be 
ompetitive providedthat CFL ≈ 1 
an be used and meshes of su�
iently good quality 
an be generated.This motivates the use of an expli
it form of the fra
tional step s
heme (see for example[109℄) based on the use of a 4th order Runge Kutta (RK4) in dealing with the momentumequation.Before pro
eeding in the des
ription of the method, it should be observed that thealgebrai
 splitting proposed by Codina in [36℄ leads naturally to the de�nition of a dis-
rete Lapla
ian DM−1G whi
h in prin
iple does not introdu
e any additional error inthe imposition of the divergen
e freeness 
ondition with respe
t to the original mono-lithi
 s
heme. However, in pra
ti
e the use of the dis
rete Lapla
ian implies a large10The CFL, for hyperboli
 system of partial di�erential equations (PDEs), is de�ned by
CFL =

λmax · dt
h

; (2.77)where λmax is the maximum eigenvalue of the system, dt the time step and h the size of the element[81, 109℄.
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omputational burden as the matrix is rather densely populated. In order to over
omesu
h problem the dis
rete Lapla
ian is typi
ally substituted by a 
ontinuum Lapla
ianwhi
h has a mu
h smaller sten
il than the dis
rete one (around six times smaller in
3D). This fa
t has important 
onsequen
es both on the e�
ien
y and on the stabilityof the numeri
al s
heme (see e.g. [36℄) but in parti
ular it has an important impa
t onthe mass 
onservation properties of the method [66℄. One pra
ti
al issue is that whilethe use of a dis
rete Lapla
ian matrix guarantees an invertible matrix, this is not the
ase when the 
ontinuum form is 
hosen implying that pressure needs to be �xed on theNeumann boundary, that is, pressure is to be imposed strongly, at least for the solutionof the pressure step. This implies that when FS is to be used the pressure is knownbeforehand on the Neumann boundary.Given su
h situation, it is 
onvenient, to avoid integrating by parts the pressure gradientterm, using the equivalent formula

∫

Ω

w · ∇pdΩ = −
∫

Ω

p∇ ·wdΩ+

∫

∂Ω

w · pndΓ (2.78)This implies that the pressure spa
e should be in [H1(Ω)]d whi
h is an additional re-quirement to the smoothness of the fun
tion. Su
h modi�ed form has the importantadvantage that no boundary integrals need to be 
omputed (se
ond integral of the rightand side of equation 2.78) for the pressure whi
h leads to an easier appli
ation of thepressure boundary 
ondition on the free surfa
e as it will be explained in Se
tion 2.6.4.This 
onsideration leads to the following expression for the residual at node i (note theuse of ∇̃ instead of G̃).
r̃ (u,p) := K̃C (u)u+ ∇̃p+ K̃µu

+K̃D (u)u+ Suu− SπM̃−1K̃C(u)u− F̃;

(2.79)
Remark 10. Using Eq. 2.78 implies a pointwise appli
ation of the normal for
e on theNeumann boundary instead of its weak imposition. This is an a

eptable approximationfor low vis
osity �ows for whi
h the term ∫

Ω
n · µ∆udΩ is negligible.On the basis of su
h de�nition the time integration 
an now be performed.



48 The �uid problemRunge Kutta time integration s
hemeThe lower 
omputational 
ost of an expli
it time integration te
hnique (that does notrequire solving of a system of equations), is not the only advantage of this approa
h. Itsimplementation is highly parallelizable, whi
h is the main reason why it has been 
hosenin this work. Moreover 
onsidering the m-Runge Kutta s
hemes, it is known that theorder of the time integration 
an be arbitrarily 
hosen, although they give m− th orderof a

ura
y up to m = 4 [51℄. Whenever for m > 4 the order is lower than m. That isthe reason of the popularity of the 4-steps s
heme (RK4).It is demonstrated that the RK4 is the optimal 
ompromise between the number ofintermediate steps and the permissible time step size in spite of its 
onditional stability.For more details the 
onsultation of [51℄ is re
ommended.RK4 makes use of the solution at tn to evaluate the solution at time tn+1 by 
al
ulatingthe residual of the equations at a 
ertain number of intermediate steps.This means that for a general Cau
hy problem
∂y

∂t
= f(y(t), t); (2.80)a one step expli
it approa
h leads to a time s
heme with the following general format

yn+1 − yn

∆t
= f(yn, tn); (2.81)whereas for the 4th order Runge Kutta method

yn+1 − yn

∆t
=

1

6
(r1 + 2 r2 + 2 r3 + r4); (2.82)where ri with i = 1, 2, 3, 4 are the residuals of the stationary form of 2.80 evaluated at

r1 = f (tn, yn) ;

r2 = f

(

tn +
∆t

2
, yn +

∆t

2
· r1
)

;

r3 = f

(

tn +
∆t

2
, yn ++

∆t

2
· r2
)

;

r4 = f (tn +∆t, yn +∆t · r3) .

(2.83)
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tional step solver 49In order to fully explain every stage of the integration s
heme applied to the momentumequation let us use the de�nition of the stabilized residual obtained in equation 2.79.The semi-dis
rete form of the momentum equations in terms of the residuals at theintermediate stages is then
M̃

un+1 − un

∆t
=

1

6
[̃r1 + 2 r̃2 + 2 r̃3 + r̃4];

=
1

6

[
r̃(un,pn) + 2 r̃(uθ1,pθ1) + 2 r̃(uθ2,pθ2) + r̃(uθ3,pθ3)

]
;

(2.84)where r̃(uθi ,pθi) are the residuals of the momentum equations de�ned by equation 2.79evaluated at θi intermediate stages.To 
orre
tly evaluate the residual at ea
h intermediate time step, the solution of the
ontinuity equation would have been required. This would have 
onsiderably redu
edthe e�
ien
y requiring a huge 
omputational e�ort. In order to over
ome this issue,a

ording to [111℄, a linear variation of pressure is assumed in the time step. It shouldbe remarked that this assumption leads the velo
ity �eld to be divergen
e free only atthe end of the step.Rede�ning equation 2.79 as
r̃(u,p) = r̃u(u) + r̃p(p); (2.85)being r̃u(u) the part of the residual related to velo
ity and r̃p(p) the part related tothe pressure gradients. The residuals be
ome

r̃1 := r̃(un,pn) = r̃u(un) + ∇̃pn;

r̃2 := r̃(uθ1,pθ1) = r̃u(uθ1) +
1

2

(

∇̃pn + ∇̃pn+1

)

;

r̃3 := r̃(uθ2,pθ2) = r̃u(uθ2) +
1

2

(

∇̃pn + ∇̃pn+1

)

;

r̃4 := r̃(uθ3,pθ3) = r̃u(uθ3) + ∇̃pn+1;

(2.86)
And the global momentum equation 2.84 
an be symboli
ally rewritten as
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M̃

un+1 − un

∆t
=

1

6

[
r̃u(un) + 2 r̃u(uθ1) + 2 r̃u(uθ2) + r̃u(uθ3)

]

+
1

2

[

∇̃pn + ∇̃pn+1

]
(2.87)Final system using a fra
tional step approa
h and a RK4In order to de
ouple the solution for the velo
ity and pressure, the traditional pressuresplitting pro
edure is performed and the fra
tional step velo
ity ũ is inserted. This gives

M̃
ũ− un

∆t
=

1

6

[
r̃u(un) + 2 r̃u(ũθ1) + 2 r̃u(ũθ2) + r̃u(ũθ3)

]
+

1

2
∇̃pn; (2.88a)

M̃
un+1 − ũ

∆t
+

1

2
∇̃(pn+1 − pn) = 0; (2.88b)

D̃un+1 + Sppn+1 − SξM̃−1G̃pn+1 = 0; (2.88
)where it has to be remarked that equation 2.88a only depends on the pressure at theprevious time step and on the intermediate fra
tional step velo
ities, leading to a slightlydi�erent RK4 steps as explained later on.From equation 2.88b
un+1 = ũ− ∆t

2
M̃−1

∇̃(pn+1 − pn); (2.89)that substituted in equation 2.88
 gives
D̃ũ− ∆t

2
D̃M̃−1

∇̃(pn+1 − pn) + Sppn+1 − SξM̃−1G̃pn+1 = 0. (2.90)Finally substituting the dis
rete Lapla
ian (D̃M̃−1
∇̃) by the 
ontinuous one (L), the�nal system to be solved is [109℄:

M̃
ũ− un

∆t
=

1

6

[
r̃u(ũn) + 2 r̃u(ũθ1) + 2 r̃u(ũθ2) + r̃u(ũθ3)

]
+

1

2
∇̃pn; (2.91a)

∆t

2
L
(
pn+1 − pn

)
= D̃ũ+ Sppn+1 − SξM̃−1G̃pn+1; (2.91b)

un+1 = ũ− ∆t

2
M̃−1

∇̃
(
pn+1 − pn

)
; (2.91
)
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tional step solver 51where the residuals of equation 2.91a are evaluated a

ording to the following steps
r̃u(un); (2.92a)
ũθ1 = un + M̃−1∆t

2

[

r̃u(un) + ∇̃pn
]

; (2.92b)
r̃u(ũθ1); (2.92
)
ũθ2 = un + M̃−1∆t

2

[

r̃u(ũθ1) +
1

2
∇̃pn

]

; (2.92d)
r̃u(ũθ2) (2.92e)
ũθ3 = un + M̃−1∆t

[

r̃u(ũθ2) +
1

2
∇̃pn

]

; (2.92f)
r̃u(ũθ3); (2.92g)2.5.4 The edge-based operatorsHaving made the 
hoi
e of using an expli
it s
heme for the time integration of themomentum equation, a suitable data stru
ture for the fast 
al
ulation of the residualsshould be devised. The idea to be exploited is that many of the integrals involved in the
omputation of the residual 
an be written in terms of 
onstant operators whi
h 
an bedire
tly applied to the nodal values. Di�erent te
hniques were developed over the yearsto rea
h su
h goal. In writing this work the nodal-based approa
h des
ribed in [34℄ isblended with the edge-based proposed in [81, 115℄.The starting point is the systemati
 usage of the partition-of-unity property of the FEshape fun
tions, whi
h provides the relations
∑

i

Ni = 1 =⇒ Ni = 1−
∑

j 6=i

Nj ; (2.93)and, as a 
onsequen
e,
∑

i

∇Ni = 0 =⇒ ∇Ni = −
∑

j 6=i

∇Nj. (2.94)The edge-based approa
h is obtained by applying systemati
ally su
h relations for the
omputation of the dis
rete operators of interest.In the following the di�erent terms involved in the 
al
ulation of the residual are 
on-sidered one by one, by expressing the 
ontributions to the entry 
orresponding to a given



52 The �uid problemnode i. The j index indi
ates one of the neighbor nodes of i whi
h share an edge withit.
Gradient term. The gradient term (not integrated by parts) whi
h appears in themomentum equation, reads

∑

j

∫

Ω

Ni∇NjpjdΩ =
∑

j 6=i

∫

Ω

Ni∇NjpjdΩ +

∫

Ω

Ni∇NipidΩ

=
∑

j 6=i

∫

Ω

Ni∇NjpjdΩ−
∫

Ω

Ni

(
∑

j 6=i

∇Nj

)

pidΩ

=
∑

j 6=i

∫

Ω

Ni∇Nj (pj − pi) dΩ

=
∑

j 6=i

∇̃ij (pj − pi).

(2.95)
Applying equation 2.94 it 
an be demonstrated that the pressure gradient term 
an be
omputed by using the ∇̃ij for any edge ij. Note that the term ii is never needed withthe approa
h proposed.
Divergen
e term. The derivation of the divergen
e term is basi
ally identi
al tothe previous one, with the only di�eren
e that a s
alar produ
t is involved. Followingexa
tly the same steps as before it 
an be readily shown that

∑

j

D̃ij · uj =
∑

j 6=i

D̃ij · (uj − ui) dΩ. (2.96)
Conve
tion term. The non-linear 
onve
tion term has to be approximated to �twithin the framework of the present edge based formulation. Several possibilities existto obtain a suitable form to be used in the 
al
ulations. One 
ould start by 
onsidering
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onservative form of the 
onve
tion operator ∇ · (u⊗ u) .
∑

j

∫

Ω

Ni∇Nj · (uj ⊗ uj) dΩ =

=
∑

j 6=i

∫

Ω

Ni∇Nj · ujujdΩ−
∫

Ω

Ni

(
∑

j 6=i

∇Nj

)

· uiuidΩ;

(2.97)
whi
h tells us that the 
onve
tive term 
an be estimated as

∑

j 6=i

(

∇̃ij · uj

)

uj −
∑

j 6=i

(

∇̃ij · ui

)

ui. (2.98)Alternatively, one 
an start with the non-
onservative form of the same equation anduse a nodal integration rule as proposed in [34℄. This approa
h estimates the 
onve
tiveterm 
ontribution as
∑

j 6=i

(

∇̃ij · ui

)

(uj − ui) . (2.99)The �rst approa
h is �globally 
onservative� by 
onstru
tion in the sense that the sumover all of the nodes in the mesh is guaranteed to give zero. This property is onlyapproximately veri�ed by the se
ond te
hnique, sin
e the integration rule is not exa
t.In pra
ti
e, both approa
hes work e�e
tively. Nevertheless the se
ond approximationappears to be slightly more robust and was the one 
hosen in that work.�Weak� gradient term. The migration from a 
lassi
al �nite element to an edge-based implementation requires des
ribing the gradient of a s
alar fun
tion integrated byparts. Sin
e in the 
urrent formulation the pressure gradient term is not integrated byparts, this is not stri
tly needed for the implementation of the present method. In any
ase, following [86℄
∑

j

∫

Ω

ni∇NiNjpj =
∑

j 6=i

∫

Ω

ni∇NiNjpjdΩ+

∫

Ω

ni∇NiNipidΩ

=
∑

j 6=i

∫

Ω

ni∇NiNjpjdΩ−
∫

Ω

(
∑

j 6=i

ni∇Nj

)

NipidΩ

= G̃ijpj − ∇̃ijpi.

(2.100)
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ous term. The vis
ous term in the Navier-Stokes equations requires estimatingthe s
alar Lapla
ian operator Lij . Although the possibility exists of storing dire
tly onea
h edge an entry of the type Lij :=
∫

Ω
∇Ni ·∇NjdΩ, in the present work it is preferredto store a matrix term of the type

Ld
ij =

∫

Ω

∇Ni ⊗∇NjdΩ; (2.101)on ea
h edge of the mesh. The s
alar gradient 
an then be obtained as needed by thetra
e operator as
Lij = Tr

(
Ld

ij

)
; (2.102)whi
h allows writing the vis
ous term as

∑

i6=j

Tr
(
Ld

ij

)
µ (uj − ui) (2.103)�Spe
ial terms�. The terms des
ribed until now in
lude all of the terms that areneeded for the implementation of the Navier-Stokes equations. Nevertheless, it is appro-priate to remark that storing the matrix Lapla
ian Ld

ij instead of its s
alar 
ounterpart,is justi�ed for the implementation of the stabilization operators. A detailed des
riptionof the use of Ld
ij in this 
ontext 
an be found in [83℄. The need for storing su
h operator
an be also understood by 
onsidering a SUPG-like stabilization operator. On a givennode i, the stabilization operator has the form

∑

i6=j

∇ · (ui ⊗ ui)∇ (uj − ui) . (2.104)By using the matrix lapla
ian operator, this 
an be approximated as
∑

i6=j

(
ui · Ld

ij · ui

)
∇ · (uj − ui) ; (2.105)whi
h requires 
onsidering Ld

ij in the 
omputation. Similarly, the matrix form is alsouseful in the 
omputation of the sub-s
ale residuals and for the de�nition of a 
ross-winddissipation term whi
h is useful for 
ontrolling unwanted numeri
al os
illations.Remark 11. The 
ommon features of all of the terms des
ribed is that they 
an beevaluated for ea
h node i independently of all of the others. This implies that the
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al
ulation of the residuals 
an be performed in parallel for ea
h node of the mesh.Remark 12. All the other magnitudes that have not been spe
i�
ally treated here aretaken as nodal, su
h as, for instan
e, the intrinsi
 time τ .2.5.5 Improving mass 
onservationIndependently on the time a

ura
y of the numeri
al s
heme used for the �rst step, theoverall s
heme 
an not be more than se
ond order a

urate due to the pressure splittingpro
edure. Furthermore, the use of the 
ontinuum Lapla
ian operator, mandatory in the
ontext of a semi-expli
it s
heme, implies some volume loss parti
ularly 
on
entratedin the vi
inity of the free surfa
e (Neumann boundary). The origin of su
h loss 
an betra
ed ba
k to two distin
t phenomena:1. As observed in [66℄, the pressure is �xed on the Neumann boundary as this isneeded to make the Lapla
ian resolvable. This implies that it loses the 
apa
ityto adapt lo
ally so to attempt guaranteeing the lo
al mass 
onservation.2. The divergen
e 
onstraint (Du = 0) is generally evaluated at time step n + 1implying that it depends ex
lusively on the velo
ity at n + 1. Any error in theful�llment of this 
onstraint at the pre
eding step (Dun = 0 ) is simply dis
ardedand never re
overed.The algorithm devised for the solution of the free surfa
e problem attempts to minimizethe �rst issue. The idea, as shown in Se
tion 2.6.4, is that the pressure will be �xedon the nodes outside the free surfa
e, thus letting some freedom to the nodes in itsproximity.On the other hand, the ful�llment of the divergen
e free 
ondition at the present timestep (n+1) and at the previous one (n) are 
ombined in order to over
ome the drawba
kstated in point 2. The idea is the following: if no error was made in the past, it 
an bestated that Dun = 0. However this assumption is not veri�ed in pra
ti
e and volume iseither 
reated or destru
ted at a rate of Dun. While usually this information is simplydis
arded, in the present work the divergen
e free 
ondition (Dun+1 = 0) is modi�ed inorder to sum up the volume variation lost (or gained) at the previous time (Dun).In mathemati
al terms the proposal is simply to modify the divergen
e 
onstraint as
Dun+1 +Dun = 0 (2.106)



56 The �uid problemAs shown in some of the examples, this simple modi�
ation improves the volume 
on-servation of the overall s
heme.2.6 Free surfa
e tra
king. The Level Set methodThe proposed te
hnique is based on the use of a �xed-grid approa
h. Hen
e at ea
htime step the �uid domain should be de�ned, implying:1. The de�nition of a tra
king method that allows:- moving the �uid free surfa
e;- de�ning the position of the �uid boundary at ea
h time step;2. The appli
ation of the boundary 
onditions at the �uid boundary that do notne
essarily 
oin
ide with mesh edges;A level set te
hnique is employed to fa
e the �rst issue. The level set method was
on
eived as a methodology to following moving interfa
es. The moving boundaries are
omposed of the zero-valued iso-surfa
e of a given smooth fun
tion (at least Lips
hitz
ontinuous11 [11℄) ϕ(x, t).Let us 
all Ω0 ⊂ R
d (where d is the spa
e dimension) the global 
ontrol domain ofanalysis. The �uid domain de�ned in the previous se
tion at time t is Ω(t) ⊂ Ω0. Theboundary of Ω(t) is de�ned by part of ∂Ω0 and by a moving boundary de�ned as

∂Ωm(t) := {x | ϕ(x, t) = 0} (2.107)From now on Ω(t) = Ω, and Ωm(t) = Ωm and the expli
it indi
ation of time will beomitted for simpli
ity. Following the same 
riteria, the �uid domain at a given timestep tn is Ω(tn) = Ωn.11In mathemati
s Lips
hitz 
ontinuity is a stronger requirement than simple 
ontinuity 
onditioningthe speed of 
hange of the fun
tion. Let f : Rm → R
m. Given an open set B ⊆ R

m, f is Lips
hitz-
ontinuous on the open subset B if there exists a 
onstant Λ ∈ R
+

0
su
h that

||f(x)− f(y)|| ≤ Λ||x− y|| ∀x,y ∈ B.



Free surfa
e tra
king. The Level Set method 57The level set fun
tion is de�ned as
ϕ(x, t) > 0 if x /∈ Ω;

ϕ(x, t) = 0 if x ≡ ∂Ωm;

ϕ(x, t) < 0 if x ∈ Ω;

(2.108)

FLUID DOMAIN

FREE SURFACE

NON FLUID DOMAIN

CONTROL DOMAIN

mFigure 2.7: Graphi
 representation of the level set fun
tion ϕ.see Figure 2.7 for a graphi
 representation of the level set fun
tion.In the present work the level set fun
tion is taken to be a signed distan
e fun
tion. TheEu
lidian distan
e fun
tion is by de�nition
d(x) = min|x− xi| ∀xi ∈ ∂Ωm (2.109)The level set fun
tion, for a given time instant t, is de�ned as

ϕ(x) = d(x) if x /∈ Ω, t ∈ (0, T );

ϕ(x) = d(x) = 0 if x ∈ ∂Ωm, t ∈ (0, T );

ϕ(x) = −d(x) if x ∈ Ω, t ∈ (0, T );

(2.110)As exhaustively detailed in [103℄ this fun
tion inherits of all the properties of impli
itsurfa
es (being signed distan
e fun
tions a subset of the latter). Moreover, its mono-toni
ity a
ross the interfa
e allows its di�erentiation.



58 The �uid problemThe fundamental idea of using the level set approa
h 
an now be understood 
onsideringthe mass 
onservation equation for a variable-density �uid:
dρ

dt
+ u · ∇ρ+ ρ∇ · u = 0 (2.111)The 
ase of interest is that ρ 6= 0 inside the �uid domain and ρ = 0 outside the freesurfa
e, where a regularization fun
tion should be 
onsidered to be applied to ρ to makeit di�erentiable in spa
e.Let us split equation 2.111 in the following two equations
dρ

dt
+ u · ∇ρ = 0 (2.112)and

ρ∇ · u = 0→∇ · u = 0 (2.113)It is easy to understand that if su
h two equations are veri�ed equation 2.111 will alsobe veri�ed. This requirement is in fa
t stri
ter the the original one. Now, equation 2.112represents the transport of the density with the mean �ow velo
ity. Sin
e the density
an be rather badly behaved as it approximates a jump, it is 
onvenient to repla
e itby the transport of a smooth s
alar ϕ (in the present work ϕ is the distan
e fun
tion)whi
h 
an be used to re
over the density distribution at any moment. The problem isthus transferred to the solution of the transport problem
∂tϕ+ u · ∇ϕ = 0 in Ω0, t ∈ (0, T ),

ϕ = ϕ on ∂Ωin, t ∈ (0, T ),

ϕ(x, 0) = ϕ0(x) in Ω0,

(2.114)where ∂Ωin := {x ∈ ∂Ω0 | u ·n < 0} is the in�ow part of ∂Ωm. When the �uid entersthe porous matrix an a

eleration of the advan
ing front 
an be observed be
ause of arestri
tion of the empty area. This is taken into a

ount by 
onsidering the adve
tivevelo
ity equal to the a
tual �uid velo
ity de�ned in equation 2.2.Two di�erent solution approa
hes are used for the edge-based and the element-basedalgorithm for the solution of the 
onve
tive system 2.114. In the edge-based te
hnique a
4th order Runge Kutta s
heme 2.114 is implemented and an OSS stabilization te
hniqueis used, similarly to what has already been explained in Se
tion 2.5.1. Conversely a



Free surfa
e tra
king. The Level Set method 59Crank-Ni
olson time integration s
heme is employed in the element-based approa
hstabilized with the ASGS method.2.6.1 Coupling the level set equation and the Navier-StokessolverIn order to 
ompletely de�ne the approa
h used in this work, the des
ription of the
oupling between the Navier-Stokes solver and the newly added level set equations isneeded. Con
eptually, the velo
ity obtained from the solution of the Navier-Stokesequation has to be used in 
onve
ting ϕ, while the zero level set fun
tion providesthe position of the free-surfa
e and is 
onsequently needed to pres
ribe the pressure
ondition on the Neumann boundary. Many di�erent approa
hes have been proposedover the years to perform su
h 
oupling; some based on sub-integration te
hniques on the
ut elements [42℄ and others based on some form of regularization for the density fun
tionin the vi
inity of the free surfa
e. The proposal in this work rises from the observationthat, on
e a 
ontinuous pressure distribution is assumed, only the gradient of the existingpressure appears in the momentum equation (as already observed before,the pressureterm is not integrated by parts). This implies that the momentum equation 
an be solvedapproximately without knowing exa
tly the position of the free surfa
e, provided thatan estimate of the pressure gradient is given in any a
tive (or potentially a
tive) areaof the �uid domain. On the other hand, the imposition of the zero tra
tion 
onditionon the Neumann boundary 
ould be applied in the pressure 
orre
tion step through theimposition of adapt boundary 
onditions at the level of the pressure Lapla
ian system.To 
omplete the algorithm some other ingredients are needed:- An extrapolation fun
tion to de�ne the values of the velo
ity on a band 
ontainingthe free surfa
e of the �uid and to allow the imposition of the in
ompressibility
ondition on the free surfa
e;- A tool for 
al
ulating the nodal distan
es in the whole domain Ω0;- A method to impose the boundary 
onditions on the free surfa
e.2.6.2 The extrapolation pro
edureIn order to allow the 
onve
tion of the free surfa
e ∂Ωm in regions of Ω0 out of Ωn , anextrapolation of the velo
ity �eld in the part of the domain 
lose to the free surfa
e but



60 The �uid problemexternal to Ωn is needed and it should be extended su�
iently far to 
over all of theregion upon whi
h the �uid domain is likely to extend during time step n+ 1.On the other hand, the pressure gradient and the pressure nodal values are needed inorder to impose the in
ompressibility 
ondition in the edge-based pro
edure (for moredetails see Se
tion 2.6.4). In the present work an expli
it extrapolation is performed.An auxiliary data stru
ture is de�ned. It 
ontains the layers of nodes 
lose to the freesurfa
e. As an examples, let us refer to Figure 2.8 that represents the domain at theend of tn. The gray area is the �uid part and the bla
k 
ir
les represent the 
al
ulatednodes.The layers are de�ned using the following 
riteria:- LAYER 0 (L0) is the �rst layer of nodes of the �uid domain internal the freesurfa
e (L0 ∈ Ωn).- LAYER i (Lk) (k = 1, 2, ..., nl12) is the layer of non-�uid nodes neighboring with
Lk−1 (Lk /∈ Ωn)

LAYER 0

LAYER 1

LAYER 2

CALCULATED NODES

NOT CALCULATED NODES

LAYER -1

FLUID DOMAINFigure 2.8: Extrapolation layers and 
al
ulated nodes in the time interval tn − tn+1.The �uid velo
ity and pressure �elds on the layers Lk with k ≤ 1 are known from theprevious time step tn (the bla
k nodes in Figure 2.8). In the present work however, su
hvalues are not used in performing the extrapolation of pressure, velo
ity and gradient ofpressure, but rather velo
ity is taken starting from layer L0 and pressure and pressuregradient from L−1. The rationale of this 
hoi
e is that the pressure and pressure gradi-ents in the immediate vi
inity of the free surfa
e may show a 
ertain level of spuriousos
illations, sin
e pressure is imposed strongly on layer L1 and the e�e
t of a non-smooth12nl denotes the number of extrapolation layers set up by the user.



Free surfa
e tra
king. The Level Set method 61pressure boundary 
ondition may be still felt on layer L0. The extrapolation of pressure(and pressure gradient) is thus started from the inner layer (L−1), whi
h guarantees amu
h smoother behavior of the extrapolation area.In symbols, we de�ne the pressure gradient on ea
h node i of a given layer k, as thearithmeti
 average (avg) of all of its neighbors j whi
h belong to the layer of lower order,i.e.
∇pki := avg

(
∇pk−1

j

)
∀k = 0...nl i ∈ Lk j ∈ Lk−1 (2.115)Given su
h pressure gradients, pressure is then evaluated on node i so as to maintainthe extrapolated pressure gradient, that is

pki := avg
(
pk−1
j + hij · ∇pk−1

j

)
∀k = 0...nl i ∈ Lk j ∈ Lk−1 (2.116)where hij := xj − xi is the ve
tor from i to j.The extrapolation of the velo
ity is performed in a very similar way, with the onlydi�eren
e that the extrapolation starts from layer L0, not from L−1 (see Figure 2.8 fora graphi
al representation).

uk
i := avg

(
uk−1
j

)
∀k = 1...nl i ∈ Lk j ∈ Lk−1 (2.117)The extrapolation pro
edure des
ribed above provides a predi
tion of the velo
ity andpressure �elds that is likely to be found outside of the pressure domain. Su
h extrap-olation is performed before 
onve
ting the distan
e fun
tion, and should be extendedsu�
iently far to 
over all of the area upon whi
h the �uid domain is likely to extend dur-ing the following time step. It should be remarked that the data stru
ture that 
ontainsthe di�erent layers should be updated every time the distan
e fun
tion is 
onve
ted.It is interesting also to observe that the 
hoi
e of using the strong form of the pressuregradients in the momentum equations appears at this point to be bene�
ial. The ideais that sin
e the pressure gradient was not integrated by parts, no boundary integral ofthe pressure is needed on the free surfa
e (in the solution of the momentum equation)and the only thing needed on any �uid element (in
luding the elements 
ut by thefree surfa
e) is the 
orre
t 
omputation of the pressure gradient, whi
h is automati
allyavailable on
e the pressure is extrapolated as des
ribed.Remark 13. The data stru
ture that 
ontains the di�erent layers should be updatedevery time the distan
e fun
tion is 
onve
ted.



62 The �uid problemRemark 14. The extrapolation of pressure and pressure gradient is ne
essary only inthe edge-based formulation in order to approximately pres
ribe the zero pressure 
ondi-tion on the free surfa
e, as it will be explained in Se
tion 2.6.4. For the element-basedformulation a virtual sub-splitting is proposed and no pressure gradients are needed.2.6.3 The distan
e fun
tionOn
e the 
onve
tion operation has been performed the level set fun
tion is no longer theEu
lidean distan
e fun
tion presented in 2.110. To re
over its original nature a tool tore-evaluate the nodal distan
e from the new 
al
ulated free surfa
e, has been developed.Due to the dynami
 nature of the analyzed problem, a rede�nition of the �uid domain
Ω := {x ∈ Ω0 | ϕ(x) ≤ 0} is ne
essary at ea
h time step. In the present se
tion themethodology for the 
al
ulation of the distan
e �eld is des
ribed. The 3D 
ase is takeninto a

ount although the 2D 
ase has also been implemented. For the 
al
ulation ofthe distan
e �eld of the domain Ω0, numeri
al methods have to be employed be
ausethe use of analyti
al solution is not trivial. The method proposed by Elias, Martinsand Coutinho (see [56℄ for more details) is taken as a referen
e. It takes its origin fromthe Fast Mar
hing Method (FMM), a te
hnique, �rst developed by Sethian (see [114℄),for the 
omputation of the arrival time of a front. In the FMM the Eikonal equation(equation 2.118) is given as a boundary 
ondition

‖∇T‖ · F = 1; (2.118)where T is the time arrival of the front and F is the speed of the front. That meansthat T (p) is the time arrival of the front to point p. Taking F = 1, T (p) is nothing butthe distan
e missed by the front to arrive at the point p. That means thatfun
tion T 
oin
ides with the signed distan
e fun
tion ϕ adopted in the present work.
‖∇T‖ = ‖∇ϕ‖;The key idea of Elias and 
oworkers, that makes the di�eren
e from the FMM, was theuse of a �nite element interpolation for the 
al
ulation of the level set fun
tion ϕ(x, t).For ea
h element its gradient is then dis
retized as follows
‖∇ϕe‖ = ‖BTd‖; (2.119)



Free surfa
e tra
king. The Level Set method 63where dT = (d1, d2, d3, d4) is the ve
tor of the nodal distan
es of a tetrahedral element,and B
B =

1

6Ωel








N1,x N1,y N1,z

N2,x N2,y N2,z

N3,x N3,y N3,z

N4,x N4,y N4,z






is the matrix of the derivatives of the shape fun
tions in the three 
artesian dire
tions.Then






ϕ,x

ϕ,y

ϕ,z




 =






N1,xd1 +N2,xd2 +N3,xd3 +N4,xd4;

N1,yd1 +N2,yd2 +N3,yd3 +N4,yd4;

N1,zd1 +N2,zd2 +N3,zd3 +N4,zd4;




 (2.120)Therefore, equation 2.118, with F ≡ 1 
an be written as

(ϕe
,x)

2 + (ϕe
,y)

2 + (ϕe
,z)

2 = 1; (2.121)That means that if the distan
e of three over four nodes of a 3D element is known(suppose known d1, d2, d3) the value of d4 
an be easily 
al
ulated. Considering thefollowing simpli�
ation:
dx = N1,xd1 +N2,xd2 +N3,xd3;

dy = N1,yd1 +N2,yd2 +N3,yd3;

dz = N1,zd1 +N2,zd2 +N3,zd3;

(2.122)and substituting equation 2.122 into equation 2.121 it results
(dx +N4,xd4)

2 + (dy +N4,yd4)
2 + (dz +N4,zd4)

2 = 1. (2.123)Equation 2.123 is a se
ond order equation where the only unknown is d4. The maximumvalue between the two possible solutions of equation 2.123 will be the solution of theproblem. In the 
ase of an imaginary solution, it is possible to de�ne the distan
efun
tion arriving from another element. If this is not possible, the node will be skippedand the solution will be interpolated at the end of the loop [56℄.Using a �xed mesh approa
h the free surfa
e will not ne
essarily 
oin
ide with a layerof nodes but it will 
ut the elements. This means that the distan
e values of at least



64 The �uid problemone layer of nodes have to be known in order to de�ne the initial 
onditions for startingthe above des
ribed pro
edure. The problem is solved by evaluating in a di�erent waythe distan
es of the nodes of those elements 
rossed by the interfa
e.

A

d1A

d0A

d2A d1

d2

d0

0

12 LEVEL SET FUNCTION

 GRADIENT          

Free Surface

FLUIDFigure 2.9: Cal
ulation of nodal distan
es di on the nodes i of one element 
ut by thefree surfa
e.On
e all these elements are identi�ed, for ea
h of them the steps are the following:1. Cal
ulate the 
oordinates of point A of Figure 2.9. It is one of the points ofinterse
tion between the 
onve
ted free surfa
e and the element edges;2. Cal
ulate the distan
e of any node to point A (diA with i = 0, ..., npts).
diA = xi − xA; (2.124)In Figure 2.9 they are represented by the blue dotted arrows;3. Evaluate ∇ϕ. It is the gradient of the level set fun
tion inside the element;4. Cal
ulate the 
omponents of the distan
es diA in the dire
tion of ∇ϕ

di = diA ·
∇ϕ
||∇ϕ|| ; (2.125)where di are the distan
e values of the nodes from the new free surfa
e (blue arrows inFigure 2.9).



Free surfa
e tra
king. The Level Set method 65On
e these initial 
onditions are de�ned, a loop over all the elements is performed, inorder to identify those elements whose nodal distan
es are all known but one. Equation2.123 
an then be used.2.6.4 Pres
ribing the boundary 
ondition on the free surfa
e
∂ΩmFinally the last important issue is the imposition of the zero pressure boundary 
ondi-tions on the evolving free surfa
e ∂Ωm at ea
h time step. In boundary �tting meshes,the imposition of boundary 
onditions is straightforward, sin
e the whole boundary ofthe domain 
oin
ides with some edges or fa
es of the mesh. This is not possible if a �xedgrid approa
h is used, as there are no element edges whi
h de�ne the free surfa
e of thedomain. This requires devising some alternative strategies to pres
ribe boundary 
on-ditions. Reading [40℄ is re
ommended to have an overview of many di�erent �xed gridapproa
hes and respe
tive te
hnique to assign boundary 
onditions. In the present worktwo di�erent methods are implemented in the element and the edge-based approa
hes.In the �rst 
ase a virtual splitting of the elements is performed at ea
h time step inorder to 
onsider in the 
al
ulation only the �uid portion of the element divided by thefree surfa
e. In the edge-base 
ase an approximate te
hnique using the extrapolatedpressure gradients is presented.Element-based approa
hIn the element-base approa
h a virtual splitting of the elements 
ut by the free surfa
eis performed without modifying the global degrees of freedom of the problem. This isdone in order to evaluate the integrals only on the portion of the element 
overed by�uid.When an element is 
rossed by the free surfa
e, it is split in 4 virtual sub elements. Ifan edge is 
rossed by the free surfa
e, a linear interpolation of the distan
e values of thenodes is performed in order to identify the point of interse
tion between the free surfa
eand the edge itself, if not, the virtual point is set in the middle of the edge.In Figure 2.10(b) an example of splitting is shown. The position of node 3 and 4 is
al
ulated with a linear interpolation of the distan
e value of the nodes 0− 2 and 2− 1respe
tively. Node 5 is �nally pla
ed in the middle of the edge 0 − 1. Four virtual subelements are identi�ed and their geometri
 and material 
hara
teristi
s are 
al
ulated,



66 The �uid probleme.g. their Gauss points (
alled auxiliary Gauss points), their area, density, vis
osity andso on.
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(b) Virtual division in sub ele-mentsFigure 2.10: Splitting pro
edure for the elements 
ut by the free surfa
e.A numeri
al integration on the four auxiliary Gauss points (aGPi in Figure 2.10(b))is performed but only the 
ontribution of the �uid part (i.e. sub-elements 0 − 5 − 4,
4− 5− 3 and 5− 1− 3) is assembled in the global system. Just as an example, lookingat element 0− 1− 2 of Figure 2.10(b), any X degree of freedom of node 0 will be givenas the sum of the values of X evaluated on aGP0, aGP1,aGP3 multiplied for the areaof the respe
tive sub-elements. On the 
ontrary sub-element 2− 4− 3 is not taken intoa

ount as it is not a �uid element.Edge-based approa
hDespite its advantages, the pressure extrapolation des
ribed in Se
tion 2.6.2 does notimpose in any way the tra
tion-free 
ondition on the free surfa
e. This is done in these
ond step of the fra
tional step pro
edure, by �xing the value of the pressure at thetime step n + 1 so that the pressure �eld is zero on the free surfa
e.Sin
e the free surfa
e 
uts the element at an arbitrary position, as already explained inthe previous se
tions, no nodes are available for dire
tly �xing the pressure In the 
aseof the edge-based pro
edure, an additional di�
ulty is that element splitting of the 
utelements, as des
ribed in the previous se
tion, and the subsequent integration only onthe �uid portion, is impossible within an edge-based formulation unless one wants tore
ompute the edges and lose e�
ien
y.The 
hosen approa
h is to 
onsider 
orre
t the predi
ted pressure gradient in the vi
inity



Free surfa
e tra
king. The Level Set method 67of the free surfa
e. Therefore pressure at nodes laying in L1 is �xed so to guaranteethat its value is zero on the free surfa
e, provided that the pressure gradient is kept�xed. Note that in doing so layer L1 should be re
omputed sin
e it does not ne
essarily
oin
ide with the one used in the extrapolation step.The idea is to evaluate the gradient of pressure of node i (∈ L1) in the dire
tion of thedistan
e (whi
h is the gradient of the level set fun
tion) and 
al
ulate the pressure atnodes i 
onsidering a zero pressure on the free surfa
e whose distan
e from node i isknown and then interpolating linearly.

FLUID DOMAIN
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Figure 2.11: Graphi
al explanation of the evaluation of pressure on the �rst layer of non�uid nodes in order to respe
t the in
ompressibility 
ondition.De�ning as i-pat
h the 
luster of elements whose node i belongs to (elements 1 − 6 ofFigure 2.11), pressure on node i is evaluated as the value of the level set fun
tion onnode i times the gradient of pressure in the dire
tion of the gradient of the level setfun
tion itself, i.e.
p1i = ∇pni ·

∇ϕn+1
i

||∇ϕn+1
i ||ϕ

n+1
i ; (2.126)where∇ϕn+1

i and ||∇ϕn+1
i || are the gradients of the level-set fun
tion at node i and its L2norm respe
tively and ϕn
i is the level-set fun
tion itself. ∇ϕn+1

i is 
al
ulated 
onsideringthe 
ontribution of the gradient of the level-set fun
tion on ea
h edge 
on
urring onnode i. For instan
e edges ijp (with p = 1, 2, .., 6) of Figure 2.11.



68 The �uid problemRemark 15. It is important to observe that Eqn.2.126 is the only point at whi
h thelevel set fun
tion is a
tually required to be a distan
e. Sin
e its value is only needed on
L1, it is 
onvenient to re
ompute it as a

urately as possible at every time step. This
an be done geometri
ally for the elements 
rossed by the zero of the level set fun
tionwith a minor 
omputational 
ost.Remark 16. The 
orre
t 
al
ulation of the residual of the momentum equations wouldhave required integrating only on the �uid area of the 
ut elements. This is impossiblewithin an edge-based formulation, unless one wants to re
ompute the edges and losee�
ien
y. In this work it is a

epted to integrate on the whole element area 
onsideringthat both the body for
e and the pressure gradient are extrapolated on the outside ofthe �uid. This is a

eptable for most situations and is exa
t for the hydrostati
 
asewhere the gradient of pressure and the body for
e exa
tly 
an
el ea
h other (see Se
tion2.8.1 for an empiri
al veri�
ation).2.7 The algorithmThe steps of the global algorithm are �nally summarized in the box below.Element-based algorithm1. Given the level set fun
tion ϕn, extrapolate velo
ity, pressure and pressuregradient so to obtain un

ext, pnext and ∇pnext de�ned as the velo
ity, pressure andpressure gradient over the extrapolated domain.2. Conve
t the level set fun
tion ϕ de�ning the new free surfa
e at tn+1 using unand un
ext. Note that the extrapolated values are only required within a limitednumber of layers whi
h are the ones on whi
h the 
onve
tion will be a
tuallyperformed.3. Re-
al
ulate (if needed) the distan
es in the whole domain starting from thezero of the level set fun
tion at tn+1 obtained at step 2.4. Che
k split elements and assemble only the �uid sub-elements 
ontributions;5. Solve the monolithi
 system;6. Move to next time step.
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Edge-based algorithm1. Given the level set fun
tion ϕn, extrapolate velo
ity, pressure and pressuregradient so to obtain un

ext, pnext and ∇pnext de�ned as the velo
ity, pressure andpressure gradient over the extrapolated domain.2. Conve
t the level set fun
tion ϕ de�ning the new free surfa
e at tn+1 using unand un
ext. Note that the extrapolated values are only required within a limitednumber of layers whi
h are the ones on whi
h the 
onve
tion will be a
tuallyperformed.3. Re-
ompute (if needed) the distan
e in the whole domain starting from thezero of the level set fun
tion at tn+1 obtained at step 2.4. Solve the momentum equations 2.91a. Note that the solution is performed onthe domain at the predi
ted free surfa
e position (ϕn+1).5. Set the approximate pressure boundary 
onditions on ∂Ωn+1 so to guaranteethat the pressure is (approximately) zero at the position indi
ated by the zero ofthe level set fun
tion. In order to do that, the geometri
 distan
e is evaluated on

L1.6. Solve for the pressure (equation 2.91b).7. Solve for the 
orre
tion (equation 2.91
).8. Move to next time step.
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al examplesIn the following sub-se
tions a series of ben
hmark tests are presented. First two verysimple examples are presented to 
ompare the element-based and the edge-based freesurfa
e algorithms for a variable porosity medium.Their performan
e is analyzed both in the stati
 
ase (Se
tion 2.8.1) and in the dynami
one (Se
tion 2.8.2). In both 
ases the analyti
al solution is known and is 
ompared withthe numeri
al one obtained.The mass 
onservation 
apability is then analyzed both in a 2D and in a 3D example.No porous media is 
onsidered be
ause its presen
e has been veri�ed to help mass
onservation thanks to the introdu
tion of an additional dissipative e�e
t.All the 3D examples are only performed with the edge-based algorithm being the onlyone implemented in 3D.In the last part of the se
tion the edge-based te
hnique for free surfa
e �ows (withoutporous medium) is tested in a series of examples and its results are 
ompared withresults obtained with a Lagrangian approa
h using the Parti
le Finite Element Method(PFEM).2.8.1 Still water exampleThe still water example allows to verify the 
orre
t 
al
ulation of pressure in a variableporosity medium.The domain of analysis is a square of 10m edge. The right hand side of the domain isporous (n = 0.5) whereas the left hand side is not (n = 1), as shown in Figure 2.12. Thelevel of water is set at y = 5m and slip boundary 
onditions are imposed on the bottomand on the side edges. Gravity is 10m/s2. Pressure is expe
ted to vary linearly from
0Pa at the free surfa
e till 50000Pa at the bottom independently from whi
h verti
alse
tion is 
hosen.The element-based algorithm reprodu
es perfe
tly the expe
ted distribution. The dis-tribution of the iso-lines of pressure 
an be seen in Figure 2.13(a). No os
illations areformed in the element-based example, 
on�rming the exa
t imposition of the pressureboundary 
ondition on the free surfa
e via the element splitting te
hnique des
ribed inSe
tion 2.6.4.For the edge-based algorithm, although the free surfa
e does not move, a small os
il-lation on the pressure is observed. This is 
aused by the approximated imposition of
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Figure 2.12: Geometry, stru
tured mesh and 
onditions of the still water model.

(a) Edge-based

(b) Element-basedFigure 2.13: Pressure distribution.



72 The �uid problemthe zero pressure 
ondition on the free surfa
e (see Se
tion 2.6.4). The os
illation of thebottom pressure is shown in Figure 2.13(a).
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Figure 2.14: Pressure distribution in a verti
al se
tion. Comparison between the twoalgorithms.Figure 2.14 �nally shows the pressure distribution along a verti
al se
tion for bothalgorithms and it is 
ompared to the analyti
al solution. The negative pressure of the�rst node above the free surfa
e is the 
onsequen
e of the imposition on the 
ut elementsof the zero pressure 
ondition on the free surfa
e 2.6.4.
2.8.2 Water �owing through two materialsThe se
ond example aims to analyze the behavior of the free surfa
es algorithms whena variable porosity medium is present in dynami
 
onditions. The domain of analysis isa square of edge 10m. Only the upper part is porous with porosity n = 0.5 while thelower part 
orresponds to a pure air material (n = 1). A verti
al entran
e of water isset from the bottom edge. Slip boundary 
onditions are imposed to the verti
al walls
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Figure 2.15: Geometry, stru
tured mesh and 
onditions of the two material model withbottom in
oming water.and 0Pa pressure 
ondition is set, in the 
ase of the edge-based algorithm, to the upperside. The mesh is stru
tured as shown in Figure 2.15.In the sequen
es presented in Figure 2.16 the free surfa
e line is perturbed when enteringthe porous media. Nevertheless it re
overs the horizontal plane shape as soon as thedis
ontinuity has passed.Figures 2.17 and 2.18 show the distribution of pressure in the verti
al 
entral se
tion ofthe two models, when the water level is 2.5m and 9.9m respe
tively. A 
omparison withthe analyti
al results is presented. There is a very good a

ordan
e of pressure valuesin the 
ase that no porous media is still present, as 
an be seen in Figure 2.17. Theelement-based algorithm perfe
tly 
al
ulate the pressure distribution also when waterhas entered the porous media. On the 
ontrary the error of the edge-based algorithm isnot negligible (Figure 2.18).
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(a) Edge-based. (b) Element-based.Figure 2.16: Evolution of free surfa
e for both algorithms.
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(a) Edge-based (b) Element-Based
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(
) Pressure distribution in a verti
al se
tionFigure 2.17: Pressure distribution when water level rea
hes 2.5m from the bottom.
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(a) Edge-based (b) Element-Based
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(
) Pressure distribution in a verti
al se
tionFigure 2.18: Pressure distribution when water level rea
hes the top.
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al examples 772.8.3 Mass 
onservation
2D verti
al 
olumn Edge-based and element-based methodA se
ond example has been performed in order to 
he
k the mass 
onservation 
apabilityin both algorithms. No porous media has been 
onsidered (n = 1) be
ause its dissipativee�e
t has been shown to help the mass to be 
onserved. The worst 
ase is then analyzed.A re
tangular domain of 5m width and 10m height is set. A dis
harge of 1m3/s isentering the domain from the bottom edge. The inlet verti
al velo
ity is then 0.2m/s.Slip boundary 
onditions are imposed on the verti
al edges and zero pressure is imposedon the upper edge (only for the edge-based formulation).Two di�erent meshes are 
onsidered as shown in Fig.2.19.
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(a) Mesh 0.2
m (b) Mesh 0.5
mFigure 2.19: Geometry, mesh and 
onditions of the mass 
onservation model.A good 
onservation of mass is seen in both algorithms. Figures 2.20 and 2.21 showthe evolution of the free surfa
e at 10− 20− 30− 40− 50 sec respe
tively.
3D Verti
al 
olumn edge-based methodIn the present example a verti
al re
tangular 
olumn with an inlet in the bottom sideand an outlet on the top fa
e is simulated. Geometry and 
onditions of the present
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(a) Mesh 0.2
m

(b) Mesh 0.5
mFigure 2.20: 2D Verti
al 
olumn. Element-based algorithm. Evolution of free surfa
eat 10− 20− 30− 40− 50 sec.
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(a) Mesh 0.2cm

(b) Mesh 0.5cmFigure 2.21: 2D Verti
al 
olumn. Edge-based algorithm. Evolution of free surfa
e at10-20-30-40-50 se
.



80 The �uid problemexample are taken from [43℄ (although in that 
ase the intera
tion between two �uidswith di�erent spe
i�
 weight was taken into a

ount). Nevertheless the problem presentsthe same di�
ulties of maintenan
e of a �at free surfa
e both in the transitory and inthe stationary regime.The problem has been studied using two meshes: a stru
tured one and an unstru
turedone (Figure 2.22). STRUCTURED UNSTRUCTUREDMedium Medium Coarsen. nodes. 2981 1210 723n. elem 13800 6117 3720elem length [m℄ - 1 1.2elem per side 5× 5× 20 - -Table 2.6: 3D verti
al 
olumn. Number of nodes, number of elements, elemental length(unstru
tured meshes) and number of elements per edge (stru
tured mesh) of the meshes
onsidered in the analysis.Figures 2.23 and 2.24 show the evolution of the free surfa
e (identi�ed with the zeroof the level set fun
tion (ϕ = 0) during the �lling pro
ess. Considering that the freesurfa
e at time t = 0 is lo
ated at h = 1m from the bottom and the velo
ity inlet is
v = 1m/s a very good agreement with expe
ted level of the free surfa
e 
an be noti
edat ea
h time step (Figures 2.23 and 2.24). In both 
ases the expe
ted level of water at
2s, 6s, 10s, 14s and 18s is respe
ted and it is 3m, 7m, 11m, 15m and 19m respe
tively.No os
illations are observed neither for the unstru
tured nor the stru
tured mesh.If a lateral entran
e of water is 
onsidered and the value of inlet velo
ity is de
reasedto vin = 0.1m/s (see Figure 2.25 for the details on the geometry and the boundary
onditions 
onsidered), the improvement of volume 
onservation explained in Se
tion2.5.5 plays a relevant role. Two meshes are 
onsidered for the 
al
ulation: a 
oarse anda �ne one whose 
hara
teristi
s are summarized in Table 2.7 and shown in Figure 2.27.Figure 2.26(a) shows the bene�
ial e�e
t of the volume 
orre
tion. The expe
ted levelof water is 
ompared with the one 
al
ulated for the �ne mesh model with and withoutvolume 
onservation improvements. On the other hand, it is important to observe that
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(e) t = 18sFigure 2.23: 3D verti
al 
olumn. Stru
tured medium mesh. Evolution of free surfa
efor 1m/s bottom in
oming velo
ity. On the right of ea
h snapshot the expe
ted level isindi
ated.
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(e) t = 18sFigure 2.24: 3D verti
al 
olumn. Unstru
tured medium mesh. Evolution of free surfa
efor 1m/s bottom in
oming velo
ity. On the right of ea
h snapshot the expe
ted level isindi
ated.with the volume 
orre
tion, no relevant 
hanges are observed when a 
oarser mesh isemployed (observe graph 2.26(b)).

(a) Fine mesh (b) Coarse meshFigure 2.25: Mesh and geometry of the verti
al 
hannel with lateral entran
e of water
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al examples 83Another important aspe
t is that the use of the volume 
orre
tion leads to a �at freesurfa
e redu
ing the os
illations. This 
an be observed by 
omparing Figures 2.27(a)and 2.27(b) where the volume 
orre
tion is used in both the �ne and 
oarse mesh withFigures 2.27(
) where not. Fine Coarsen. nodes. 12 100 3 050n. elem 61 600 14 400Table 2.7: Verti
al 
olumn with lateral entran
e example. Number of nodes and numberof elements for the meshes 
onsidered in the analysis.
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(b) With volume 
orre
tion. Coarse and �nemesh.Figure 2.26: Verti
al 
olumn with lateral entran
e example. Level of water in terms oftime.
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(a) With volume 
orre
tion. Fine mesh model

(b) With volume 
orre
tion. Coarse mesh model

(
) Without volume 
orre
tion. Fine mesh modelFigure 2.27: Verti
al 
olumn with lateral entran
e example. Evolution of the free surfa
eat 50s, 120s, and 230s.
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al examples 852.8.4 Comparison of the level set algorithm with PFEMIn this se
tion the performan
e of the edge-based level set approa
h are 
ompared withthe 
apability of the parti
le �nite element method (PFEM). PFEM is a well establishednumeri
al method whose own nature makes it very appropriate to simulate free surfa
e�ows and breaking waves. The 
onsultation of [67, 75, 93, 96, 100℄ is re
ommendedfor an overview of its prin
ipal features. More details on the method are presented inChapter 3 of the present work. The 
omparison of the presented level-set approa
h withPFEM 
an be very 
hallenging and 
an represent a good validation of the developedfree surfa
e tool.2.8.5 Flip bu
ketThe present example reprodu
es an experiment 
arried out by Hager and 
oworkerswhose results 
an be found in [70℄. The performan
e of the present level set te
hniqueis 
ompared with the results obtained using PFEM [67, 98, 100℄ and published in [75℄.The geometry data, initial and boundary 
ondition 
an be found in [75℄. The 
ase withFroude number 5 is 
onsidered. The 
ontrol domain and the mesh used 
an be seen inFig.2.28 and 2.29 respe
tively.
SLIP CONDITION

SLIP CONDITION

S
L
IP

 B
C

WATER 

ENTRANCE

v = 3.5m/s
CONTROL DOMAINFigure 2.28: Geometry and boundary 
ondition of the �ip bu
ket example.

Figure 2.29: Mesh of the �ip bu
ket example.An entran
e of water is imposed in the left side. After a transitory phase shown inFigure 2.30 the stationary regime is a
hieved and pressure is registered on the bu
ket
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Figure 2.30: Sequen
e of the transitory phase of the jet.as shown in Figure 2.31(a). The jet shape is also 
ompared in Figure 2.31(b) where thedarker line is the level set whereas the lighter represents the PFEM results.A good agreement with experimental pressure along the bu
ket 
an be seen in Fig-ure 2.31(a). The bla
k points are the experimental results found in [70℄, whereas the
ontinuous line and the dotted line are the level set and the PFEM solutions respe
tively.2.8.6 3D dambreakThe present example is a 3D dam break example already studied by the authors in [75℄using PFEM.Data are taken from the experiments performed at the Maritime Resear
h InstituteNetherlands (MARIN) for breaking dam �ows [72℄. Several numeri
al results of this 
asestudy are available in literature for VOF te
hniques. This is the 
ase of [72℄ employingCartesian grids, or [54℄ using an edge-based approa
h. Finally other level set simulations
an also be found. Among others, in [7, 71℄, an appli
ation of isogeometri
 analysis ispresented.The water 
olumn is left free to fall over a step where pressure sensors are set following



Numeri
al examples 87

�5 �4 �3 �2 �1 0
X [m]

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PR
ES

SU
RE

 H
EI

G
HT

 [m
]

Fr5
EXPERIMENTAL
PFEM
LEVEL-SET

(a) Pressure distribution on the bu
ket. Experimental and numeri
al 
ompar-ison.

(b) Jet traje
tory. Relative 
omparison.Figure 2.31: Level set and PFEM 
omparisons in the pressure head 
al
ulation and thejet development



88 The �uid problemthe s
heme of Figure 2.32. The details of geometry 
an be found in [54℄.
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Figure 2.32: Geometry and boundary 
ondition of the 3D dam break example. On thelower left 
orner a zoom on the pressure sensors distribution on the stepTwo meshes are 
onsidered in the present work, their 
hara
teristi
s are detailed inTable2.8 and they are shown in Figure2.33.Mesh A Mesh Bn. nodes. 51 627 392 130n. elem 296 157 2 310 984Table 2.8: Dam break example. Number of nodes and number of elements of the twomeshes 
onsidered in the analysis.A sequen
e of the falling of the water 
olumn 
an be seen in Figure 2.34 where the freesurfa
e evolution is plotted for the two meshes 
onsidered.
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(a) Mesh A. (b) Mesh B.Figure 2.33: The two meshes 
onsidered. On the left Mesh A of 296 157 and Mesh B of
2 310 984 tetrahedra.

(a) Mesh A. (b) Mesh B.Figure 2.34: Evolution of the dam break at 0.4s, 0.6s and 2.0s. Comparison betweenthe results obtained with meshes A and B.



90 The �uid problemThe pressure evolution in time obtained with the two meshes is 
ompared in Figures2.35-2.42 with experimental results and PFEM results taken form [75℄.
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Figure 2.35: Pressure evolution on P1 on the verti
al fa
e of the step indi
ated in Figure2.32. Comparison of level set, PFEM and experimental results.A better behavior of the Eulerian approa
h with respe
t to PFEM 
an be observedespe
ially with mesh B. Mesh re�nement improves the a

ura
y of the solution and the
apability of 
at
hing the se
ond pressure waves with a 
orre
t timing, whereas a 
leardelay 
an be noti
ed for the 
oarse mesh (mesh A).PFEM uses an un
onditional stable s
heme whi
h leaves more freedom in the 
hoi
eof the time in
rement than in the semi-expli
it s
heme of the Eulerian method. Nev-ertheless PFEM needs a frequent re-meshing pro
edure for whi
h no parallelization isavailable yet. This aspe
t 
onsiderably slows down the time performan
e of PFEM in
omparison with a parallel �xed mesh approa
h.
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Figure 2.36: Pressure evolution on P2 on the verti
al fa
e of the step indi
ated in Fig.2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.37: Pressure evolution on P3 on the verti
al fa
e of the step indi
ated in Fig.2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.38: Pressure evolution on P4 on the verti
al fa
e of the step indi
ated in Fig.2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.39: Pressure evolution on P5 on the top fa
e of the step indi
ated in Fig. 2.32.Comparison of level set, PFEM and experimental results.
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Figure 2.40: Pressure evolution on P6 on the top fa
e of the step indi
ated in Fig. 2.32.Comparison of level set, PFEM and experimental results.
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Figure 2.41: Pressure evolution on P7 on the top fa
e of the step indi
ated in Fig. 2.32.Comparison of level set, PFEM and experimental results.
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Figure 2.42: Pressure evolution on P8 on the top fa
e of the step indi
ated in Fig. 2.32.Comparison of level set, PFEM and experimental results.2.9 Con
lusionsIn this 
hapter the approa
h to numeri
ally treat the problem of �ow in a variableporosity medium has been presented. After the 
hoi
e of the resistan
e law to be usedin the algorithm, the two solution methods developed have been presented in detail:
• Element-based algorithm. It uses a monolithi
 approa
h to solve the weak formof the balan
e equations that are stabilized using an ASGS te
hnique. A fullyimpli
it method is used and a Bossak time integration te
hnique is 
hosen.
• Edge-based algorithm. In this 
ase a fra
tional step approa
h is used to solvethe balan
e equations that are stabilized using an OSS stabilization te
hnique. Asemi-expli
it method, i.e. a 4th order Runge Kutta s
heme is implemented.In both 
ases only simpli
ial meshes (3-noded triangles or 4-noded tethraedra) are takeninto a

ount.The dynami
 free surfa
e tra
king is done using a level set te
hnique des
ribed in these
ond part of the 
hapter. An expli
it extrapolation is performed in order to de�nethe values of velo
ity on a band 
ontaining the free surfa
e of the �uid. The level
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tion (equation 2.110) is updated solving the problem 2.114. Points with zerodistan
e fun
tion identify the new free surfa
e. The 
al
ulation of the distan
e fun
tionis performed as detailed in Se
tion 2.6.3.Both algorithms have shown a good performan
e in the simulation of free surfa
e simpleproblems in presen
e of a variable porosity medium. Mass 
onservation is a

eptably re-spe
ted thanks to the improvement presented in Se
tion 2.5.5. Nevertheless the element-based approa
h still needs some e�ort in order to be used for the simulation of largeproblems. It is still limited to 2D problems and no parallel stru
tures have been imple-mented yet. These aspe
ts make the element-based algorithm to lose 
ompetitiveness
ompared with the edge-based one.The performan
es of the edge-based semi expli
it algorithm for the simulation of thefree surfa
e problems have been also 
ompared with PFEM. The results show that theEulerian algorithm better represents the pressure peaks both in the dam-break and in the�ip-bu
ket examples. The parallel stru
ture helps to have very good time performan
esdespite of the small time step imposed by the 
onditional stable method.On the basis of above 
onsiderations, the edge-based approa
h has been 
hosen for thestudy of real experiments on prototype embankments dams in Chapter 5 where a moreextensive and 
omplete validation of the algorithm 
an be found.





Chapter 3The stru
tural problemIn this 
hapter an algorithm to simulate the behavior of the granular non-
ohesivematerial used in ro
k�ll dams is proposed. Taking into a

ount the high deformationthe stru
ture might be subje
ted to and the intrinsi
 in
oheren
e of the ro
ks, the
onstitutive law of a non-Newtonian high vis
osity material is 
hosen. After an overviewof the traditional non-Newtonian relationships, a regularized Bingham model is sele
tedand implemented as a starting point. This approa
h presents severe limitations in thesimulation of granular behavior having a 
onstant yield threshold. To over
ome thisissue a variable yield model using a Mohr Coulomb failure 
riteria is proposed in these
ond part of the 
hapter.The weak form of the problem is then obtained and the numeri
al te
hnique adoptedis presented. The Lagrangian Parti
le Finite Element Method (PFEM) is 
hosen for itswide �exibility. In fa
t the stru
tural domain is expe
ted to undergo severe deformationsas the failure progresses and therefore a Lagrangian approa
h is a natural 
hoi
e.In the last part of the 
hapter the validation of the Binghammodel is performed throughsome ben
hmarks and the e�e
tiveness of the proposed variable yield model is tested insome examples.3.1 Introdu
tionIn the present work, the simulation of the stru
tural response of a slope made of granularmaterial has been fa
ed using a 
ontinuous approa
h despite the intrinsi
 in
oherentnature of the ro
k�ll. This is an a

eptable 
hoi
e under the assumption that the
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tural problemro
k�ll size is small with respe
t to the overall size of the stru
ture.Nevertheless it should be mentioned that in re
ent years, the great advan
e in 
omputerperforman
e and in parallel 
omputing has allowed the simulation of the me
hani
albehaviour of every single parti
le of a granular slope. The family of the so 
alled dis
rete(or distin
t) element methods (DEM) has been rea
hing a widespread popularity in the
omputational me
hani
s 
ommunity. Their basi
 idea is that every parti
le is a dis
reteelement intera
ting with the others 
onsidering its me
hani
al and material properties.This 
an be a valid alternative to the model presented in this 
hapter and it is a
tuallybeing implemented by other resear
hers at CIMNE.The adoption of a 
ontinuous approa
h leads to an additional requirement: the 
hoi
eof a suitable 
onstitutive law. Many plasti
 or rigid-plasti
 
onstitutive models are
ommonly used in geome
hani
s to des
ribe the stru
tural response of an in
oherentnon-
ohesive material. It is usually a

epted that a ro
k�ll slope has the 
apability tosupport a 
ertain amount of shear stress with almost no elasti
 strains before startinglarge deformations. When the yield stress is rea
hed the material starts to �ow untilarriving to a stable 
on�guration. It should be noted that the behaviour of the yieldedmaterial is more similar to the �owing of a �uid than to the pro
ess of deformation ofa solid. On the other hand, in literature there exists a wide 
ategory of �uids whi
hexhibits a rigid behaviour till rea
hing a yield threshold. They are part of the family ofthe so 
alled non-Newtonian �uids.These aspe
ts, together with the natural way of managing large deformations in �uids,lead us to 
on
entrate on variable vis
osity models for the 
al
ulation of the stru
turalpart instead than on any other plasti
 or damage model. Consequently, a non-Newtonian
onstitutive law has been adopted for the ro
k�ll body. This implies that the ro
k�llsti�ness is 
ontrolled by very high values of the vis
osity. Only when the yield thresholdis ex
eeded, the vis
osity dramati
ally de
reases and the material starts �owing. Whenthe material stops its motion, the vis
osity re
overs its initial values for whi
h the stresslevel does not ex
eed the yield limit.The model developed in this work has its origin in the traditional Bingham plasti
susing the regularization proposed by Papanastasiou to over
ome numeri
al problemsindu
ed by the bilinear stress-strain 
urve [104℄. Nevertheless in order to in
lude a Mohr-Coulomb failure 
riteria (without 
ohesion), the possibility of 
onsidering a variable yieldlevel is introdu
ed.The two 
onstitutive models with 
onstant and variable yield, are presented at the
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tural 
onstitutive law. An overview of non-Newtonian models 99beginning of the present 
hapter after a brief overview on non-Newtonian models.The equations governing the stru
tural problem are studied in their weak form arrivingto the algebrai
 solution system whi
h is solved with a fully impli
it approa
h. A stabi-lized, equal-order, mixed velo
ity-pressure element te
hnology is 
hosen so to guaranteea lo
king free behavior. In fa
t Cervera and 
oworkers have demonstrated that the use ofa mixed approa
h is the appropriate framework for dealing with lo
alization problems inin
ompressible and quasi-in
ompressible problems. They have su

essfully applied thisapproa
h in solid me
hani
s in plasti
 and damage models using linear/linear elements,providing a suitable stabilization te
hnique [25�29, 32℄.Sin
e the stru
tural domain is expe
ted to undergo severe deformations as the failureprogresses, the kinemati
 model has to adapt dynami
ally to su
h deformations. TheParti
le Finite Element Method (PFEM) provides the ne
essary �exibility with a pow-erful remeshing me
hanism [75, 100℄. Its features are des
ribed in the se
ond part ofthis 
hapter.In the last part of the 
hapter some examples are inserted to validate the Binghammodel and to appre
iate its di�eren
es with respe
t to the proposed variable vis
osityapproa
h. Finally some dambreaks of granular slopes with di�erent fri
tional anglesare simulated to verify that the model 
orre
tly reprodu
es the expe
ted me
hani
alproperties.3.2 Stru
tural 
onstitutive law. An overview of non-Newtonian modelsIn Chapter 2 the 
onstitutive model of a Newtonian �uid was used to des
ribe the stress-strain behavior of water. The stress tensor 
an be de
omposed in its hydrostati
 anddeviatori
 parts as follow
σ = −pI + τ = −pI + 2µε(u), (3.1)where

ε(u) := ∇su =
1

2

(

∇u+ (∇u)T
)

, (3.2)The deviatori
 part of the stress tensor τ , is therefore linearly related to the rate ofstrain ε(u) through the 
onstant vis
osity µ.
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tural problemFluids for whi
h the relations between τ and ε(u) is not 
onstant, are 
alled non-Newtonians. In this 
ase vis
osity 
annot be 
onsidered as a property of the materialas it is stri
tly dependent on the deformation pro
ess. This 
lassi�
ation is very generaland in
ludes a wide range of di�erent 
onstitutive relations. In order to brie�y 
lassifythe di�erent non-Newtonian �uids, let's 
onsider the 1d problem and let's de�ne anapparent vis
osity µ̃ like the ratio between the shear stress τ and the shear rate γ̇

µ̃ := µ̃(γ̇) =
τ

γ̇
. (3.3)A

ording to Chhabra [31℄ a possible 
lassi�
ation of the non-Newtonian �uids is thefollowing:- Fluids with time independent behavior: those for whi
h the 
urrent shear stressis fun
tion only of the shear rate τ = τ(γ̇). In fun
tion of the evolution of theirapparent vis
osity, they 
an be divided in:1. Shear-thinning or pseudo-plasti
 �uids. Their apparent vis
osity gradu-ally de
reases when in
reasing the shear rate. This is the 
ase of polymeri
systems like melts and solutions.2. Shear-thi
kening or dilatant �uids. Their apparent vis
osity in
reases whenthe shear rates in
reases. This behavior is observed in 
on
entrated suspen-sions, for instan
e.3. Vis
o-plasti
 �uids (with or without shear thinning behavior). They are
hara
terized by the existen
e of a threshold stress, the yield stress, whi
hmust be ex
eeded for the �uid to deform. For lower values of stress the vis
o-plasti
 �uids are 
ompletely rigid or 
an show some sort of elasti
ity. On
ethe yield stress is rea
hed and ex
eeded, they 
an exhibit a Newtonian-likebehavior with a 
onstant apparent vis
osity (Bingham plasti
s �uids) or not,showing a shear thinning behavior (yield-pseudoplasti
 �uids).- Fluids with time dependent behavior: their apparent vis
osity is not only afun
tion of shear stress and shear rate but also of the duration of the appli
ationof the shear stress and of its kinemati
 history. They 
an be 
lassi�ed into:1. Thixotropi
. Under a 
onstant shear their apparent vis
osity de
reases withtime. A typi
al thixotropi
 material is the 
ement paste.
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tural 
onstitutive law. An overview of non-Newtonian models 1012. Rheope
ti
. Under 
onstant shearing their apparent vis
osity in
reases withtime. For instan
e printers inks belong to this group.A s
hemati
 overview of the relation between shear stress and rate of strain for di�erentnon-Newtonian models 
an be observed in Figure 3.1.
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Figure 3.1: Qualitative �ow 
urves for the di�erent 
ategories of non-Newtonian �uids.A deep analysis of non-Newtonian �uids behavior falls outside the s
ope of this work.For a 
omprehensive review of the topi
 see [24, 31, 44℄.3.2.1 Constant yield: the Bingham modelIt was in 1919 when Eugene C. Bingham, while studying a possible 
onstitutive modelfor paints, dis
overed that their deformation was almost absent till rea
hing a threshold:the yield stress. After ex
eeding this stress limit they followed a Newtonian behavior.A

ording to Papanastasiou [104℄ a wide range of materials have been identi�ed to havea yield threshold. Bird [15℄ was the �rst to give, in his book, a lists of several Binghamplasti
s, most of these produ
ts 
ame from food or 
hemi
al industry. Among them we
an list for instan
e slurries, pastes, nails, or food substan
es like margarine, ket
hup,mayonnaise and others.The 1D 
onstitutive relation for a Bingham plasti
 
an be de�ned as follows. Being τ0
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tural problemthe yield stress
γ̇ = 0 if τ < τ0

γ̇ =
1

µs
(τ − τ0) if τ ≥ τ0

(3.4)where γ̇ is the rate of strain, µ is the dynami
 vis
osity and τ the shear stress.Figure 3.2 shows the di�eren
e between a Newtonian and a Non Newtonian �uid.
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Figure 3.2: Comparison between a Newtonian �uid and a Bingham �uid behavior witha yield stress τ0.Equation 3.4 
an be rewritten as
τ =

(

µs +
τ0
γ̇

)

γ̇ if τ ≥ τ0. (3.5)Spe
ial 
are should be taken in equation 3.5 when the level of stress is lower than theyield stress. In this 
ase, a

ording to equation 3.3, the apparent vis
osity approa
hesin�nity, i.e. µ̃ → ∞ as γ̇ → 0. This behavior might indu
e numeri
al di�
ulties, somesmooth laws are usually preferred. Nevertheless some authors [80℄ tried to simulate whatis 
alled bi-vis
osity model but their predi
tions leads to in
onsisten
ies. Consequently,in the present work the regularized model proposed by Papanastasiou [104℄ is 
hosen asa starting point for the development.Following the ideas presented in [104℄, equation 3.4 is regularized as follow
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τ =

[

µs +
τ0
γ̇

(

1− e−mγ̇

)]

γ̇, (3.6)where m is a regularization parameter that 
ontrols the approximation to the bilinearmodel as shown in Figure 3.3. The apparent vis
osity is de�ned as
µ̃(γ̇) = µs +

τ0
γ̇

(

1− e−mγ̇

)

, (3.7)Referring to equation 3.7, the problems 
onne
ted with the singular point of the bi-linear model are here avoided. In fa
t, in the un-yielded zone the shear strain rate
µ̃ = µ+ τ0 m as γ̇ → 0.
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Figure 3.3: Newtonian and Bingham �uid 
ompared with the regularized model forin
reasing values of the m parameter.In order to introdu
e the 
onstitutive model for 3D problems, the following equivalentstrain rate γ̇ and yield stress τ0 are de�ned as the se
ond invariants of the rate of straintensor (ε) and of the deviatori
 part of the stress tensor (τ ), respe
tively.
γ̇ =

(
1

2
ε : ε

) 1

2 (3.8)
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τ0 =

(
1

2
τ : τ

) 1

2 (3.9)Equation 3.6 be
omes for 3D problems as
τ = 2

[

µs +
τ0
γ̇

(

1− e−mγ̇

)]

ε(u), (3.10)where
µ̃(γ̇) = µs +

τ0
γ̇

(

1− e−mγ̇

)

, (3.11)3.2.2 Variable yield vis
o-rigid modelThe Bingham model presented in the previous se
tion was 
on
eived for materials witha �xed yield stress. For granular materials, the de�nition of the yield stress depends on:- The 
hara
teristi
s of the ro
k�ll (its internal fri
tion angle).- The presen
e of water inside the grains. It a
ts de
reasing the e�e
tive stressleading to a signi�
ant loss of resistan
e.The model proposed in the present work has its origin in a 
lassi
al Bingham 
onstitutiverelation but the yield stress τ0 is pressure sensitive and it is de�ned using a Mohr-Coulomb failure 
riteria without 
ohesion.
τ0 = p′s tg(φ), (3.12)where p′s is the e�e
tive pressure and φ is the internal fri
tion angle. Equation 3.6 in

3D be
omes
τ = 2

[

µs +
p′s tg(φ)

γ̇

(

1− e−mγ̇

)]

ε(u), (3.13)and the resulting apparent vis
osity is therefore
µ̃(γ̇) = µs +

p′s tg(φ)

γ̇

(

1− e−mγ̇

)

, (3.14)The idea of a pressure dependent yield stress has already been exploited for instan
e in[107℄, where a fri
tional �uid rehologi
al model is used for the simulation of land slides.



Continuous form 105Remark 17. In this 
hapter the presen
e of water and the 
oupling between stru
tureand �uid behavior has not been taken into a

ount yet. It is treated in Chapter 4.Nevertheless the failure 
riteria has already been expressed in fun
tion of the e�e
tivepressure in order to derives its more general form. For the stru
tural model, in absen
eof water, the Mohr Coulomb failure 
riteria 
an be equivalently written as
τ0 = ps tg(φ). (3.15)3.3 Continuous formIn this se
tion the strong form of the equations used to solve the stru
tural problemare obtained. Their derivations starts from 
onsidering the balan
e equations of themonolithi
 
oupled problem together with the balan
e equations of the �uid part, alreadytreated in Se
tion 2.2.3.The non-Newtonian variables and parameters are 
hara
terized by the s sub-index,being the model used for the 
al
ulation of the stru
tural response.3.3.1 Variables of the problemThe unknowns of the stru
tural problem are- us velo
ity of the stru
ture.- ps total pressure of the stru
ture;- p′s e�e
tive pressure of the stru
ture de�ned as p′s = ps − p (being p the waterpressure de�ned in Chapter 2);Other parameters are:- ρs is the solid dry density of the porous material. Calling ρs the density of thesingle grain, its relation with ρs is
ρs = (1− n)ρs (3.16)where n is the porosity de�ned in equation 2.3. In the present work the stru
turalmaterial is treated as an in
ompressible �uid with 
onstant density.
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tural problem- µ̃ is the dynami
 apparent vis
osity. Its de�nition has been already presented inthe previous se
tions.
- µs is the dynami
 vis
osity of the yielded material (when Newtonian behavior isre
overed).

3.3.2 Balan
e equationsThe balan
e equations governing the stru
tural model are represented by the Navier-Stokes equations for a non-Newtonian �uid.The presented model has been developed both in Lagrangian and Eulerian framework.Hen
e the 
onve
tive velo
ity as of the balan
e equation is de�ned in its more generalform as
as := us − uM

s ; (3.17)being uM
s the mesh velo
ity. A

ording to 3.17, as = 0 for a Lagrangian framework(where uM
s = us) and as = us in an Eulerian one, where uM

s = 0 (as in the previous
hapter).Calling Ωs ⊂ R
d (where d is the spa
e dimension) the stru
tural domain in a timeinterval (0, T ), the modi�ed Navier-Stokes equations are

ρs∂tus + ρsas · ∇sus +∇p′s − 2∇ · µ̃∇us − ρsb = 0 in Ωs, t ∈ (0, T ),

∇ · us = 0 in Ωs, t ∈ (0, T ),
(3.18)The problem is fully de�ned with the following boundary and initial 
ondition:

us(x, 0) = us 0(x) in Ωs,

us(x, t) = gs(x, t) on ∂ΩsD, t ∈ (0, T ),

n · σs(x, t) = ts(x, t) on ∂ΩsN , t ∈ (0, T ),

(3.19)The apparent vis
osity µ̃ 
an be either the one of the Bingham model (equation 3.11),or that of the variable yield one (equation 3.14).



Weak form 1073.4 Weak formThe weak form of equations 3.18 is obtained following stri
tly the same steps than itwas done in Chapter 2 for the �uid problem. No relevant di�eren
es are present.Using the Galerkin formulation the weak form of the general problem be
omes
∫

Ω

wρs∂tusdΩ+

∫

Ω

wρsas · ∇usdΩ

+

∫

Ω

w∇p′sdΩ−
∫

Ω

w∇ · 2µ̃∇susdΩ−
∫

Ω

wρsbdΩ = 0 ∀w ∈ V,
∫

Ω

q∇ · us = 0 ∀q ∈ Q,

(3.20)
where , for a �xed t ∈ (0, T ), us is assumed to belong to the velo
ity spa
e V ∈ [H1(Ω)]dof ve
tor fun
tions whose 
omponents and their 1st derivatives are square-integrable,and p′s belongs to the pressure spa
e Q ∈ L2 of square-integrable fun
tions. w and
q are velo
ity and pressure weight fun
tions belonging to velo
ity and pressure spa
erespe
tively.Performing the integration by part of the pressure and the vis
ous terms as explainedin Se
tion 2.3 (see equations 2.37), gives

∫

Ω

wρs∂tusdΩ+

∫

Ω

wρsas · ∇usdΩ−
∫

Ω

p′s∇ ·wdΩ

+2

∫

Ω

∇w : µ̃∇susdΩ−
∫

Ω

wρsbdΩ−
∫

∂ΩN

w · hdΓ = 0 ∀w ∈ V,
∫

Ω

q∇ · usdΩ = 0 ∀q ∈ Q,

(3.21)
Let Vh be a �nite element spa
e to approximate V, and Qh a �nite element approxima-tion to Q. The problem is now �nding us h ∈ Vh and ps h ∈ Qh su
h that
∫

Ω

whρs∂tus hdΩ

∫

Ω

whρsus h · ∇us hdΩ−
∫

Ω

p′s h∇ ·whdΩ

+2

∫

Ω

∇wh : µ̃∇sus hdΩ−
∫

Ω

whρsbdΩ−
∫

∂ΩN

wh · tshdΓ = 0 ∀wh ∈ Vh,
∫

Ω

qh∇ · us hdΩ = 0 ∀qh ∈ Qh.

(3.22)



108 The stru
tural problem3.5 The stru
tural approa
h: monolithi
 solverThe pro
edure used for obtaining the algebrai
 stabilized system of equation is analogousto what has already been explained in Se
tion 2.4 of Chapter 2. In the following se
tionsthe stabilization te
hnique, the time integration s
heme and the solution strategy arebrie�y des
ribed.Sin
e many aspe
ts of the stru
tural solver 
oin
ide to the element-based one, only thedi�eren
es are pointed out to lighten the reader from useless repetitions.In order to obtain the �nal solution system, the weak form represented by equations3.22 have to be stabilized and linearized in time. Finally as well as for the �uid solvers,a quasi-Newton residual based strategy is adopted to solve the non linear problem.
3.5.1 Stabilized formulationThe 
hoi
e of adopting equal order linear elements for velo
ity and pressure, despiteof the simpli
ity, entails the ne
essity of using a stabilization te
hnique. An ASGSstabilization te
hnique is employed for that purpose. The derivation of the stabilizations
heme is analogous to what has been presented in Se
tion 2.4.1. Therefore, in whatfollows, only the �nal stabilized form and the stabilization terms is reported.The stabilized form of the balan
e equations be
omes
∫

Ω

whρs∂tus hdΩ

∫

Ω

whρsas h · ∇us hdΩ

−
∫

Ω

p′s h∇ ·whdΩ + 2

∫

Ω

∇swh : µ̃∇us hdΩ

−
∫

Ω

whρsbsdΩ−
∫

∂ΩN

whts hdΓ +
∑

el

∫

Ωel

τs 1Pm
s · Rm

s dΩ = 0 ∀wh ∈ Vh,
∫

Ω

qh∇ · us hdΩ+
∑

el

∫

Ωel

τs 2Pc
s · Rc

sdΩ = 0 ∀qh ∈ Qh,

(3.23)
where Pm

s , Rm
s , Pc

s and Rc
s are de�ned in Table 3.1.In a Lagrangian framework the 
onve
tive term is not present. Therefore only pressurestabilization is required.
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Momentum equation

Pm
s (wh) as h · ∇wh +∇qh

τs 1

(
α

∆t
+

4µ̃

h2 ρs
+

2|as h|
h

)−1

Rm
s (us h) ∂tus h + as h · ∇us h −∇ ·

µ̃

ρs
∇sus h +∇p′s h − bsContinuity equation

Pc
s (wh) ∇ ·wh

τs 2
µ̃

ρs
+

h|as h|
2

Rc
s(us h) ∇ · us hTable 3.1: Stabilizing elemental terms in ASGS for the non-Newtonian element.3.5.2 Dis
retization pro
edureA

ording to what was explained in Se
tion 2.4.2 of Chapter 2, the matrix form of thestabilized system of equations 3.23 
an be written as:

[

M+ SM
wu 0

0 0

]

·
[

u̇s

ṗs

]

+

[

K+ Swu + Sc G+ Swp

D+ Squ Spq

]

·
[

us

ps

]

=

[

Fs + Sf
w

Sf
q

](3.24)where the operators are expli
itly written in Table 3.2 and the stabilization operators
an be found in Table 3.3.3.5.3 Bossak time integration s
hemeAs in the �uid element-based solver, a Bossak time integration s
heme is used to advan
ein time the momentum equations. For more details about the method see Se
tion 2.4.3.Equations 3.24 
an be written in 
ompa
t form as
Mv̇s + fs int(vs(t), t) = fs ext(t). (3.25)
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Matri
ial term Continuum term
Mu̇s

∑

el

∫

Ωel

whρs∂tus hdΩ

KCus

∑

el

∫

Ωel

whρsas h · ∇us hdΩ

Kus

Kµ̃us +2
∑

el

∫

Ωel

wh∇wh : µ̃∇us hdΩ

Gps −
∑

el

∫

Ωel

ps h∇ ·whdΩ

Dus

∑

el

∫

Ωel

qh∇ · us hdΩ

Fs

∑

el

∫

Ωel

whρsbsdΩ

hs 0Table 3.2: Matri
es and ve
tors of system 3.24 without stabilization terms.
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Momentum equationMatri
ial term Continuum term

SM
wuu̇s

∑

el

∫

Ωel

τs1as h · ∇wh∂tus hdΩ

SC
wuus

∑

el

∫

Ωel

τs1as h · ∇whas h · ∇us hdΩ

Swuus

Sµ̃
wuus −

∑

el

∫

Ωel

τs1as h · ∇wh∇ ·
µ̃

ρs
∇sus hdΩ

Swpps

∑

el

∫

Ωel

τs1as h · ∇wh∇ps hdΩ

Sf
w −

∑

el

∫

Ωel

τs1as h · ∇whbs hdΩ

SC
quus

∑

el

∫

Ωel

τs1∇qhas h · ∇us hdΩ

Squus

Sµ̃
quus −

∑

el

∫

Ωel

τ1∇qh∇ ·
µ̃

ρs
∇sus hdΩ

Sqpps

∑

el

∫

Ωel

τs1∇qh∇ps hdΩ

Sf
q −

∑

el

∫

Ωel

τs1∇qhbs hdΩContinuity equation
Scus

∑

el

∫

Ωel

τs2∇ ·wh∇ · us hdΩTable 3.3: Stabilization matri
es and ve
tors of system 3.24.
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tural problemThe resulting residual of the momentum equations linearized in time is
rs(v

n+1−αB
s ) = −M

(
1− αB

γ∆t
vn+1
s

)

− fn+1
int s

+fn+1
ext s −M

[
1− αB

γ∆t
vn
s +

(1− αB)
2

γ
v̇n
s − αBv̇

n
s

]

,

(3.26)where vT
s = [us, p

′
s] and v̇T

s = [u̇s, ṗ
′
s] are the ve
tors of unknowns.Predi
tor multi 
orre
tor residual based strategyThe predi
tor multi 
orre
tor strategy adopted has been already explained in Se
tion2.4.3. The linearization of the non-linear terms is performed using a quasi Newtonmethod.The vis
ous terms as well as the 
onve
tive ones are the non linear part of the balan
eequations. When 
al
ulating the LHS of equation 2.66, they are linearized as follows

an+1, k
s ∇un+1, k+1

s ,and [

µ+
p
′ n+1, k
s tg(φ)

γ̇n+1, k

(

1− emγ̇n+1, k
)]

∇sun+1, k+1
s .3.6 Kinemati
 framework of the non-Newtonian stru
-tural elementThe stru
tural model is implemented in order to allow both an Eulerian and a Lagrangiankinemati
 des
ription of motion.The Eulerian formulation des
ribed in the previous se
tions has been developed inorder to validate the Bingham model with some ben
hmarks found in literature (see forexample Se
tions 3.8.1, 3.8.2 and 3.8.3).It important to re
all that the �nal purpose of this work is to 
ouple this model withthe �uid 
ode and simulate the deforming pro
ess of a semi-saturated ro
k�ll slopewhen failing. Therefore, sin
e the stru
tural domain is expe
ted to undergo severedeformations as the failure progresses, the kinemati
 model has to adapt dynami
ally
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h deformations leading to the preferable 
hoi
e of a Lagrangian approa
h. Amongmany possible Lagrangian methods, the Parti
le Finite Element Method (PFEM) hasbeen 
hosen and implemented for its �exibility and reliability [75, 100℄.3.7 The parti
le �nite element method (PFEM)The PFEM is a numeri
al method that uses a Finite Element mesh to dis
retize thephysi
al domain and to integrate the di�erential governing equations (see [67, 75℄). InPFEM the domain is modeled using an Updated Lagrangian Formulation. That is allthe variables are assumed to be known in the 
urrent 
on�guration at time t and theyare brought in the next (or updated) 
on�guration at time t + dt. The �nite elementmethod (FEM) is used to solve the 
ontinuum equations in a mesh built up from theunderlying nodes (the parti
les). This is useful to model the separation of solid parti
lesfrom the bed surfa
e and to follow their subsequent motion as individual parti
les witha known density, an initial a

eleration and a velo
ity subje
t to gravity for
es [97, 100℄.It is important to underline that in PFEM ea
h parti
le is treated as a material point
hara
terized by the density of the solid domain to whi
h it belongs to. The global massis obtained by integrating density at the di�erent material points over the domain. Thequality of the numeri
al solution depends on the dis
retization 
hosen as in the standardFEM. Adaptive mesh re�nement te
hniques 
an be used to improve the solution in zoneswhere large gradients of the �uid or the stru
ture variables o

ur.Sin
e its �rst development espe
ially fo
used on the simulation of free surfa
e �owsand breaking waves [67, 75℄, PFEM has been su

essfully used in a wide range of �elds.Just to mention some of them, it is used in FSI and 
oupled problems [68, 95, 98, 99,110℄, multi-�uid problems [65, 84℄, 
onta
t problems [22, 23℄, geote
hni
al simulations[23, 94℄ and �re engineering [19℄. Moreover PFEM has also been su

essfully used inthe implementation of Bingham plasti
s model for the simulation of landslides [46℄ and
ement slump tests [45℄.The basi
 ingredients of PFEM 
an be summarized in:
• An Updated Lagrangian kinemati
al des
ription of motion;
• A fast remeshing algorithm;
• A boundary re
ognition method(alpha-shape);
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• FEM for the solution of the governing equations;3.7.1 Updated Lagrangian kinemati
al des
ription of motionThe PFEM was 
on
eived as a Lagrangian method to treat CFD problems in
ludingfree surfa
e �ows and breaking waves [67, 100℄. This approa
h is in 
ontrast with the
lassi
al Eulerian way to treat CFD problems.Lagrangian algorithms are traditionally used in stru
tural me
hani
s where ea
h nodeof the 
omputational mesh follows the asso
iated material parti
le evolution. This isa good way to tra
e easily the interfa
e between �uid and stru
ture and to 
onsidermaterials with history-dependent 
onstitutive relations. Its weakness is the inability tofollow large distortions of the domain without the ne
essity of a 
ontinuum remeshing.This implies a di�
ult parallelization of the 
ode as well.Eulerian algorithms, on the other hand, are largely used in �uid dynami
s be
ause ofthe ease way to follow large movements. In this 
ase the 
omputational mesh is �xed andthe 
ontinuum moves with respe
t to the grid. Being a �xed mesh approa
h, an interfa
etra
king te
hnique should be employed in Eulerian methods to follow the evolution ofthe free surfa
e (see Se
tion 2.6 for more information on the topi
).A third popular te
hnique is a generalization of the two kinemati
al des
ription ofmotion above des
ribed. It is known as the Arbitrary Lagrangian- Eulerian (ALE)des
ription. In this 
ase, the mesh is arbitrarily moved with a velo
ity uM and thedomain of the mesh is 
alled the referen
e domain [51℄.For uT

M ≡ (0, 0, 0) an Eulerian 
on�guration is re
overed and the referen
e domain
orresponds to the spatial one. Alternatively, if the mesh velo
ity 
oin
ides with theparti
le velo
ity (uM ≡ u), then the 
onve
tive term disappears and the Lagrangianformulation is re
overed. In this 
ase the referen
e domain 
oin
ides with the materialone. The absen
e of the 
onve
tive term in a Lagrangian framework, leads also to theelimination of the problems 
onne
ted with 
onve
tion dominating pro
esses (see Se
tion2.4.1 of Chapter 2), simplifying the stabilization pro
edure.A

ording to [51℄, three possible Lagrangian formulations are possible
• The total Lagrangian , where variables are des
ribed in the initial 
on�guration
Ω0, at time t0;
• The updated Lagrangian , where variables are des
ribed in the 
urrent 
on�guration
Ωn, at time tn;
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• The end of step Lagrangian , where variables are des
ribed in the 
on�guration
Ωn+1 at time tn+1.The total Lagrangian formulation is not the best 
hoi
e for a problem with large domaindeformations. Therefore, PFEM uses an updated Lagrangian des
ription of motion.3.7.2 Remeshing algorithmThe need of an e�
ient remeshing algorithm together with the the di�
ulty of paral-lelizing this pro
edure are the biggest drawba
k of a Lagrangian approa
h.The mesh moves in a

ordan
e to the material points and large deformations o

ur.The 
ode developed in this work uses external libraries to remesh the domain. They arethe TetGen and Triangle for the 2D and the 3D 
ases respe
tively (for more informationsee [5℄).The mesh generation s
heme is based on the Voronoi diagrams1 and the Delaunaytessellation2.3.7.3 Boundary re
ognition method: alpha - shape methodOn
e the 
ontinuum domain is partitioned using the TetGen library, a 
riteria is neededto de�ne the free surfa
es and the boundaries on the material domain. In the 
ase ofPFEM, alpha shape [20℄ is the adopted te
hnology.Ea
h node i of the domain has its own dimension hi determined as the average distan
eof node i from its neighbors. In the same way, an elemental dimension hel 
an be de�nedfor ea
h element as the average of the hi of its nodes. Finally depending on the pre
isionwanted, an α 
ustom parameter greater but 
lose to one (the alpha shape parameter) isde�ned.If the radius of the sphere that 
ir
ums
ribes the element (r) is bigger than α ·hel, thenthe element is eliminated (see Figure 3.4). That is1 The Voronoi diagram of a setN is a partition of R3 into region Vi (
losed and 
onvex or unbounded),where ea
h region Vi is asso
iated with a node pi, su
h that any point in Vi is 
loser to pi than to anyother node pj . The Voronoi diagram is unique.2 A Delaunay tessellation within the set N is a partition of the 
onvex hull Ω of all the nodesinto region Ωi su
h that Ω = Ωi where ea
h Ωi is the tetrahedron de�ned by 4 nodes of the sameVoronoi sphere. A Voronoi sphere within the set N is any sphere, de�ned by 4 or more nodes, that
ontains no other node inside. Su
h sphere are otherwise known as empty 
ir
umspheres. The Delaunaytriangulation and Voronoi diagram in R

2 are dual to ea
h other in the graph theoreti
al sense.
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r ≤ α · hel; (3.27)has to be respe
ted to keep the element in the domain.Di�erent values of the alpha shape parameter 
an lead to di�erent a

ura
y on themesh boundaries as shown in Figure 3.4(
) and 3.4(d) where di�erent values of thealpha parameter are used.

(a) Cloud of nodes. (b) Mesh of the 
onvex hull ob-tained with the Triangle library.
(
) Domain after applying alphashape. α = α1. (d) Domain after applying alphashape. α2 > α1.Figure 3.4: Possible boundaries of a 
loud of nodes using alpha shapes method. Imagetaken from [20℄.3.7.4 FEMA �nite element mesh and the 
onne
tivities of the nodes are provided by the previousdes
ribed steps for the a
tual time step tn+1. The studied FEM is then used to writethe weak form of the governing equations.
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al Examples 1173.7.5 PFEM algorithmConsidering known the solution at time step n, the basi
 steps of PFEM algorithm aresummarized in the box that follows.PFEM algorithm1. Imposition of mesh velo
ity at time step n usM = un;2. Lapla
ian smoothing a (free surfa
e kept �xed);3. Remesh (see Se
tion 3.7.2);4. Solve the monolithi
 system;5. Ba
k to step 1.aThe Lapla
ian smoothing is a geometri
al te
hnique that allows a more homogeneousredistribution of the nodes inside the analysis domain without 
hanging the 
onne
tivitiesbetween nodes3.8 Numeri
al Examples3.8.1 The Couette �owThe Couette �ow refers to the laminar �ow of a vis
ous �uid between two parallel in�niteplates separated by a given distan
e, one of whi
h is moving relative to the other. The�ow is driven by virtue of vis
ous drag for
e a
ting on the �uid and the applied pressuregradient parallel to the plates.The modelThe length of the 
omputational domain is 6m and its height is 1m as shown in Figure3.5. The Neumann boundary 
onditions are applied on the verti
al edges in terms ofexternal pressure. Diri
hlet 
onditions are then applied on the horizontal edges (theplates). The lower plate is 
onsidered �xed, whereas the upper moves with a 
onstanthorizontal velo
ity. The horizontal velo
ity diagram in the 
entral verti
al se
tion isanalyzed.



118 The stru
tural problem
6m

1m

DENSITY = 1 kg/mc
VISCOSITY = 10 Pas

IMPOSED vx 

FIXED EDGE 

EXTERNAL RIGHT 

PRESSURE 

EXTERNAL LEFT 

PRESSURE 

Figure 3.5: Geometri
al data and boundary 
onditions.
Figure 3.6: Linear triangular mesh used in the 
al
ulation.The mesh used in every model is shown in Figure 3.6. It has 14736 linear triangularelements. Their dimension varies from 0.05m at the sides to 0.01m in the 
entral verti
alse
tion.The numeri
al resultsIn all the numeri
al examples the value of m and τ0 are kept 
onstant as well as theproperties of the material. They are summarized in Table 3.4.Density ρs 1kg/m3Fluidi�ed vis
osity µ 10Pa sSmoothing 
oe�
ient m 300sYield stress τ0 10PaTable 3.4: Couette example. Material properties.Figure 3.7 shows the used regularized approximation in 
omparison with the bilinearform.The di�eren
e between the e�e
ts of a positive pressure gradient (adverse to the velo
ity�eld) and a negative one (favorable to the velo
ity �eld) are shown in Figure 3.9. In both
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Bingham exponential approximation
Bingham bilinear lawFigure 3.7: Exponential approximation with m=300 and τ0 = 100Pa.
ases an in
reasing gradient of pressure is taken into a

ount. The velo
ity of the upperplate is ux = 0.5m/s. The gradient of velo
ity is higher 
lose to the plate. Consequentlythe value of tangential stress is also higher in these zones that are the regions where theyield stress is a
hieved. The 
entral straight zone is the unyielded region where γ̇ = 0and µ̃ = µ + τ0 ·m. The vis
osity behavior in the 
entral verti
al se
tion is shown inFigure 3.8
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Figure 3.8: Variation f vis
osity in the 
entral verti
al se
tion.In
reasing the gradient of pressure the rigid plateau is narrowing and the yielded zoneis in
reasing.Finally, the upper velo
ity is set to ux = 0.01m/s to reprodu
e the results of [105℄and to have a dire
t 
omparison with the analyti
al results as shown in Figure 3.10.
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(b) Positive Pressure GradientFigure 3.9: Velo
ity diagrams for di�erent values of the gradient of pressure. Upperhorizontal velo
ity 0.5m/s.Di�erent values of negative gradients of pressure are 
onsidered as shown in Figure 3.10.Right edge external pressure is kept 
onstant and equal to 0Pa in all the 
ases, whereasthe left hand side pressure is 1500Pa, 1600Pa, 1700Pa, 1800Pa, 1900Pa and 2000Parespe
tively. The agreement is good and the yield point is reprodu
ed 
orre
tly for allthe pressure gradients.
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Numerical
AnalyticalFigure 3.10: Velo
ity diagrams for di�erent values of a negative gradient of pressure.Upper horizontal velo
ity 0.01m/s.
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al Examples 1213.8.2 Cavity �ow

(a) Homogeneous mesh. (b) Lo
ally re�ned mesh.Figure 3.11: Cavity example. Meshes used in the 
al
ulation.In the present se
tion the Bingham model is tested in the 
lassi
al 
avity �ow example.This ben
hmark applied to non-Newtonian �uids, and parti
ularly Bingham plasti
s, hasbeen widely studied in re
ent years and many examples 
an be found in the literature(see for instan
e [55, 59, 85, 129℄).A square unit domain with edge H is de�ned and the 
hara
teristi
 speed (that is, thevelo
ity of the lid) is taken equal to 1m/s.The dynami
 vis
osity is µs = 1Pa s and density is ρs = 1kg/m3.Let us de�ne the a dimensional Bingham number (Bn) as
Bn =

τ0H

µsus
, (3.28)where H and us are the edge length and the horizontal velo
ity of the upper lid respe
-tively and τ0 the yield stress.In order to make a 
omparison to the work of Mitsoulis and Zisis [85℄, the model istested for di�erent values of Bn. In other words, the e�e
t of the in
reasing yield stressis analyzed (being in the spe
i�
 
ase Bn = τ0).
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(a) Homogeneous mesh. (b) Lo
ally re�ned mesh.Figure 3.12: Cavity. White 
olor shows the yielded regions. Comparison between the
ase with homogeneous mesh (Figure 3.11(a)) and the re�ned one (Figure 3.11(b)).
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(a) Homogeneous mesh. (b) Lo
ally re�ned mesh.Figure 3.13: Cavity. White 
olor shows the yielded regions. Comparison between the
ase with homogeneous mesh (�gure 3.11(a)) and the re�ned one (�gure 3.11(b)).
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(a) Results taken from [85℄. (b) Present model. Lo
ally re�ned mesh.Figure 3.14: Cavity example. Streamlines and progressive evolution of the yielded area(white 
olor) for in
reasing values of the Bingham number Bn (Bn = 2, 20 and 200respe
tively).
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(a) Results taken from [85℄. (b) Present model. Lo
ally re�ned mesh.Figure 3.15: Cavity example. Streamlines and progressive evolution of the yielded area(white 
olor) for in
reasing values of the Bingham number Bn (Bn = 5, 50 and 500respe
tively).
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tural problemThe 
hoi
e of the mesh is 
ru
ial and 
an in�uen
e relevantly the 
orre
t de�nition ofthe yielded region. The adoption, for example of an homogeneous mesh with averagedimension h = 0.02m, like the one shown in Figure 3.11(a) 
an be in some 
ases insu�-
ient for the 
orre
t 
apturing of the rigid parts of the domain. This is shown in Figures3.12 and 3.13 where the 
omparison of the yielded regions for in
reasing values of the
Bn is shown for the homogeneous mesh of Figure 3.11(a) (left 
olumn) and the meshshown in Figure 3.11(b) where a lo
al re�nement of href = 0.005m is performed on thelid and in the upper part of the verti
al edges of the 
avity (right 
olumn). The use ofthe mesh with lo
al re�nement leads to more pre
ise results, a

ording to [55, 85, 129℄.In fa
t the dire
t 
omparison of the yielded regions and the streamlines results of thepresent model is in good agreement with the one in [85℄, as shown in Figures 3.14 and3.15.3.8.3 Extrusion pro
ess
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Figure 3.16: Extrusion example. Ramp fun
tion of external pressure BC applied on leftverti
al side.The present example simulates an extrusion pro
ess of a Bingham plasti
. Data andgeometry are taken from [105℄. A material with the 
hara
teristi
s detailed in Table 3.5is pushed into a square die with a restri
tion of two-thirds of the 
ross se
tional area.
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al Examples 127Due to the symmetry of the problem, only half of the domain is 
al
ulated as shown inFigure 3.17. An in
reasing value of the external pressure (pext) is imposed on the leftside with a pressure in
rement of 2Pa/step (the ramp fun
tion for applying the externalboundary pressure is detailed in Figure 3.16). On the right side the external pressure isset to zero and kept 
onstant. The walls are assumed to be fri
tionless.
P
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Pext = 0PaFigure 3.17: Extrusion example. Geometry and boundary 
onditions.
Figure 3.18: Extrusion example. Mesh used in the 
al
ulation. Average dimension
h = 0.2m with a lo
al re�nement 0.05m near point B of Figure 3.17 and in the restri
tionarea and an additional re�nement 0.005m 
lose to point A of Figure 3.17. The totalnumber of triangular elements and nodes are 11 600 and 5 800, respe
tively.The mesh used in the 
al
ulation is shown in Figure 3.18. It is re�ned in the area ofappearan
e of the slip lines to a

urately 
at
h their evolution.As explained in [105℄, in the hypothesis of perfe
t plasti
ity, the value of maximum rampressure (pmax

ext ) is analyti
ally 
al
ulated in [82℄. It is given by the following relation
pmax
ext =

4

3

[

1 +
π

2

]

τ0 = 3426.7Pa. (3.29)This is the analyti
al yield pressure, whi
h 
orresponds numeri
ally to the time intervalbetween the onset of the slip line an its full development. In the present model this isrepresented by the interval in whi
h the external pressure is between 3418Pa (beginningof the formation of the slip line) and 3472Pa (the slip line is fully formed). The analyti
al
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tural problemvalue is therefore 
ontained between these two extremes. In the Figures 3.19 and 3.20the evolution of the slip lines is plotted and 
ompared with the results shown in [105℄.A

ording to this paper, a 
ontour �ll of the equivalent strain rate γ̇ is plotted in therange 0.08s−1 − 0.72s−1 and white and the dark area indi
ate values of γ̇ lower than
0.08s−1 (rigid material), and larger than 0.72s−1 respe
tively (these two limits are 
hosenfor homogeneity with [105℄).Density ρs 100kg/m3Fluidi�ed vis
osity µ 10−6Pa sSmoothing 
oe�
ient m 1000sYield stress τ0 1000PaTable 3.5: Extrusion example. Material properties.On the other hand, the yield pressure 
an be identi�ed plotting the pressure-velo
itygraph in point B as shown in Figure 3.21. It 
an be observed that the material is almostrigid till rea
hing an external pressure value of 3418Pa. After that, 
onserving the sameexternal pressure in
rement per step, the velo
ity in
reases 
onsiderably indi
ating thatthe material starts to �ow. Similar results are found in [105℄.3.8.4 Bingham vs variable vis
osity model. Pushed slopeThe di�eren
e between the Bingham and the proposed variable yield model 
an beobserved in this example.A square domain in 2D and a 
ubi
 one in 3D are pushed towards a wall.The geometry of the models and the mesh used in both 
ases is shown in Figure 3.22.The wall on the left side moves with 
onstant velo
ity u0 = 0.1m/s-For the Bingham model the yield stress is τ0 = 1000Pa, whereas in the variable yieldmodel the internal fri
tion angle is φ = 30.In the sequen
es of the pushing pro
ess shown in Figure 3.23 and 3.24 the di�erentbehavior of the two models is evident.For Bingham plasti
s, those points that do not ex
eed the 
onstant yield thresholdbehave like a rigid body, whereas in the present model the yield stress of the exterior
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Figure 3.19: Extrusion example. Evolution of the slip lines shown with a 
ontour �ll ofthe equivalent strain rate γ̇. Comparison between the present model (left 
olumn) andthe results presented in [105℄ (right 
olumn).
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Figure 3.20: Extrusion example. Evolution of the slip lines shown with a 
ontour �ll ofthe equivalent strain rate γ̇. Comparison between the present model (left 
olumn) andthe results presented in [105℄ (right 
olumn).
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Figure 3.21: Extrusion example. Pressure-velo
ity relationship on point B.
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132 The stru
tural problem
Dry density ρs 1000kg/m3Fluidi�ed vis
osity µ 10−6Pa sSmoothing 
oe�
ient m 3000sTable 3.6: Pushed slope example. Material properties.points is lower and it is ex
eeded also for lower pressure levels. Two di�erent phases 
anbe identi�ed in the present example:- The settlement phase. It is the initial part of the example. The granular materialis left free to fall and to rea
h its stable 
on�guration. It goes from the beginningof the example to the moment in whi
h the material tou
hes the right �xed wall.- The squeezing phase. It begins when the material tou
hes the right wall and startsto be squeezed between the two opposite walls that are getting 
loser.In Figure 3.23 the 2D 
omparison between the Bingham model and the variable yieldmodel during the settlement phase is shown. The 
ontour �ll of the equivalent strainrate is plotted in di�erent time instan
es (the blue 
olor indi
ates γ̇ = 0).The Bingham model shows a sliding surfa
e where the tangential stress rea
hes theyield stress (1000Pa), whereas all the rest of the model shows an almost rigid behavior.Conversely, in the variable yield model, if a node has a tangential stress whi
h ex
eed itspressure times the fri
tion angle tangent (pstgφ), it shows a drop in the vis
osity and itstarts �owing. The main di�eren
es 
an be observed on the �free surfa
e� where the yieldstress tends to zero the 
loser the node is to the free surfa
e (where the pressure is zero),i.e. no resistan
e is present. The variable yield material rea
hes a stable 
on�gurationthat respe
ts the internal fri
tion angle of 30◦. For more details the 
onsultation ofSe
tion 3.8.5 is re
ommended.In Figure 3.24 the behavior of the two models in the squeezing phase is 
ompared. Thesequen
e shows how the equivalent strain rate γ̇ is almost zero up to the 
reation of thefailure lines and the subsequent 
ollapse of the material. In the granular material onthe 
ontrary, the �free surfa
e� has zero pressure, whi
h implies zero resistan
e and assoon as the material rea
hes the height of the walls it starts falling.The same 
onsiderations 
an be done in 3D, looking at the 
omparison between thetwo models in the settlement and the squeezing phase shown in Figures 3.25 and 3.26,
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(a) Bingham model. (b) Variable yield model.Figure 3.23: 2D pushed slope. γ̇ in the initial pushing phase. Di�eren
e between theBingham and the variable vis
osity models.respe
tively. The Bingham model in 3D shows less resistan
e in the squeezing phasedue to the 3-dimensional e�e
ts. It is �nally interesting to observe that the materialwhi
h is falling down in the 
ase of the Bingham model 
onserves the velo
ity imposed
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(a) Bingham model. (b) Variable yield model.Figure 3.24: 2D pushed slope. γ̇ in the squeezing phase. Di�eren
e between the Bing-ham and the variable vis
osity models.by the wall although this is very low, whereas this does not happen in the variable yieldmodel.
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(a) Bingham model. (b) Variable yield model.Figure 3.25: 3D pushed slope. Di�eren
e between the Bingham and the variable vis
os-ity models in the initial pushing phase.
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(a) Bingham model. (b) Variable yield model.Figure 3.26: 3D pushed slope. Di�eren
e between the Bingham and the variable vis
os-ity models in the squeezing phase.
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al Examples 1373.8.5 Settlement of a verti
al ro
k�ll slopeThe variable vis
osity model is �nally used to reprodu
e the settlement of a granularverti
al slope with a given internal fri
tion angle. The obje
tive of this example is toverify the 
orre
t reprodu
tion of the internal fri
tion angle and the dependen
y of thestable 
on�guration from the mesh size.For this purpose a re
tangular domain is 
onstrained by a verti
al wall in the left sideand is left free on the right side as shown in Figure 3.27. The 
hara
teristi
s of thematerial are summarized in Table 3.7.
UNSTABLE AREA

GRANULAR SLOPE

characterized by 

Figure 3.27: Settlement of a verti
al slope. Geometry of the model.Dry density ρs 1000kg/m3Fluidi�ed vis
osity µs 10−6Pa sSmoothing 
oe�
ient m 3000sTable 3.7: Settlement example. Material properties.
Variable mesh sizeLet us 
onsider an internal fri
tion angle φ = 30◦. Three di�erent mesh sizes are takeninto a

ount for the simulation:
• Mesh A is 0.1cm. The model has 444 nodes.
• Mesh B is 0.05cm. The model has 1580 nodes.
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• Mesh C is 0.01cm. The model has 35466 nodes.They are shown in Figure 3.28.

(a) Mesh A 0.1m.
(b) Mesh B 0.05m.
(
) Mesh C 0.01m.Figure 3.28: Di�erent mesh sizes taken into a

ount in the present example.The evolution of the settlement is shown in Figure 3.29 for the above mentioned meshes.As expe
ted the more a

urate and realisti
 settlement pro
ess is obtained with the �nermesh but no relevant di�eren
es appear using the 
oarser ones. This is respe
ted forany internal fri
tion angle φ less than 45◦. In fa
t in the latter 
ase the 
orre
t behaviorof the material is in�uen
ed by the mesh size. For 
oarse meshes the material behavesas rigid as shown in Figure 3.30 where two meshes are taken into a

ount. However inthe next se
tion it will be pointed out that this value of φ is in the limit of validity ofthe model.
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(a) Mesh A. (b) Mesh B. (
) Mesh C.Figure 3.29: Settlements for a granular slope with internal fri
tion angle φ = 30◦ for thethree di�erent mesh sizes indi
ated in Figure 3.28.The same example is run in 3D using the meshes A and B of Figure 3.28 leading toanalogous 
on
lusions. The internal fri
tion angle is well represented independentlyfrom the mesh 
hosen. A sequen
e of the 3D results for a slope with internal fri
tion
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(a) Mesh B 0.05m (b) Coarse mesh 0.07mFigure 3.30: Di�erent results of the model with phi = 45◦ in 
ase of mesh B (0.05m)and a 
oarser mesh (0.07m). Both results are taken after 5s of simulation.angle φ = 30◦ is shown in Figure 3.31.Variable internal fri
tion anglesDi�erent values of the internal fri
tion angle are taken into a

ount in order to verifythe 
orre
t behavior of the stru
tural model. Mesh B is used for the dis
retization.The di�erent me
hani
al behavior 
ontrolled by the values of φ is 
orre
tly reprodu
edby the variable yield model presented in this work if the internal fri
tion angle is lowerthan 45◦, as 
an be observed in Figure 3.32 where the stable 
on�guration of ro
k�llslope of 30◦, 40◦, 45◦and 47◦ is simulated. The 
ase with φ = 45◦ represents a pra
ti
allimit of the model. Beyond that limit a dependen
y on the mesh appears as some levelof lo
king 
an be observed. The 
on
lusion is that the model is not able to 
orre
tlysimulate materials that have internal fri
tion angles higher than 45◦. This is not sorelevant 
onsidering that in ro
k�ll slopes 45◦ 
an be 
onsidered an upper limit of thepossible internal fri
tion angles.3.8.6 Fri
tion angle testThe last example simulate a test for 
omputing the internal fri
tion angle φ. A 
one �lledwith granular material with a bottom outlet is lifted up with a velo
ity of 0.025m/s.The geometry and the mesh used 
an be seen in Figure 3.33.The me
hani
al 
hara
teristi
s of the material used are summarized in Table 3.8.As expe
ted, the �nal slope of the fallen material mat
hes well with the 40◦ angle asshown in the last pi
ture of Figure 3.34.Finally in Figure 3.35 the same example has been repeated in the 
ase of a Bingham
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30º

(a) Mesh A.
30º

(b) Mesh B.Figure 3.31: Settlements for a 3D granular slope with internal fri
tion angle φ = 30◦ inthe 
ase of 
onsidering mesh A and B of Figure 3.28.plasti
 with a yield threshold τ0 = 500Pa.The di�erent behaviour between the two models is evident: the material of the variableyield model ��ows� down in a nearly 
ontinuous way and at the end of the simulation no
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(a) φ = 30◦ (b) φ = 40◦

(
) φ = 45◦ (d) φ = 47◦Figure 3.32: Stable results for di�erent internal fri
tion angles φ. The mesh used in the
al
ulation is mesh B of Figure 3.28.
Dry density ρs 1490kg/m3Internal fri
tion angle ϕ 40◦Fluidi�ed vis
osity µ 10−6Pa sSmoothing 
oe�
ient m 3000sTable 3.8: Fri
tion angle test example. Material properties.
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lusions 143material is present in the 
one (the 
one is 41.6◦ steep). Whereas the Bingham materialresembles a toothpaste and at the end of the simulation part of the material remainsinside the 
one. The tangential stresses, in fa
t, are lower than the yield threshold.
GRANULAR MATERIAL

OUTLET

LIFT VELOCITY

u = 0.1m/s

3m

0.5m

0.9m 0.2m 0.9m

0.2m

0.8m

0.3m

0.2m

Figure 3.33: Fri
tion angle test example. Geometry and mesh used for the 
al
ulation.

40ºFigure 3.34: Fri
tion angle test example. Variable yield model with ϕ = 40◦.3.9 Con
lusionsIn this 
hapter a model to des
ribe the behavior of a ro
k�ll slope is presented. ANon-Newtonian 
onstitutive law is 
hosen and a regularized Bingham plasti
 model isdeveloped as �rst approximation. This 
hoi
e derives from the observation that theelasti
 behavior in ro
k�ll slopes is negligible and when the yield stress is rea
hed thematerial starts to �ow more like a �uid than to deform like a stru
ture. Moreover among
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Figure 3.35: Fri
tion angle test example. Bingham model with yield stress τ0 = 500Pa.the non-Newtonian �uids, Bingham plasti
s have the 
apability of supporting a 
ertainamount of shear stress before rea
hing large strains.The good behavior of the Bingham model is veri�ed through some ben
hmarks, butdoes not seem to be adequate for the simulation of the behavior of a granular slope. Forthis purpose a variable yield threshold is introdu
ed in order to mimi
 a Mohr Coulombfailure 
riterion.The di�eren
es between the regularized Bingham and the variable yield models aredis
ussed in some examples.The main advantage of the 
onstitutive law proposed is its simpli
ity 
ompared with anyother plasti
 model. The treatment of the granular material as a �uid leads to balan
eequations similar to those presented in Chapter 2. Hen
e, most 
onsiderations alreadydone for the �uid model 
an be used in this 
ontext as well, providing the ne
essaryadaptation to non-Newtonian materials.The variable yield model does not present serious limitations on the mesh sizes in general(although in Chapter 5 it will be pointed out that this is not always true in pra
ti
al
ases). Finally the variable yield model seems to be adequate to simulate materialswith internal fri
tion angles lower than 45◦. Fortunately this value is higher than themaximum threshold of non 
ohesive ro
k�ll slopes.



Chapter 4The 
ouplingIn this 
hapter the 
oupled model for �uid-stru
ture intera
tion analysis is presented.First the �uid and the stru
tural balan
e equations, already dis
ussed in the previousparts of this work, are derived from the monolithi
 
oupled system. A staggered solutionstrategy is adopted to 
ouple the Eulerian �uid solver and the Lagrangian stru
tural one.A simple example is presented to 
he
k the 
orre
t behaviour of the algorithm. Finallyin order to fully des
ribe the 
oupling algorithm, the proje
tion tool 
reated to mapinformation between the �uid and the stru
tural non-mat
hing meshes is dis
ussed.Additional examples of the appli
ation of the 
oupled analysis method are shown inChapter 5.4.1 Introdu
tionThe stru
tural stability of ro
k�ll slopes is heavily in�uen
ed by its intera
tion withwater. Traditionally the 
oupled problem of soils or ro
k and water is fa
ed using amultiphase material whose behavior is governed by the 
oupling between the di�erentphases: soil, water and air. The �rst mathemati
al models des
ribing the 
oupling solidand �uid phase were developed by Biot [13, 14℄. Nevertheless his work was suitableonly for linear elasti
 materials and its extension to non-linear problems with largedeformations was �rst 
arried on by Zienkiewi
z and Shiomi only several years later[131℄. Its should be mentioned that re
ently important steps ahead in this �eldhavebeen made by Lewis and S
hre�er [78℄, Coussy [91℄ and Boer [49℄.These 
lassi
al and well established approa
hes in geome
hani
s were not 
onsidered as
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ouplingan alternative in the present work for the following reasons:
• The possibility of a

urately following the dynami
 
hange of the �ow throughoutand over the ro
k�ll is the key point of the model. The 
oupling of these twophenomena 
ould be very 
hallenging in the traditional models needing the trans-ferring of interfa
e 
onditions between the free surfa
e problem and the seepageone in order to perform the 
oupling. On the 
ontrary, in the present work this isautomati
ally taken into a

ount, as explained in Chapter 2.
• The 
onsideration of the saturation level and of the intera
tion between air andwater in the partially saturated pores, be
omes an useless information. In fa
t a
-
ording to experimental eviden
e, the problem of interest 
an always be 
onsideredfully drained, being the pores inter 
onne
ted.
• Due to the time s
ale of the ex
eptional �ooding that 
an be of the order of minutesor hours, the dam material 
an be 
onsidered as rigid (avoiding any elasti
 responsein the unyielded region) and its 
ompressibility 
an be negle
ted.
• The 
apability of tra
king the material yield surfa
e is not needed as 
ommentedin Chapter 3.The need of developing an ad ho
 �uid approa
h for the simulation of the free surfa
e-seepage problem des
ribed in Chapter 2 leads, as a natural 
onsequen
e, to the 
hoi
e of astaggered strategy. Nevertheless for a 
onsistent formulation both the �uid and stru
turebalan
e equations should be derived from the imposition of the global equilibrium. Forthat purpose, in the following se
tions the monolithi
 global problem is used to obtainthe balan
e equations for the stru
ture. In this 
ase, the equation dis
ussed in Chapter3 are 
ompleted with the 
oupling terms deriving from the global equilibrium.On
e the �uid and the stru
tural problems are de�ned, the 
oupling strategy is pre-sented. The need of working with an Eulerian and a Lagrangian model leads to imple-ment a fully staggered expli
it s
heme. A key point of the 
oupled tool is the possibilityof transferring information between the moving and the �xed mesh. For su
h purposea mapping between non mat
hing meshes has been developed. The performan
e of thetool is presented at the end of the 
hapter.
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oupled monolithi
 problem 1474.2 The 
oupled monolithi
 problemLet us 
onsider the balan
e equation of the global problem whi
h 
an be written asfollows
ρC∂tuC + ρCuC · ∇suC − ρC∇ · σC − ρCb = 0 in Ω, t ∈ (0, T ),

ρC∇ · uC = 0 in Ω, t ∈ (0, T ),
(4.1)where sub-index C indi
ates the 
hara
teristi
s of the 
oupled homogenized system.Under the assumption that both the �uid and the stru
ture are in
ompressible materi-als, System 4.1 
an be expressed in terms of the �uid and the stru
ture 
ontributionsexpli
itly as

ρs∂tus + ρsus · ∇sus +∇p′s − 2∇ · µ̃∇sus − ρsbs+

+ρ∂tu+ ρu · ∇u+∇p− 2∇ · µ∇su− ρnbf = 0 in Ω, t ∈ (0, T ),

nρ∇ · u+ ρs∇ · us = 0 in Ω, t ∈ (0, T ),(4.2)Remark 18. Its should be pointed out that the assumption of fully drained problem isused. This 
onsideration derives from the hypothesis that all the pores 
an be 
onsideredinter
onne
ted and that ex
ess pore pressure will never develop.Remark 19. The nodal global density ρC 
an be either a dry density (de�ned inequation 3.16) if the node is not immersed in water, or a nodal saturated density ρsat

ρC = ρsat = nρ+ (1− n)ρs+ = nρ+ ρs. (4.3)
4.3 The �uid and the stru
tural balan
e equationsThe balan
e equations of the �uid have been de�ned in Chapter 2 and are rewrittenhere for 
larity. They are de�ned by
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Fluid problem

ρ∂tu+ ρu · ∇u + n∇p− 2∇ · µ∇su

−ρnb +D = 0 in Ω, t ∈ (0, T );

∇ · u = 0 in Ω, t ∈ (0, T );

(4.4)
u(x, 0) = u0(x) in Ω;

u(x, t) = g(x, t) on ∂ΩD, t ∈ (0, T );

n · σ(x, t) = t(x, t) on ∂ΩN , t ∈ (0, T );

(4.5)
Therefore the equations governing the stru
tural problem 
an be obtained subtra
ting4.4 from 4.2. The stru
tural system obtained is

ρs∂tus + ρsus · ∇sus +∇p′s
−2∇ · µ̃s∇us − ρsb+ (1− n)∇pf −D = 0 in Ωs, t ∈ (0, T ),

∇ · us = 0 in Ωs, t ∈ (0, T ).

(4.6)Stru
tural problem
ρs∂tus + ρsus · ∇sus +∇p′s

−2∇ · µ̃s∇us − ρsb+ (1− n)∇p−D = 0 in Ωs, t ∈ (0, T ),

∇ · us = 0 in Ωs, t ∈ (0, T ),

(4.7)
us(x, 0) = us 0(x) in Ωs,

us(x, t) = gs(x, t) on ∂ΩsD, t ∈ (0, T ),

n · σs(x, t) = ts(x, t) on ∂Ωs N , t ∈ (0, T ),

(4.8)
This problem is equivalent to the one treated in Chapter 3 providing the following
onsiderations:
• The DOFs of the problem stated by system 4.6 are the e�e
tive pressure (p′s) andthe solid velo
ity (us). This is essential in order to fully de
ouple the �uid and
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oupling strategy 149the stru
tural equations. This aspe
t was not expli
itly dis
ussed in Chapter 3be
ause the total pressure is equivalent to the e�e
tive one in absen
e of water.
• The external for
e term in equation 3.18 is 
omposed only of the body for
eswhereas in system 4.6 the Dar
y term (D) and the �uid gradient of pressure((1− n)∇pf) are also present.4.4 The 
oupling strategy

Figure 4.1: Graphi
al summary of the whole pro
ess.A monolithi
 approa
h to the whole problem be
omes impossible after the 
hoi
e oftwo di�erent kinemati
al frameworks for the stru
ture and the �uid model. The useof a staggered s
heme is therefore mandatory. Moreover in the 
ontext of partitioneds
hemes, the more a

urate way of performing the 
oupling between the stru
tural andthe �uid model is by using an impli
it 
oupling. In this 
ase iterations are performedbetween the solution of the two models at ea
h time step, till 
onvergen
e is a
hieved.
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ouplingThis 
hoi
e is very a

urate although very expensive. The se
ond possibility, whi
h isthe one used in the present work, is to perform an expli
it 
oupling. This means thatthe solution at ea
h time step is obtained by the solution of the �uid and the stru
turalmodel 
al
ulated one after the other, without any iteration.This is a

eptable 
onsidering that :
• The adoption of a semi-expli
it s
heme for the �uid problem leads to the need ofusing time steps mu
h smaller than for the fully impli
it stru
tural problem, toensure stability. An impli
it 
oupling would require adopting the smaller time step,i.e. that for the �uid solver, for both models, leading to an extremely expensivepro
edure;
• The 
oupling between the two models is weaker in one of the two dire
tions. Forthe solution of the �uid problem, in fa
t, only the porosity distribution is neededto be transfered by the stru
tural model. In other words, the shape of the ro
k�llslope or, more generally, of the granular material have to be transfered to the�xed �uid mesh. On the 
ontrary the other way 
oupling, the �uid pressure andvelo
ity are essential to 
orre
tly de�ne the external for
es a
ting on the ro
k�llmaterial.In summary the stru
tural Lagrangian model is proje
ted on the Eulerian �xed meshdomain where, at the beginning of the simulation, the only available information is thein
oming dis
harge of water and the 
ontrol domain. The idea is that the �uid analy-sis step is evaluated on
e the distribution of porosity is proje
ted from the stru
turaldomain. The solution of the �uid problem is then proje
ted on the Lagrangian stru
-tural mesh. It is ne
essary to know the �uid pressure and the Dar
y for
es in orderto evaluate 
orre
tly the external for
e term of the momentum equation in 4.6. On
ethis is done, the stru
tural response 
an be 
al
ulated. Therefore, the granular domaindeforms a

ordingly to the obtained velo
ity and pressure �elds. This new deformedgranular domain is �nally proje
ted onto the Eulerian mesh in order to solve for thesubsequent time step.Remark 20. The time step of the �uid model is typi
ally one order of magnitudesmaller than the one of the stru
tural model. This is the 
onsequen
e of the alreadydis
ussed 
onditional stability of the semi-expli
it s
heme used for the �uid model.Therefore the �uid and the stru
tural models have di�erent time steps.
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oupling strategy 151The main points of the entire simulation pro
ess are shown in Figure 4.1 and the �ow
hart of the algorithm are s
hemati
ally summarized in the box below:Coupling algorithmAssuming known the solution of the 
oupled problem at time step tn.1. Proje
t the 
on�guration of the ro
k�ll material in terms of POROSITYdistribution on the Eulerian �uid domain;2. SOLVE the water free surfa
e �ow problem 
al
ulating the VELOCITYand PRESSURE �eld in an EULERIAN �xed mesh using the model pre-sented in Chapter 2;3. Proje
t the FLUID VELOCITY and PRESSURE �elds on the La-grangian stru
tural mesh;4. Proje
t the non linear DARCY TERM on the Lagrangian stru
turalmesh;5. CALCULATE the stru
tural response in a Lagrangian mesh, usingPFEM;6. Go ba
k to step 1.4.4.1 Numeri
al Example: Still water tank

Figure 4.2: Geometry of the tank and height of the 
ontained porous medium.The aim of this very simple example is to 
he
k the 
al
ulation of the e�e
tive pressuredistribution when no velo
ity is present. A tank of porous material with three di�erent
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0.25m(a) Case 1 (hfA = 0.25m). 0.5m(b) Case 2 (hfB = 0.50m). (
) Case 3 (hfC = 0.75m).Figure 4.3: Depth of water in the three analyzed 
ases.levels of water is analyzed. The geometry of the model 
an be seen in Figure 4.2 andthe three analyzed 
ases are shown in Figure 4.3. The 
hara
teristi
s of the materialare summed up in Table4.1. In the present example gravity is assumed to be 10m/s2.ROCKFILLGlobal density ρC = 1895.2 kg/m3Dry density ρs = 1490 kg/m3Porosity n = 0.4052Average diameter D50 = 35.04 mmWATERFluid density ρ = 1000.0 kg/m3Vis
osity µ = 0.001 Pa sTable 4.1: Chara
teristi
s of the materials 
onsidered in the model.Let us de�ne:- hs: the depth of the porous medium (0.5m in the three 
ases);- hf : the water depth (hfA = 0.25m, hfB = 0.50m, hfC = 0.75m);- hw: the wet part of hs (hwA = 0.25m, hwB = 0.50m, hwC = 0.50m );- hd: the dry part of hs (hdA = 0.25m, hdB = 0.0m, hdC = 0.0m);- hfr

f : the water 
olumn over the porous medium (hfrA = 0.0m, hfrB = 0.0m,
hfrC = 0.25m );The total bottom pressure (ps) in ea
h 
ase 
an be 
al
ulated analyti
ally like the sumof the pressure of the wet part, the pressure of the dry part and the pressure of the
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tive pressure [Pa℄Analyti
al Numeri
alCase A 5963.0 5836.8Case B 4476.0 4476.6Case C 4476.0 4478.9Table 4.2: E�e
tive pressure at the bottom.water 
olumn , i.e. in symbols
ps = ρC g hw + ρs g hd + ρ g hfr = [(1− n)ρs + nρ] g hw + (1− n)ρs g hd + ρ g hfr

f ; (4.9)and the bottom water pressure is
U = ρ g h. (4.10)Finally the e�e
tive pressure 
an be 
al
ulated as the di�eren
e between the total pres-sure and the water pressure

p′s = ps − U = (1− n)ρs g hs − (1− n)ρ g hw. (4.11)On the other hand equation 4.2 redu
es to
∇p′s +∇p− nρg − (1− n)ρsg = 0; (4.12)and the equilibrium of the �uid part is

n∇p− nρg = 0. (4.13)Rewriting the gradient of �uid pressure of equation 4.12 like ∇p = n∇p + (1 − n)∇pand subtra
ting equation 4.13 from 4.12 the equilibrium of the solid matrix is obtainedas
∇p′s = (1− n)ρsg− (1− n)∇p; (4.14)In Figures 4.4, 4.5 and 4.6 the numeri
al results in terms of e�e
tive pressure 
ontour�lls and e�e
tive pressure distributions are shown for the three 
ases and 
omparedwith analyti
al results. As expe
ted the e�e
tive pressure distribution does not 
hangein 
ases B and C. On the 
ontrary in 
ase A the e�e
tive pressure 
oin
ides with thetotal pressure distribution in the dry part of the solid matrix and de
reases in the wet
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(b) Analyti
al and numeri
al results.Figure 4.4: Case A. hfA = 0.25m E�e
tive Pressure p
′

s.
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(b) Analyti
al and numeri
al results.Figure 4.5: Case B. hfB = 0.50m E�e
tive Pressure p
′

s.
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(b) Analyti
al and numeri
al results.Figure 4.6: Case C. hfC = 0.75m E�e
tive Pressure p
′

s.part due to the a
tion of the buoyan
y for
es.4.5 Data mapping between non-mat
hing meshesThe e�e
tiveness and e�
ien
y of the model is stri
tly dependent on the 
oupling pro-
edure whi
h up to now has only been explained 
on
eptually. Managing a �uid and astru
tural models that are represented in two di�erent kinemati
 frameworks requires atool to transfer information between non-mat
hing meshes.In the problem of interest, the mapping is to be done on overlapping domains: the �uid
ontrol domain always in
ludes the stru
tural Lagrangian domain. In any 
ase there isno need for one domain to be fully in
luded in the other. The data transfer is performedfrom a 2D to a 
oplanar 2D domain or between 3D volumes. No mapping betweensurfa
es or interfa
es is needed for the 
urrent problem.When dealing with mapping information between meshes the possible 
ases that 
anbe 
onsidered are the following [52℄:1. Compatible identi
al meshes;2. Nested meshes typi
al of multi-s
ale approa
hes;
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oupling3. Non-nested meshes with a large di�eren
e between their sizes, typi
al of aeronauti
problems;4. Dissimilar meshes in general.In the present work the need of mapping from a moving to a �xed mesh and vi
e-versaleads to dis
ard the �rst two groups. On the other hand, there is no parti
ular reasonwhy the order of magnitude of the two meshes should di�er very mu
h. Therefore the
ase of interest is the 4th one. Also the �uid and the stru
tural problems do not haveany Gauss point variable to be mapped. This simpli�es the problem that redu
es to thetransfer between nodal variables of non-mat
hing meshes.Let us de�ne origin mesh (OM) the mesh from whi
h the variable α is to be transferedto the destination mesh (DM). In this framework, a

ording to [18℄ the transfer methods
an be 
lassi�ed as follow:1. The Element Transfer Method (ETM). For ea
h node of the DM a sear
h is per-formed in order to lo
ate the element of the OM it is in
luded in. The value of αis obtained by interpolating the nodal values of su
h element.2. The Mortar Element Transfer Method (METM) in whi
h 
onservation of the �eldsis imposed in a weak sense. The di�eren
e between the value of the �eld on theDM and its value on the OM is asked to be zero weakly performing an integrationon the DM [52℄.3. The Finite Volume Transfer Method (FVTM) where the 
onservation in a weaksense is obtained using the Finite Volume Method [102℄.4. The Conve
tion Transfer Method (CVM) whi
h is a modi�
ation of the previousalgorithm suitable for Arbitrary Lagrangian Eulerian methods in whi
h neitherthe number of nodes, nor the 
onne
tivity 
hange during the 
al
ulation [18℄.The ETM is a dissipative pro
edure that might 
reate a serious data loss if the dimensionof the two meshes is very di�erent. Nevertheless, due to its simpli
ity and 
onsideringthe weak 
oupling of the physi
al simulated phenomenon , it is the method 
hosen inthis work.Let us refer to Figure 4.7 to explain the ETM algorithm. The data transfer 
an beperformed via the following steps. For every element (ABC) of the OM:
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Figure 4.7: 2D example of the interpolation pro
edure. Node I, J and K are inside the
ir
ums
ribed 
ir
le but only node J in inside the element and its value of alpha 
an be
al
ulated.1. Cal
ulate the sphere that 
ir
ums
ribes the element, or 
ir
le in 2D (bla
k 
ir
lein Figure 4.7);2. Sear
h all the nodes of the DM inside the sphere (nodes I, J and K in Figure 4.7);3. Che
k whi
h of them is inside the element (verifying that the value of the shapefun
tions of the element nodes are all positive and smaller than one);
0 < NA(xJ) < 1; (4.15)
0 < NB(xJ) < 1; (4.16)
0 < NC(xJ) < 1; (4.17)4. For every destination node inside the element of the OM (node J of Figure 4.7),interpolate the value of α

αJ = NA(xJ)αA +NB(xJ)αB +NC(xJ)αC ;Remark 21. The variable α 
an be either a s
alar or a ve
tor. A third possibility isleft to the user: he/she 
an 
hoose to map the whole origin model on the destinationone.In order to perform step 2 the use of a spatial sear
h data stru
ture is needed. The
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ouplingalternatives available in Kratos [47, 48℄ (Appendix A), whi
h is the framework used todevelop all the algorithms presented in this work, are brie�y presented in next se
tion.4.5.1 The sear
hing algorithmThe sear
h algorithm is the key point of the e�
ien
y of the method, in fa
t it turnsout to be a time 
onsuming part.A

ording to [113℄, the suitable 
ontainers for this kind of algorithms 
an be divided inthree families:1. Hash tables like bins and matri
es. These stru
tures are suitable for homoge-neously distributed data. If this 
ondition is met they are the fastest stru
ture tobe used for sear
hing.2. Trees (quadtrees, o
trees, k-d trees for instan
e). These stru
tures are ideal for anon-homogeneous data distribution. Nevertheless even if this is not the 
ase, theyare often preferred to hash tables due to their higher robustness.3. The previous two families 
an be suitably 
ombined in order to optimize the sear
h-ing pro
edure.A deep analysis of the topi
 is not the obje
tive of the present work and the 
onsultationof [113℄ is re
ommended for a 
omplete overview on the topi
. In what follows just abrief overview of the data stru
ture available in Kratos is done.The stru
tures available in Kratos are:1. k-d tree whi
h denotes k-dimensional tree. It is a spa
e-partitioning data stru
-ture for organizing points in a k-dimensional spa
e. The k-d tree is based on are
ursive subdivision of spa
e into disjoint hyper-re
tangular regions 
alled 
ells.Ea
h node of the tree is asso
iated with su
h region, 
alled 
ell, and is asso
iatedwith a set of data points that lie within this 
ell. The root node of the tree isasso
iated with a bounding box that 
ontains all the data points.Considering an arbitrary node in the tree, as long as the number of data pointsasso
iated with this node is greater than a small quantity, 
alled the bu
ket size,the box is split into two boxes by an axis-orthogonal hyperplane that interse
tsthis box. A representation of how the k-d tree works 
an be seen in Figures 4.8and 4.9. There are a number of di�erent splitting rules, whi
h determine how
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Figure 4.8: S
hemati
 representation of a k-d tree data stru
ture taken from [69℄.

Figure 4.9: Representation of a k-d tree partitioning taken from [47℄.this hyperplane is sele
ted and 
hara
terize the k-d tree. In Kratos the availableoptions are the following:a) Mid splitting rule. The 
ell is always divided by half;b) Balan
ed splitting rule. The 
ell is divided into two 
ells that 
ontain thesame number of nodes. This is an optimal rule but very time 
onsuming;
) Approximated balan
ed rule. It uses the average of the 
oordinates of thepoints as splitting dimension.2. Bins It divides the domain into a regular nx× ny × nz sub-domains as shown inFigure 4.10 and holds an array of bu
kets storing its elements (see Figure 4.11).
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ouplingThis stru
ture provides an extremely fast spatial sear
hing when entities are moreor less uniformly distributed over the domain. The good performan
e for welldistributed entities and their simpli
ity makes bins one of the most popular datastru
ture for di�erent �nite element appli
ations.
Figure 4.10: Representation of a bins partitioning taken from [47℄.

Figure 4.11: Bins stru
ture taken from [47℄.Two bins stru
tures are implemented in Kartos:a) Stati
 bins. This is the most e�
ient bins stru
ture organizing the data insparse matri
es but does not allow the insertion of additional data.b) Dynami
 bins. Slower than the previous one, it is basi
ally a matrix of arraysof entries, allowing a more �exible modi�
ation of its 
ontent at any time.3. O
tree. It is a type of tree in whi
h every node in 3D has 
hildren. Spa
eis re
ursively subdivided into eight o
tants (only o
tants 
ontaining nodes aredivided in turn). The 
reation of the tree is faster than in th k-d tree 
ase but theresulting stru
ture 
an often be less balan
ed. The sear
hing pro
edure is fasterthan in k-d tree implying less jumps.4. K-d tree of bins a 
ombination of the previous des
ribed stru
tures.
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tree of bins a 
ombination of the previous des
ribed stru
tures.The advantages and drawba
ks of every Kratos data stru
ture 
an be found in [47, 48℄.In the present work the k-d tree, bins and k-d tree of bins data stru
ture have beenused.4.5.2 Numeri
al ExamplesMesh dimension in�uen
e in the mapping pro
edure

(a) Mesh A. Origin (PFEM) mesh. (b) Mesh A. Destination (�xed) mesh.

(
) Mesh B. Origin (PFEM) mesh. (d) Mesh B. Destination (�xed) mesh.Figure 4.12: Meshes used in the 
al
ulation whose element dimension is reported inTable4.3. Left: Lagrangian (PFEM) mesh and right: Eulerian �xed mesh.The breaking of a 2D water 
olumn example is 
onsidered here to underline the limitsand possibilities of the interpolation algorithm. The initial height and width of the water
olumn is 0.5m. The 
al
ulation is performed in a moving mesh (the origin mesh OM)
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ouplingusing PFEM, and at ea
h time step the whole model part is proje
ted to the �xed mesh(the destination mesh DM). A k-d tree data stru
ture is used to perform the sear
hingof the neighbors. Mesh A Mesh BDimension [m℄ 0.005 0.05Table 4.3: Size of the two meshes 
onsidered in the proje
tion example.Two di�erent mesh sizes are 
onsidered for the interpolation pro
edure, a �ne mesh(mesh A of Table4.3) with approximately 100 elements in the water 
olumn edge and a
oarser one (Mesh B of Table 4.3) with 10. The Eulerian and Lagrangian initial domainsfor the two meshes 
onsidered are shown in Figure 4.12. In Figure 4.13 the interpola-tion is performed from mesh A to a �xed grid with the same mesh dimension. Wheninterpolating data between 
oarser PFEM and �xed meshes (mesh B) the interpolationshows a la
k of pre
ision (�gure 4.14). Nevertheless it should be observed that originaldata are already quite poor and no relevant data loss is present.The worst performan
e is observed when interpolating form a PFEM model with meshA to a 
oarse �xed mesh (mesh B). The loss of information is evident in Figure 4.15.Therefore as a 
on
lusion, the dimension of the origin and destination meshes has to beof the same order of magnitude to obtain an a

eptable pre
ision in the interpolationpro
edure.Performing the proje
tion algorithmIn the present example the time performan
e of the interpolation algorithm is 
al
ulatedfor a k-d tree, bins and k-d tree of bins data stru
tures. The example 
onsiders theproje
tion of a s
alar variable (the porosity) from a PFEM model to a �xed grid model.The meshes are unstru
tured and homogeneous. The same dimension is 
onsidered inthe Lagrangian and Eulerian models.Four di�erent meshes are 
onsidered for the 
omparison. The detail of ea
h of them 
anbe found in Table4.4. The results are summarized in Figure 4.16 where, as expe
ted,in the 
ase of an homogeneous mesh, the bins stru
ture is mu
h faster than the k-dtree one. The di�eren
e is 
learer as mu
h as the mesh is re�ned. Nevertheless the
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(a) Origin (PFEM) mesh (b) Destination (�xed) mesh. (
)Figure 4.13: Mapping between models with Mesh A.

(a) Origin (PFEM) mesh (b) Destination (�xed) mesh. (
)Figure 4.14: Mapping between models with Mesh B.
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(a) Origin (PFEM) mesh (b) Destination (�xed) mesh. (
)Figure 4.15: Mapping from a �ne mesh (mesh A) to a 
oarse one (mesh B).
ombination of these two stru
tures resulting in a k-d tree of bins improve relevantlythe e�
ien
y of the simple k-d tree.The e�
ien
y of the bins 
an be 
ompromised for a mesh with very high di�eren
e inthe dimension. In that 
ase, the splitting rule of the k-d tree is the faster sear
hingpro
edure [113℄.Con
erning the problem of interest of the present work, the results 
on�rm that thereis no reason why the mesh should vary very mu
h in the 
ase of the 
oupled models ofro
k�ll dams that will be presented in next 
hapter.Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.02 0.03 0.04 0.05Eul Lagr Eul Lagr Eul Lagr Eul Lagrn. nodes 8 200 2 600 3 600 1 200 2 000 700 3 700 460n. elem 15 900 7 400 7 000 3 300 4 000 1 800 7 000 1 200Table 4.4: Mesh dimension of the four meshes 
onsidered in the proje
tion example. Thelast two rows indi
ates the number of nodes and elements for the Eulerian destinationmesh (Eul) and the Lagrangian origin one (Lagr).
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Figure 4.16: Comparison between the performan
e of k-d tree, bins, and k-d tree of binsdata stru
tures for the proje
tion of a s
alar variable for di�erent mesh sizes.4.6 Con
lusionsIn the present 
hapter the staggered balan
e equations of the 
oupled model have beenderived from the global balan
e equations. The expli
it 
oupling strategy is des
ribedand a simple example has been used to 
he
k the 
apability of the model of 
al
ulatingthe e�e
tive pressure distribution for a stati
 
ase.In the se
ond part of the 
hapter a pro
edure to map variables from non-mat
hingmeshes is presented. After a brief overview of the possible data passing models theimplemented Element Transfer Method is explained. In spite of the di�usivity of themethod and its moderate a

ura
y, it is 
hosen be
ause of its simpli
ity. In the futurethis tool 
ould be easily substituted with a more e�
ient proje
tion te
hnique. Thesear
hing algorithms available in Kratos have been presented.The examples analyzed lead to the following 
on
lusions:1. The origin and the destination mesh should be of the same order of magnitude toensure an a

urate data mapping.2. The stati
 bins stru
ture is the best 
hoi
e for an homogeneous distribution of the
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ouplingnodes, Nevertheless the k-d tree data stru
ture 
an be 
ompetitive for exampleswith an alternation of dense and sparse distribution of nodes.In any 
ase a deeper study on the performan
e of the mapping te
hnique is to be donein order to optimize the 
ode.



Chapter 5Failure analysis of s
ale models ofro
k�ll dams under seepage 
onditionsIn the present 
hapter the seepage and the 
oupled models are validated through a
omparison with the experimental results on s
ale models of ro
k�ll dams in di�erentseepage 
onditions, 
arried out by UPM and CEDEX during the XPRES and E-DAMSproje
ts [53, 127℄. The e�e
tiveness of the models are tested on 2D and 3D models ofro
k�ll dams with di�erent types of impermeabilization. The in�uen
e of some physi
aland me
hani
al parameters is studied to 
alibrate the 
odes.5.1 Introdu
tionThe extensive work of UPM and CEDEX during the XPRES and E-DAMS proje
ts[53, 127℄ results in more than 100 experiments. Three experimental fa
ilities of di�erentdimensions have been used (they 
an be seen in Figure 1.6 of Chapter 1). The mainobje
tive of the experimentalists during the XPRES proje
t was the analysis of thein�uen
e of a series of parameters and of their 
ombination, on the failure me
hanismof the dam.The experimental 
ampaign investigated the e�e
t of
• the type of impermeabilization;
• the slope of the downstream part;
• the dimension of the material used;
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• the randomness in the experiments;
• the in
oming dis
harge1;
• the s
ale e�e
t;Ea
h experiment studies a s
ale model dam under a series of in
remental �steps ofdis
harge�. After ea
h in
rement, the in
oming dis
harge is maintained 
onstant tillrea
hing the steady state. When a brea
h appears in the downstream slope, its stabi-lization is a
hieved before measuring its advan
e.Pressure heads is registered and the length of failure is therefore measured at ea
h�step�.

(a) Front view of UPM 
hannel withthe pressure sensors tubes. (b) One of the panels for readingpressure heights.Figure 5.1: Pressure instrumentation.Pressure at the bottom of the �umes is evaluated by a network of sensors Figure 5.1(a).Its value is read on millimetri
 panels like the one shown in Figure 5.1(b).The deformation of the dam is analyzed through the evolution of the so 
alled lengthof failure (B parameter in Figure 5.2(a)). It is, by de�nition, the horizontal proje
tionof the distan
e between the initial undeformed downstream toe and the higher point ofthe failed area.Usually 
olored horizontal strikes are painted on the initial slope. This helps the mea-surement of B (see Figure 5.2(b) for instan
e). In some of the experiments a moredetailed measurement of the evolution of failure is performed using a 
lose-obje
t-photogrammetry-te
hnique. It 
onsists on taking a series of photos with a very short1The in
oming dis
harge is a boundary 
ondition of the experiment. It is the dis
harge (in l/s)pumped upstream by the laboratory pumps.
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(a) S
hemati
 view of the length of failure (B). (b) Visual measurement of the ad-van
e of failure with the help of 
ol-ored lines.Figure 5.2: Length of failure. Chara
terization and operative measurement.

Figure 5.3: Length of failure. Digital model of the deformed slope to evaluate theevolution of failure B.
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ale models of ro
k�ll dams under seepage 
onditionstime interval until the end of the simulation. Through the re-elaboration of this data,the 
reation of a digital model of the deformed dam is possible and the dynami
 evolutionof the brea
h is followed with high pre
ision (see for instan
e Figure 5.3).The experiment ends when failure rea
hes the 
rest of the dam.The analysis of the experimental 
ampaign is not the obje
tive of the present work andfor more details on the topi
, the 
onsultation of [21, 76℄ is re
ommended. Neverthelesssome important 
on
lusions of the experimental study are summarized here in order tomotivate the 
hoi
e of the 
ase study presented in the following se
tions.
1. As explained in Chapter 1, there exists two main failure me
hanisms in a ro
k�llslope when overtopping o

urs: mass sliding and dragging of parti
les. They a
tin 
ombined or alternative way prin
ipally depending on the geometri
al 
hara
-teristi
s of the downstream slope. For steep slopes (1.5H : 1V for instan
e) masssliding predominates over dragging of parti
les. The opposite o

urs when theslope is very �at (3H : 1V for instan
e). Taking into a

ount this important as-pe
t, UPM and CEDEX observed that data-s
atter is higher in the experimentswith �intermediate� slopes, where neither the mass sliding nor the erosion arepredominant but their a
tion is 
ombined.
2. The length of failure of the �rst steps of dis
harge (that is for low water level),presents a rather high data s
atter 
on
erning the evolution of the brea
h. Onthe 
ontrary the dis
harge for whi
h failure rea
hes the 
rest is always in greata

ordan
e.
3. No 
lear relation 
an be found between the unit failure dis
harge2 and the down-stream slope.
4. Considering prototype dams of the same dimension, it has been observed that fora 
ore dam, the unit failure dis
harge is between 10 and 20% lower than for otherkind of dams.
5. The unit failure dis
harge in
reased for material with higher D50.
6. Failure is observed to be more fragile in the 
ase of steepest slopes for whi
h thepredominant failure me
hanism is mass sliding.2The unit failure dis
harge is the dis
harge for unit length of the �ume, for whi
h the failure rea
hesthe 
rest of the prototype dam.
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ase study 1715.2 Overview of the 
ase studyAs a �rst step in the validation of the �uid and 
oupled 
ode, a group of experimentshas been reprodu
ed numeri
ally. A sele
tion of the results is presented in this work.The evolution of seepage and beginning of failure in three di�erent types of dams issimulated: an homogeneous dam, without any sort of impermeabilization, a 
ore damand a dam with an impervious s
reen in order to identify the di�
ulties and limitationsin all these 
ases.All the dams 
onsidered have the same downstream slope: 1.5H : 1V . This geometri
alaspe
t does not have any in�uen
e in the modeling of seepage but strongly determinesthe deformation of the ro
k�ll. In fa
t, a

ording to experimental eviden
e (see point
6 of the previous se
tion), mass sliding is predominant in this kind of slopes. The
oupled 
ode has been 
on
eived for representing the predominan
e of this failure mode.For �at slopes (i.e. H3 : V 1), the in
lusion of an algorithm to simulate dragging ofsurfa
e parti
les is required. This module has been already developed following [94, 98℄,nevertheless it still requires extensive testing and is not yet su�
iently mature to bepresented in this 
ontext.Only one material has been analyzed its 
hara
teristi
s are summarized in Table 5.1.Porosity n 0.4052Average diameter D50 35.04mmDry density ρs 1490kg/m3Saturated density ρsat 1910kg/m3Apparent spe
i�
 weight W 2500kg/m3Pore index Pi 0.68Internal fri
tion angle range φ [37◦ − 42.5◦]Table 5.1: Properties of ro
k�ll material.All the previous values are obtained by an external laboratory a

ording to the Spanishnorms. For instan
e the granulometri
 distribution, a

ording to the UNE-EN 933-1, isthe one shown in Figure 5.4. From this analysis, the diameter for whi
h the 50% of thematerial passes the sieves (D50) is 35.04mm as detailed in Table 5.1.
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Figure 5.4: Granulometri
 analysis of ro
k�ll material a

ording to the UNE-EN 933-1.This is the largest material used in the experimental 
ampaign. A dire
t relation be-tween the dimension of the grains and the dis
harge of beginning of failure was observed.This implies the possibility of working with higher velo
ities. In fa
t this represents apositive aspe
t be
ause the level set te
hnique 
an present some problems with very lowvelo
ities (i.e. very low water depth). Just to make an example, at the beginning of thesimulation the Froude number3 
an be of the order of 10−2.Finally for ea
h experiment, di�erent steps of dis
harge have been simulated. In allthe 
ases with the lower dis
harge 
onsidered no movements in the downstream slope isobserved. This implies that, in order to speed up the 
al
ulations, the �uid un
oupled
ode 
an be used for the simulation. The 
oupled model is used for the higher dis
harges.Before presenting of the results, the nomen
lature used to 
lassify the 
ases is brie�yresumed here.Three di�erent type of dams are simulated in the present 
hapter:- CASE A: an homogeneous dam without impermeabilization.3Froude number is an a-dimensional number indi
ating the ratio between gravity and inertia for
es.It is used to 
lassify the �ow regime [58℄.



CASE A: Homogeneous dam 173- CASE B: a dam with internal 
ore. Only the downstream slope is simulated.- CASE C: a dam with an upstream impervious fa
e.For ea
h 
ase i (i = A,B, and C), two sub-step analyses have been 
arried out:- Case i1: Analysis of the non-linear seepage given an in
oming/overtopping dis-
harge. Experimentally no deformation is observed in the dam. This analysis is
arried out with the �uid un
oupled 
ode.- Case i2: Analysis of the evolution of failure given an in
oming/overtopping dis-
harge. Several in
reasing values of dis
harges are 
onsidered for ea
h 
ase a

ord-ing to experiments. In this 
ase the 
oupled 
ode is employed.Finally in Table 5.2 the dis
harge (Q in l/s) for every simulated 
ase is detailed.CASE A CASE B CASE CHomogeneous dam Core dam Impervious fa
e damWITHOUT A1 Q = 25.46l/s B1a Q = 5.93l/s C.1 Q = 5.17l/sFAILURE B1b Q = 4.0l/sB1
 Q = 16.7l/sWITH A2.1 Q = 51.75l/s B2a.1 Q = 19.36l/s C2.1 Q = 15.36l/sFAILURE A2.2 Q = 69.07l/s B2a.2 Q = 30.45l/s C2.2 Q = 25.05l/sA2.3 Q = 90.68l/s B2a.3 Q = 39.56l/s C2.3 Q = 30.27l/sTable 5.2: Case study.The detailed position of the pressure sensors and the experimental data for ea
h 
aseare not reported here but 
an be found in [74℄. This ben
hmark was sele
ted to be oneof the three themes of the XI Ben
hmark workshop of ICOLD on Numeri
al Analysis ofDams that held in Valen
ia in O
tober 2011. The proposed solution to this ben
hmark
an be found in [73℄.
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Figure 5.5: Experimental setting.5.3 CASE A: Homogeneous damThe �rst example reprodu
es an experiment 
arried out by UPM: a dam without anyinternal 
ore or impervious s
reen is analyzed.5.3.1 Case A. Experimental setting and geometryThe geometry of the prototype dam is presented in Figure 5.6, where also the distributionof the bottom pressure sensors is indi
ated.

Figure 5.6: Case A. Geometry of the experimental setting and map of the sensorsdistribution.
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Figure 5.7: Case A1. Qualitative model geometry and boundary 
onditions5.3.2 Case A1. 2D numeri
al model and resultsThe numeri
al model is built following the geometry of the experiment [74℄. The 
ontrolvolume of the Eulerian �uid model has to be large enough in order not to in�uen
e thesolution.Con
erning the boundary 
onditions, an inlet with �xed velo
ity is set in the left sideof the 
ontrol volume. A slip boundary 
ondition is imposed on the walls as shown inFigure 5.7. The mesh used for the simulation has 16 347 linear triangular elements. Asexplained in the next se
tions, the mesh size does not a�e
t relevantly the quality of theresults.The 
ode 
an simulate the unsteady regime of the �lling of the upstream reservoir evenif experimental data only refers to the steady state. Figure 5.8 gives an example of theunsteady part of the simulation.In Figure 5.9 the 
omparison between numeri
al and experimental head of pressure isshown.The agreement is good even if the numeri
al 
ode underestimates the experimentalvalues. This is the 
onsequen
e of the model 
hosen for the resistan
e law (see Se
tion2.1.3 for a dis
ussion of the topi
).Considering that the geometry of the experiment and the in�ow dis
harge are 
orre
t,the parameters that might in�uen
e the results of the model are:1. The quality of the mesh;2. The value of the porosity n;3. The value of the average diameter D50.In order to understand how an error in the determination of ea
h of these parameters
an in�uen
e the solution, a deeper analysis is 
arried out in the following se
tions.
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Figure 5.8: Case A1. Evolution of the seepage line in a dam with porosity n = 0.4 and
D50 = 35mm. Q = 25, 46l/s.
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Figure 5.9: Case A1. Bottom pressure distribution at stationary regime for Q =
25, 46l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.



CASE A: Homogeneous dam 1775.3.3 Case A1. Mesh in�uen
eIn order to understand how the mesh in�uen
es the results, 
ase A1 is run with di�erentmeshes. The inlet area has been left 
onstantly re�ned (href = 0.01m4) in order to ensurea 
onstant in
oming dis
harge before entering the porous medium. The 
hara
teristi
sof the meshes are summarized in Table 5.3 and 
an be seen in Figures 5.10.Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.01 0.1 0.15 0.20n. elem 43 500 550 310 220n. nodes 86 100 970 510 340Table 5.3: Case A1. Mesh sizes used in the mesh sensitivity study.Results shows that the mesh does not seem to have a strong in�uen
e on the quality ofthe results at least inside the dam when no impervious stru
tures are present. The maindi�eren
e 
an be observed at the downstream toe of the dam, where water 
omes out ofthe granular material. For 
oarser meshes an important loss of volume 
an be observedoutside the ro
k�ll. The presen
e of the porous medium with its dissipative e�e
t ishelpful in enfor
ing the volume 
onservation properties also for very 
oarse meshes likemesh D, for instan
e. This is no longer true outside the granular material.This aspe
t should be taken into a

ount when 
hoosing the mesh for a simulation.5.3.4 Case A1. In�uen
e of porosityThe porosity of the material used in the experiments presented in this 
hapter is evalu-ated by an external laboratory a

ording to the Spanish norm UNE-EN 1936:2007 andis 0.4052.Keeping all the parameters of the models and the 
al
ulation mesh �xed, porosity is
hanged in the range 0.30 − 0.45 in order to see the in�uen
e of this parameter in theanalysis. A 
onstant variation in the porosity value ∆n indu
es a 
onstant jump in thepressure head distribution as 
an be observed in Figure 5.12.4h is the average mesh dimension. In this 
ase the sub-index ref indi
ates that this h refers to there�ned areas at the inlet.
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(a) Mesh A (b) Mesh B
(
) Mesh C (d) Mesh DFigure 5.10: Case A1. Meshes used in the analysis of mesh sensitivity. Detailed 
hara
-teristi
s of the meshes 
an be found in Table 5.3.
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Figure 5.11: Case A1. In�uen
e of the mesh.
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Figure 5.12: Case A1. Pressure head distribution for porosity n = 0.3, 0.35, 0.4 and
0.45.
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al results obtained for n = 0.4052 yields a lower pressure head, whilethe 
ase with n = 0.35 overestimates the experimental data. The same problem wassubsequently analyzed in more detail 
onsidering smaller porosity in
rement. The resultsadopting n = 0.37, 0.38 and 0.39 are shown in Figure 5.13. The experimental data agreewell with the 
ase of n = 0.38.
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Figure 5.13: Case A1. Zoom of the pressure head distribution for porosity n = 0.37, 0.38and 0.39.
5.3.5 Case A1. In�uen
e of the diameter of the materialThe last analysis 
on
erns the in�uen
e of the D50 value. This value is 
hanged withan in
rement of 1cm from 1 to 8cm. It is interesting to observe Figure 5.14 where thede
rement of pressure head is not linear with respe
t to D50. Moreover if D50 > 5cmits in�uen
e on the pressure distribution is negligible. On the 
ontrary, the smaller the
D50 is, the bigger its in�uen
e on the pressure distribution.
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Figure 5.14: Case A1. In�uen
e of the diameter of the material.
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k�ll dams under seepage 
onditions5.3.6 Case A1. 3D numeri
al model and resultsThe 3D model of 
ase A has been 
onsidered following the geometry given in Figure 5.7.The 
ontrol volume is meshed with a 1 264 015 4-noded linear tetrahedra linear elementsas shown in Figure 5.15.

Figure 5.15: Case A1. 3D model and mesh.Three lines of pressure sensors where a
tivated during the experiments (respe
tivelylines 1, 4 and 7 of the plane view of Figure 5.6). They are lo
ated along the 
entral lineand at 4cm from ea
h side of the 
hannel. By identifying Y with the 
oordinate in thetransversal dire
tion (as shown in �gure 5.6), the exa
t position of the sensor lines for
ase A is detailed in Table 5.4.

Figure 5.16: Case A1 3D. Evolution of the seepage line in a dam with porosity n = 0.4and D50 = 35mm. Q = 25, 46l/s.A sequen
e of the transitory phase of �lling of the dam 
an be observed in Figure 5.16.
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Line 1 at Y = 0.04mLine 4 at Y = 1.23mLine 7 at Y = 2.42mTable 5.4: A
tivated sensors lines in 
ase A.
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Figure 5.17: Case A1 (3D). Bottom pressure distribution at stationary regime along thethree sensors lines (Y = 0.04m, 1.23m, 2.42m respe
tively) for Q = 25, 46l/s. Porosity
n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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Figure 5.18: Case A1. Bottom pressure distribution in 2D and in 3D models at di�erentinstan
es of the transitory regime. Q = 25.46l/s. Porosity n = 0.4, D50 = 35mm.



CASE A: Homogeneous dam 183Figure 5.17 shows the 
omparison between experimental values measured at di�erent
Y and the 
orrespondent numeri
al results. The 3D results for 
ase A1 
on�rm thatthe model underestimates the experimental results.Finally a 
omparison between the 2D and 3D models is performed for the unsteadyregime at di�erent time instan
es and the bottom pressure distribution is plotted asshown in Figure 5.18.5.3.7 Case A2. 2D 
oupled model and results
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Figure 5.19: Case A2. Fluid and dam qualitative models and boundary 
onditions forthe 
oupled analysis.The 
oupled models aim to simulate the seepage line and the overtopping �ow whilefollowing the evolution of the brea
h in the dam material. It is 
omposed of two parts:- The �uid Eulerian model. Its 
onstru
tion is analogous to the 
ase A1 and themesh properties are the same. The main di�eren
e derives from the absen
e ofany porous material. This information is passed during the 
al
ulation, by thePFEM model.- The PFEM stru
tural model. The dam model is 
onstru
ted in a Lagrangianframework. This implies modeling only the material domain (i.e. the dam initialshape and the walls if present). The de�nition of a bounding box is required. It
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k�ll dams under seepage 
onditionssets the maximum 
al
ulation domain. If a node exits the bounding box is nolonger 
al
ulated and is deleted.Remark 22. A preliminary remark on the interpretation of the experimental datashould be made here. The experimental B length of failure is by de�nition the horizontalproje
tion of the position of the higher parti
les that moves. This movement is notquanti�ed. In the present work it was assumed that a parti
le is to be 
onsidered�moved� if its total displa
ement is higher than the average dimension of the granularmaterial (3.0cm). This 
hoi
e is arguable and, as it will be shown later on, it oftenmakes our model too deformable. Nevertheless this empiri
al 
riterion was used in allthe models analyzed in order to allow a 
omparative analysis.
Figure 5.20: Case A2. 2D mesh of the dam model. 3.400 linear triangular elements.In Figure 5.19 a s
hemati
 view of the �uid and stru
ture boundary 
onditions is shown.The mesh used for the �uid model is the same used in 
ase A1, whereas for the stru
turalmodel, the mesh is 
omposed of 3 400 linear triangular elements (Figure 5.20).The photogrammetri
 analysis of the A 
ases was also available and helped the 
om-parison between experimental and numeri
al results. Figures 5.21-5.23 show on the leftthe digital model derived by the photogrammetri
 analysis, and on the right the 
ontour�ll of the displa
ements. The 
olored area indi
ates the displa
ements larger than 3cm.The reason for this 
hoi
e is explained in Remark 22. A very good agreement is observedbetween experimental and numeri
al length of failure in the three 
ases.Looking at the pressure head distribution (�gures 5.24-5.24), the experimental bottompressure head is underestimated by the numeri
al one. This aspe
t is more relevant thanin 
ase A1. It might be the signal of an internal variation of the material 
onditions(su
h as porosity or permeability) that is not taken into a

ount in the model.Figure 5.26 shows that in 
ase A23, the pressure head presents a lower experimentalvalue where the water exits the dam. The 
ontra
tion of the �ux 
an be indu
ed by
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(a) Experimental length of failureB= Bexp = 0.71m. (b) Numeri
al length of failure B= Bnum= 0.68m.
Figure 5.21: Case A21. 2D 
omparison between experimental and numeri
al length offailure.

(a) Experimental length of failureB= Bexp = 1.08m.
(b) Numeri
al length of failure B= Bnum= 1.04m.

Figure 5.22: Case A22. 2D 
omparison between experimental and numeri
al length offailure.
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(a) Experimental length of failureB= Bexp = 1.56m.
(b) Numeri
al length of failure B= Bnum= 1.58m.

Figure 5.23: Case A23. 2D 
omparison between experimental and numeri
al length offailure.
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Figure 5.24: Case A21. Bottom pressure distribution at stationary regime for Q =
51.75l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.Q [l/s] Bexp Bnum ErrorCase A21 51.75 0.71 0.68 4.2%Case A22 69.07 1.08 1.04 3.7%Case A23 90.68 1.56 1.58 1.3%Table 5.5: Case A2. Comparison between experimental (Bexp) and numeri
al (Bnum)length of failure.
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Figure 5.25: Case A22. Bottom pressure distribution at stationary regime for Q =
69.07l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.the absen
e of the ro
k�ll that �owed away during the failure pro
ess. This leads tothe 
on
lusion that the failed material in the numeri
al model is more rigid than in thereal 
ase. Its a

umulation over the original toe of the dam indu
es a higher value ofpressure than in the experiment.
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Figure 5.26: Case A23. Bottom pressure distribution at stationary regime for Q =
90.68l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
5.3.8 Case A2. 2D sequen
e of in
remental dis
hargesThe 
ode was 
on
eived to analyze the 
onsequen
e of transitory in
oming dis
harges,allowing inserting �ooding 
urves as an input. Unfortunately this 
apability has notbeen exploited in the examples presented be
ause the experimental results where givenfor the stationary regime and no 
omparison 
an be made in the transitory regime.Fortunately in the last months, the UPM partners in the E-DAMS proje
t have been
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ale models of ro
k�ll dams under seepage 
onditionsperforming some experiments 
onsidering variable in
oming dis
harges a

ording to ahydrogram.
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Figure 5.27: Imposed in
oming dis
harge in fun
tion of time.As a preliminary test, 
ases A1-A21-A22 were run in sequen
e leaving the su�
ient timefor the intermediate stationary regime to be a
hieved. The imposed 
urve representingthe inlet dis
harge in fun
tion of time, is reported in Figure 5.27. The pressure head in
orresponden
e of two pressure sensors lo
ation is registered as 
an be seen in Figure5.28. The two points are lo
ated at 2.2m and 2.7m from the upstream toe of the dam.The dotted line in the graph is the stationary value of pressure read from the piezometersin the 
ases A1, A21 and A22 respe
tively. Also in this 
ase the numeri
al resultsunderestimate the experimental ones and the error is analogous to the one presented inthe previous se
tion.5.3.9 Case A2. 3D 
oupled model and resultsSome preliminary results have been obtained also in 3D. The �uid and stru
tural modelshave been developed a

ording to what explained in Se
tion 5.3.7 for the 2D validation.On the other hand, the deformation of the dam is not so 
lear as in the 2D 
ase. Thishappens be
ause the deformation is partially skewed by the remeshing at ea
h time step.As explained in Se
tion 3.7, remeshing is a key point of PFEM. In fa
t this method wasoriginally 
on
eived to treat Newtonian free surfa
e problems where the regeneration ofthe mesh is always required. This is not the 
ase of the present non-Newtonian algorithmwhere in most of the steps all the nodes are in the unyielded region and do not move.
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Figure 5.28: Bottom pressure distribution 
onsidering the hydrogram presented in Fig-ure 5.27. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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ale models of ro
k�ll dams under seepage 
onditionsFor this reason the possibility of inserting a 
onditional remeshing in the problem is tobe added in the 
ode in order to have a viable 3D 
oupled analysis 
ode.A preliminary tool that allows a 
onditional remeshing has already been inserted in the
ode and yields good results like the one shown in 5.29.The plots of the pressure drop (�gure 5.30) shows a good agreement between the resultsof the 2D and 3D models (dotted and 
ontinuous line respe
tively). This 
on�rms theresults obtained in Se
tion 5.3.6 for the A1 
ase in 3D, where only the �uid 
ode wasused.
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Figure 5.30: Case A22 3D. Bottom pressure distribution at stationary regime for Q =
69.07l/s. Porosity n = 0.4, D50 = 35mm. 2D and 3D numeri
al results 
ompared withexperimental data points.5.4 CASE B. Core dam

Figure 5.31: Core dam. Experimental setting.The se
ond experiment simulated in this work is the seepage inside a 
ore dam. The 
oreis 
onsidered �xed and undeformable. The experiment is 
arried out building ex
lusively



CASE B. Core dam 191the downstream slope as 
an be seen in Figure 5.31. The water entran
e is set in theupper left part, omitting the simulation of the �lling of the reservoir that is useless inthe present analysis.5.4.1 Case B. Core dam. Experimental setting and geometryThe geometry of the dam is presented in Figure 5.32 where the distribution of thepressure sensors on the bottom of the 
hannel 
an be seen.The model is built in order to reprodu
e the real geometry of the experimental setting.Sin
e the 
ase of interest is the simulation of the overtopped �ow, the geometry of themodel does not in
lude the reservoir. The entran
e of water is set in the upper left partas shown in Figure 5.33.

Figure 5.32: Case B. Geometry of the experimental setting and map of the sensorsdistribution.
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Figure 5.33: Case B1. Qualitative model geometry and boundary 
onditions.
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ale models of ro
k�ll dams under seepage 
onditionsA slip boundary 
ondition is imposed on the bottom of the 
hannel and on the 
oreside.5.4.2 Case B1a. Core dam. 2D numeri
al model and results

Figure 5.34: Case B1a. Mesh used in the 
al
ulation.The mesh used for the 
al
ulation 
an be seen in Figure 5.34. It has 14 859 lineartriangular elements. The 
omparison between experimental and numeri
al pressureheads 
an be observed in Figure 5.35.A re�nement of the mesh is performed in the 
riti
al zones of the falling of the waterand near the bottom of the 
hannel. The reason for that 
hoi
e will be explained inSe
tion 5.5.2 when des
ribing 
ase C1.
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Figure 5.35: Case B1a. Bottom pressure distribution at stationary regime for Q =
5.93l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.



CASE B. Core dam 193Case B presents an additional di�
ulty in the �uid dynami
 problem. It is parti
ularly
hallenging to simulate 
orre
tly the falling jet of water (espe
ially if the in
oming watervelo
ity is very slow), without su�ering serious mass loss. The good agreement betweenexperimental and numeri
al pressure heads 
on�rms that this problem 
an be a

uratelymodeled with the method developed in this work. This is 
on�rmed in the 3D simulationof 
ase B1a in Se
tion 5.4.4.5.4.3 Cases B1b and B1
. Core dam. Comparison with theo-reti
al Ergun modelIt has been observed that the numeri
al pressure head gives lower values than the exper-imental ones. To verify if the problem 
an be attributed to the 
hoi
e of the resistan
elaw, a 
omparison with the theoreti
al results is performed a

ording to the work ofLopez Verdejo [125℄. In order to do that a slightly di�erent geometry is taken intoa

ount. The dam studied is made of the same material as the one presented in theprevious se
tions but the height of the dam is 0.5m and the length of the downstreamslope is 1.5m. The slope ratio is H3 : V 1.The mesh used is shown in Figure 5.36. It has 2 865 nodes and 5 728 linear triangularelements.

Figure 5.36: Case B1(b-
).Mesh used in the 
al
ulation.The theoreti
al solution for an in
oming dis
harge of 4.0l/s and 16.7l/s is plotted in reddotted line in Figures 5.37 and 5.38 respe
tively. The numeri
al approximation is very
lose to the Ergun theoreti
al one as expe
ted. Both these 
urves underestimate theexperimental values. This 
on�rms that Ergun model might not be the best 
hoi
e forthe resistan
e law of this kind of problem. In order to over
ome this issue the next stepwill be to modify the 
ode in order to let the user insert a 
ustom quadrati
 resistan
e
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ale models of ro
k�ll dams under seepage 
onditionslaw.As a 
onsequen
e of this observation CEDEX will build a permeameter for ro
k�ll inorder to study deeply this aspe
t and eventually derive an experimental resistan
e lawfor the materials used in the proje
t.
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Figure 5.37: Case B1b. Bottom pressure distribution at stationary regime for Q =
4.0l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al, experimental and theoreti
al
omparison.
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Figure 5.38: Case B1b. Bottom pressure distribution at stationary regime for Q =
16.7l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al, experimental and theoreti
al
omparison.5.4.4 Case B1a. Core dam. 3D numeri
al model and resultsCase B1a has been simulated in 3D as well. Figure 5.39 shows a sequen
e of thetransitory regime of the �lling of the 
ore dam. Three di�erent meshes are taken into
onsideration in order to understand whi
h is the minimum element length to 
orre
tlyreprodu
e the experiments, without relevant volume losses.
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Figure 5.39: Case B1a 3D. Evolution of the seepage line in a dam with porosity n = 0.4and D50 = 35mm. Q = 5.93l/s.
Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.02 0.03 0.04 0.05n. elem 1 460 000 517 000 281 000 183 000n. nodes 250 000 89 600 49 000 34 000Table 5.6: Case B1a. Meshes used for the analysis.
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ale models of ro
k�ll dams under seepage 
onditionsThe 
hara
teristi
s of the four meshes analyzed are summarized in Table 5.6. There�nement is performed only in the dam volume, whereas the dimension of the elementsis kept �xed in the rest of the domain as it 
an be observed in Figure 5.40.
(a) Mesh A (b) Mesh B
(
) Mesh C (d) Mesh DFigure 5.40: Case A1. Meshes used in the analysis of mesh sensitivity. The 
hara
ter-isti
s of the meshes 
an be found in Table 5.6.Figure 5.41 shows the pressure heads for the di�erent mesh sizes. The 
onvergen
e isa
hieved when the mesh is �ner than 0.03m. For larger meshes the volume 
onservationis seriously 
ompromised. This loss takes pla
e when the �ux falls down verti
ally.Therefore parti
ular 
are should be taken in the re�nement for the analysis of a 
oredam.5.4.5 Case B2. Core dam. Coupled model and resultsThe 
onstru
tion of the models for the 
oupled 
ase is analogous to what already ex-plained in Se
tion 5.3.7 for the A2 
ase. A s
hemati
 representation of the boundary
onditions 
an be found in Figure 5.42.Figure 5.43 shows the Lagrangian mesh used in the 
al
ulation. It has 8 000 lineartriangular elements.
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Figure 5.41: Case B1a (3D). Bottom pressure distribution at stationary regime for
Q = 5.93l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al, experimental and theoreti
al
omparison.
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Figure 5.43: Case B2. 2D mesh of the dam model. 8 000 linear triangular elements.5.4.6 Case B21. Core dam. Sensitivity analysis: internal fri
-tion angleThe numeri
al length of failure obtained for material with fri
tion angle of 40◦ and 41◦ex
eeds signi�
antly the experimental measurements. Additional tests were 
arried outin
reasing φ. The dam remains 
ompletely rigid if φ = 42◦. Therefore, the intermediateangles were 
onsidered as shown in Table 5.7 where the length of failure B obtained fordi�erent values of φ is summarized.
φ [0] B [m]

40 0.92

41 0.76

41.5 0.75

41.54 0.75

41.548 0.74

41.55 0.0

42 0.0Table 5.7: Case B21. Length of failure B for di�erent φ.The model is able to 
at
h the motion if φ < 41.550. Moreover in the range φ ∈
[41− 41.55] no relevant di�eren
es are found in the evaluation of B. This indi
ates thatthe model is not able to 
at
h 
orre
tly the �rst deformation of the slope. As expe
ted
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hanges are observed in the pressure head of the 
onsidered 
ases (�gure5.44).
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Figure 5.44: Case B21. Bottom pressure distribution at stationary regime for Q =
19.36l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison fordi�erent internal fri
tion angles φ.The a

ura
y improves for 
ases B22 and B23 as explained in the next se
tions. Thisfa
t 
oin
ides with what was observed experimentally: the length of failure indu
ed bythe lower step of dis
harge presents a high data s
atter whereas the failure a
hieves the
rest always at the same dis
harge level.5.4.7 Case B2 with φ = 41◦Sin
e the di�eren
e in the length of failure is not so relevant if φ ∈ [41 − 41.55], theinternal fri
tion angle adopted for 
ase B2 is φ = 41◦.Figures 5.45-5.47 show the 
omparison between experimental and numeri
al dam de-formation at ea
h step of dis
harge for φ = 41◦. The error in the evaluation of B isprogressively redu
ed when in
reasing the dis
harge as detailed in Table 5.8.An additional 
onsideration 
an be made looking at the pressure head distribution ofthe three 
ases shown in Figures 5.48-5.50. As for the A2 
ase, the amount of movedro
k�ll is lower in the simulation than in the experiments. In fa
t the higher value ofnumeri
al pressure at the toe of the dam indi
ates that granular material is presentover the sensor position (i.e. the resistan
e given by the grains in
reases the water leveland the pressure head as well). This seems to indi
ate that the material settles fasterthan in the experiment. It may be the 
onsequen
e of the vis
o-rigid 
onstitutive modeladopted.
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(a) Experimental length of failureBexp = 0.32m. (b) Numeri
al length of failure B= Bnum= 0.76m.Figure 5.45: Case B21. 2D 
omparison between experimental and numeri
al length offailure.

(a) Experimental length of failureBexp = 0.68m. (b) Numeri
al length of failure B= Bnum= 0.90m.Figure 5.46: Case B22. 2D 
omparison between experimental and numeri
al length offailure.

(a) Experimental length of failureBexp = 1.00m. (b) Numeri
al length of failure B= Bnum= 1.02m.Figure 5.47: Case B23. 2D 
omparison between experimental and numeri
al length offailure.



CASE B. Core dam 201
Q [l/s] Bexp Bnum ErrorCase B21 19.36 0.32 0.76 137%Case B22 30.45 0.68 0.90 32%Case B23 39.56 1.00 1.02 2%Table 5.8: Case B2. Comparison between experimental (Bexp) and numeri
al (Bnum)length of failure for φ = 41◦.
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Figure 5.48: Case B21. Bottom pressure distribution at stationary regime for Q =
19.36l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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Figure 5.49: Case B22. Bottom pressure distribution at stationary regime for Q =
30.45l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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Figure 5.50: Case B23. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.5.5 CASE C. Impervious fa
e damThe simulation of a dam with an impervious s
reen is the most 
hallenging 
ase from a�uid dynami
 point of view. The inlet of water is set in the upper left part, a

ordingto what already done in 
ase B. It implies that a falling jet should also be simulated.The impemeabilization of the experimental dam is obtained making use of a plasti
deformable material used to 
over the upstream slope. Spe
ial 
are is observed onthe perimeter, where the plasti
 is 
onne
ted with the side walls and the bottom ofthe 
hannel. In fa
t, there is a high possibility of leakage that 
ould invalidate theexperiment. Figure 5.51 shows a view of the experimental setting, unfortunately nophotos are available of the upstream slope with the plasti
 
overage.

Figure 5.51: Case C1. Experimental setting.
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e dam 2035.5.1 Case C. Impervious fa
e dam. Experimental setting andgeometryThe details of the geometry of the experimental setting 
an be seen in Figure 5.52, wherethe pressure sensors distribution is also shown. The red re
tangles indi
ate the threelines of sensors a
tivated. They are respe
tively at Y = 0.3m Y = 0.5m and Y = 0.7m.

SENSOR LINE 

Y = 0.7m

SENSOR LINE 

Y = 0.5m

SENSOR LINE 

Y = 0.3m

Figure 5.52: Case C1. Impervious fa
e dam. Geometry of the experimental setting andmap of the sensors distribution.
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ale models of ro
k�ll dams under seepage 
onditions5.5.2 Case C1. Impervious fa
e dam. Un
oupled model andresultsIn order to optimize the 
omputational domain, the upstream reservoir is not simulatedand the entran
e of water is dire
tly set in the upper left part, at the 
rest level, as shownin Figure 5.53. The upstream s
reen is therefore 
onsidered perfe
tly impermeable andit is simulated as a rigid wall with a slip 
ondition.
n = 1.0

UIN

SLIP BOUNDARY CONDITION

SCREEN

n = 0.4052

D50 = 35.04 mm
SLI

P B
.C

.

Figure 5.53: Impervious fa
e dam. Qualitative model geometry and boundary 
ondi-tions.The rest of the boundary 
onditions are similar to those of the previous models andthey are s
hemati
ally presented in Figure 5.53. A qualitative geometry is also shownin the image.It has been experimentally observed that no deformation of the downstream slope o

ursup to a dis
harge of 5.71l/s. Mesh A Mesh B Mesh C Mesh DDimension [m℄ 0.03 0.02 0.015 0.01n. elem 4 700 8 500 13 000 20 000n. nodes 2 900 4 200 6 800 10 000Table 5.9: Case C1. Meshes used in the analysis.Di�erent mesh are used in order to identify the minimum element size that yields a
orre
t 
onservation of the �uid volume. Their 
hara
teristi
s are summarized in Table5.9 and they are shown in Figure 5.54. The �rst mesh taken into 
onsideration is meshA shown in Figure 5.54 where the average dimension of the elements is set to 0.03m.
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e dam 205This 
ondition is not su�
ient for the �ow to be simulated 
orre
tly and the mass loss
ompromises the results. The �nal level of water obtained is in fa
t mu
h lower than inthe other 
ases, as shown in Figure 5.55.
(a) Mesh A (b) Mesh B
(
) Mesh C (d) Mesh DFigure 5.54: Case C1. Meshes used in the analysis of mesh sensitivity. Detailed 
hara
-teristi
s of the meshes 
an be found in Table 5.9.This problem is solved just re�ning the area where the jet falls and the bottom ofthe 
hannel as for mesh B, C and D. It is interesting to observe how the mesh sizerequirements are stri
ter than in 
ase B1a.The 
omparison between bottom pressure distribution of the analyzed 
ases shows thatfor a mesh �ner than 0.015m the results 
onverge to the same solution. In the samegraph the wrong behavior of the model with the 
oarsest mesh is 
learly re�e
ted interm of pressure head.
(a) Mesh A (b) Mesh DFigure 5.55: Case C1. Steady state 
on�guration in C1 
ase with mesh A an
 D respe
-tively. The blue line represents the free surfa
e.
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Figure 5.56: Case C. Bottom pressure distribution at stationary regime for Q = 5.17l/s.Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison for the di�er-ent meshes analyzed.5.5.3 Case C2. Impervious fa
e dam. Coupled model and re-sultsThe 
onstru
tion of the models for the 
oupled analysis is done as explained for 
ases
A2 and B2 and is shown in Figure 5.57. The mesh used in the �uid model is mesh Dused for the C1 
ase (Figure 5.54) whereas the mesh of the dam is shown in Figure 5.58.
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Figure 5.57: Case C2. Fluid and dam qualitative models and boundary 
onditions forthe 
oupled analysis.
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e dam 207Looking at Figure 5.59 it 
an be observed that the 
oupled model overestimates thelength of failure in 
ase C21. The results improve for higher dis
harges, as explainedin the following se
tions. The overestimation of the length of failure when Bexp << B0has already been dis
ussed in Se
tion 5.4.7.
Figure 5.58: Case C2. 2D mesh of the dam model. 9.400 linear triangular elements.The pressure head distribution (see Figure 5.62) a

ording to what has been explainedin the previous 
ases is underestimated by the model. On the other hand, the variationin the pressure head at the deformed toe of the dam 
an be, also in this 
ase, the
onsequen
e of a too fast settlement of the �uidi�ed material. This issue is expe
ted tobe 
orre
ted by in
luding of the possibility of dragging the super�
ial parti
les.

B0 =1.20m

B =0.58m

Figure 5.59: Case C21. 2D 
omparison between experimental and numeri
al length offailure.In 
ase C22 the numeri
al length of failure is Bnum = 0.61m, as shown in Figure 5.60,whi
h is 
lose to the experimental value of Bexp = 0.59m. Nevertheless, the numeri
alpressure heads are lower than the experimental ones (Figure 5.63).In the last example failure a
hieves the 
rest of the dam both in the numeri
al (Bnum =

1.40m) and in the experimental (Bexp = 1.44m) models (Figure 5.61) as expe
ted.Finally a good a

ordan
e 
an be found in the pressure head distribution, as shown inFigure 5.64.
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B0 =1.20m

B =0.61m

Figure 5.60: Case C22. 2D 
omparison between experimental and numeri
al length offailure.
B0 =1.20m

B =1.40m

Figure 5.61: Case C23. 2D 
omparison between experimental and numeri
al length offailure.
Q [l/s] Bexp Bnum ErrorCase C21 15.36 0.24 0.58 142%Case C22 25.05 0.59 0.61 3.2%Case C23 30.27 1.44 1.40 2.7%Table 5.10: Case C2. Comparison between experimental (Bexp) and numeri
al (Bnum)length of failure.
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Figure 5.62: Case C21. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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Figure 5.63: Case C22. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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Figure 5.64: Case C23. Bottom pressure distribution at stationary regime for Q =
39.56l/s. Porosity n = 0.4, D50 = 35mm. Numeri
al and experimental 
omparison.
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ale models of ro
k�ll dams under seepage 
onditions5.6 Con
lusions and future workIn this work a novel approa
h for the simulation of the onset of failure of downstreamslopes in ro
k�ll dams is presented. The dynami
 evolution of seepage and the freesurfa
e �ow both upstream and downstream the dam are simultaneously analyzed. Thisis done using the edge-based 
ode presented in Chapter 2. The stru
tural response isevaluated with a vis
o-rigid 
onstitutive model. As a failure 
riterion, Mohr Coulombhas been adopted. The ro
k�ll is treated as a highly vis
ous non-Newtonian �uid (thereason for this 
hoi
e is explained in Chapter 4). The vis
osity drasti
ally de
reaseswhen, due to the hydrodynami
 for
es, the yield stress is ex
eeded. When this happensfailure o

urs and the material starts to �ow. The �uid-stru
ture 
oupling is performedusing a fully staggered s
heme and a proje
tion tool between non-mat
hing meshes. Inwhat follows the 
on
lusions and the future work 
on
erning the validation presented inthis 
hapter are detailed
• The �uid module.

1. There is a good agreement between experimental and numeri
al pressureheads for the undeformed 
ases (A1, B1, C1) both in 2D and 3D. Never-theless the numeri
al results always slightly underestimate the experimentalvalues. Additional numeri
al experiments 
arried out in the framework ofXPRES and EDAMS proje
ts 
an 
on�rm that the pressure line is alwayslower than the experimental one, espe
ially when in
reasing the porosity val-ues. This aspe
t, together with the 
omparison with theoreti
al Ergun 
urvesshown in Se
tion 5.4.3, lead to the 
on
lusion that the Ergun 
oe�
ients un-derestimate the pressure drop in the seepage problem. In the near future, weplan to generalize the quadrati
 law of the Dar
y non linear term ( αu+βu2)and let to the user the 
hoi
e of the suitable α and β 
oe�
ients.
2. The overestimation of the pressure head at the toe of the deformed dam(
ases A2, B2, C2), might be the 
onsequen
e of a smaller deformation ofthe failed material. Whereas the length of failure is 
orre
tly reprodu
ed, thefailed material settles faster than in the real 
ase and a

umulates 
lose to theoriginal toe. In the experiments the path run by the failed ro
k�ll materialis mu
h larger (see the 
on
lusion about the 
oupled model for additional
omments on this issue).
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3. The 
ode has a good performan
e also in the 
hallenging 
ases of a fallingjet of water. The only requirement is a re�nement of the mesh in the fallingpart of the domain.
4. Another 
hallenging aspe
t of 
ases A1, B1, C1 is that the dis
harges arevery low. This might represent a problem at the beginning of the simulationwhen a very thin layer of water starts �lling the dam. This issue 
an be easily
orre
ted by re�ning the mesh 
lose to the bottom.
5. It might be interesting to test the model with di�erent materials and eventu-ally with several di�erent porosities in the same dam. In this 
ontext somepreliminary results (not shown in the work) have been obtained using the�uid 
ode. This aspe
t is interesting be
ause it will allow a more realisti
representation of the ro
k�ll slope. The 
onstru
tion pro
ess in fa
t is usuallydone layer by layer and a me
hani
al 
ompa
tion is performed with a rollerbefore passing to the next level. This 
ompa
tion 
auses a 
rumbling of thesuper�
ial material. A thin layer is obtained on the surfa
e. It is formedby parti
les with average diameter mu
h smaller than the rest of the ro
k�llleading to a di�erent porosity.
6. The s
ale e�e
t is another aspe
t that must be taken into a

ount in thefuture. CEDEX is now building a 
hannel that will allow setting up dams ofup to 2 meters high (the maximum height of prototype dams built up to nowwas 1m).

• The 
oupled module.
1. The 
ode represents the in
remental failure of the dam when in
reasing theoverspilling dis
harge. It is also able to represent 
orre
tly the 
ases for whi
hfailure a
hieves the 
rest of the dam. On the 
ontrary for lower dis
harges

B is overestimated. This aspe
t is also re�e
ted at experimental level. Infa
t when repeating the same experiment, the beginning of formation of thebrea
hing su�ers of a 
ertain data s
atter. Conversely, the dis
harge for whi
hthe failure rea
hes the 
rest is always the same.
2. As already observed in the 
on
lusions regarding the �uid module, the failedmaterial settles faster than in the real 
ase. This 
an be a 
onsequen
e of thevis
o-rigid 
onstitutive model 
hosen. In fa
t when the shear stress de
reasesunder the yield stress threshold, the vis
osity dramati
ally in
reases 
ausing
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ale models of ro
k�ll dams under seepage 
onditionsa sudden stop of the element. The insertion of an erosion tool might solvethe problem dragging away the deposed material.
3. In the experiments presented the high downstream slope (1.5H : 1V ) 
anlead to the 
on
lusion that the prin
ipal failure me
hanism is mass sliding.Nevertheless in the most general 
ase erosion, i.e. super�
ial dragging ofparti
les, plays a relevant role, a
ting in 
ombined or alternate way. Thepossibility of in
luding a pro
edure to evaluate erosion is essential in orderto fully des
ribe the phenomenon.
4. The 3D 
oupled model has given en
ouraging results. Nevertheless the pos-sibility of inserting a 
onditional remeshing should be taken into a

ount inorder to 
ontrol the deformation avoiding ex
essive vis
ous e�e
ts that leadto an ex
essive �uen
y of the downstream slope.
5. The 
oupled 
ode was 
on
eived to analyze the 
onsequen
e of transitoryin
oming dis
harges, allowing inserting �ood hydrograms as an input. This
apability is not exploited in the presented examples. Just a preliminaryexample is shown in Se
tion 5.3.8. Experiments are 
urrently 
arried out atUPM 
onsidering hydrograms and not in
remental steps of dis
harge. In anear future it may be possible a validation of this important aspe
t.
6. In the present 
hapter it was pointed out the low reliability of the B param-eter used to quantify the length of failure. In the future, the possibility of
omparison between the 3D digital model and 3D numeri
al results shouldbe investigated in more detail.



Chapter 6Con
lusionsIn this 
hapter the 
on
lusions of the work are presented and an overview of the futurelines of resear
h is made.6.1 Summary and a
hievementsThe aim of this work was to development a numeri
al tool for the simulation of theovertopping in ro
k�ll dams. For that purpose three are the main points developed inthe present work (re�e
ted in Chapters 2, 3 and 4 respe
tively):
1. The development of a �uid 
ode able to simulate the free surfa
e �ow over andthroughout the ro
k�ll. The 
lassi
al Navier-Stokes equations have been modi�edto automati
ally a

ount for a 
hange in porosity values. The non linear seepageis evaluated using a quadrati
 form of the resistan
e law. Ergun's 
oe�
ientshave been 
hosen. The possibility of in
luding variable in
oming dis
harges isan essential requirement for the obje
tives of the work. A �xed mesh approa
hhas been used and a level set te
hnique has been implemented for tra
king theevolution of the free surfa
e both outside and inside the ro
k�ll. Of the twoapproa
hes presented in Chapter 2, the edge-based one has been 
hosen for itsbetter performan
es in terms of 
omputer time.
2. The implementation of a 
ode to simulate the behaviour of a granular non-
ohesivematerial. A non- Newtonian modi�ed Bingham law is proposed. This approa
hgives the possibility of 
onsidering a pressure sensitive resistan
e 
riteria. This is
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lusionsobtained by inserting a Mohr Coulomb failure 
riteria in the Bingham relation.Sin
e the ro
k�ll is expe
ted to undergo severe deformation during the failurepro
ess, a Lagrangian approa
h is preferred to a �xed mesh one. PFEM was theadopted te
hnique.
3. The implementation of a strategy to 
ouple the models mentioned in Points 1and 2. This tool needs to in
lude an algorithm for the data mapping betweennon mat
hing meshes being the stru
tural and the �uid models in two di�erentkinemati
 frameworks (the Lagrangian and the Eulerian one).Finally in 
hapter 5 an extensive validation of the 
ode is done, simulating the experi-ments performed by UPM and CEDEX in the XPRES and E-DAMS proje
ts. Severaldi�erent experimental settings have been taken into a

ount. For ea
h of them a sensi-tivity analysis of the main parameters has been 
arried out in order to understand the
apabilities and limitations of the 
ode.The results are en
ouraging 
onsidering that this work represents a �rst step for thesolution of a 
omplex problem.6.2 Future lines of resear
hTo 
on
lude some ideas of possible appli
ations and future lines of resear
h derivingfrom this work are provided in this se
tion.The �uid-seepage 
ode has been used in this work for a very spe
i�
 appli
ation. Never-theless on
e the possibility of de�ning a 
ustom resistan
e law is inserted in the 
ode, itbe
omes a general tool to treat a wide range of problems. For instan
e all the problemsdominated by Dar
y in
ompressible �ows 
an be simulated setting to zero the non-linearterm. Several problems in harbor engineering need to evaluate the dissipation su�eredby in
oming waves when smashing over tetrapods, or general prote
tions of dikes andlevees, that behaves like ro
k�ll. Another appli
ation 
an be, for instan
e, turbine sim-ulation. In fa
t the pressure drop indu
ed by this type of ma
hines is often simulatedwith an equivalent porous medium in order to study the e�e
ts in the surrounding �uidenvironment.The �uid 
ode itself has been already applied to a number of free surfa
e �ow problemswithout the presen
e of any porous material. Some of them have been shown in Chapter2 (the �ip bu
ket example or the water 
olumn 
ollapse). This 
ode has been su

essfully
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h 215used for the 
al
ulation of the dis
harge on a spillway as detailed in [112℄, or for thesimulation of mould �lling pro
esses as shown in [108℄.The modi�ed Bingham model 
oupled with the �uid 
ode 
an also be used for thesimulation of the e�e
t of a landslide into a reservoir. In fa
t the 
ode naturally simulatesthe intera
tion between the solid falling into the water and the resulting wave.Con
erning the problem of overtopping in ro
k�ll dams, it should be remarked thatthe whole work was 
on
eived to easily 
hange the stru
tural model maintaining the
oupling strategy and the �uid-seepage module. As a 
omplement of the FEM-PFEM
ontinuous approa
h presented in this work, the possibility of a FEM-DEM model is
urrently being explored by other resear
hers of the same working team.





Appendix AKratos Multiphysi
s
A.1 KratosAll the algorithms presented in this thesis are developed insideKratos Multiphysi
 [3, 48℄.Kratos is a framework for building multi-dis
iplinary �nite element 
odes as well as a
ommon platform for natural intera
tion of these modules in di�erent ways. It is writtenin C ++ language.It provides several tools for easy implementation of �nite element 
odes and a 
ommonplatform for their natural intera
tion in di�erent ways.It is addressed to a variety of people ranging from developers (�nite element experts orappli
ation programmers) to engineers or designers who stop at the user level withoutgetting involved in the programming features.A.1.1 Obje
t-oriented approa
hThe main goal of an obje
t-oriented stru
ture is to split the whole problem into severalobje
ts and to de�ne their interfa
es. With regard to the simulation of multi-dis
iplinaryproblems using FEM, the obje
ts de�ned in Kratos are based on a general �nite elementmethodology. Figure A.1 illustrates the main 
lasses.Ve
tor, Matrix and Quadrature 
ome from basi
 
on
epts of numeri
al analysis. Node,Element, Condition, Mesh and Dof are taken dire
tly from �nite element 
on
epts.Model, Properties, ModelPart and SpatialContainer are 
on
eived for a better or-ganization of all ne
essary data. IO, LinearSolver, Pro
ess and Strategy are basilar
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Figure A.1: List of the prin
ipal obje
t in Kratos. Image taken from [47℄.di�erent tools of �nite element programs. Finally, Kernel and Appli
ation handle thelibrary management and de�ne Kratos interfa
e.A.1.2 Multi- layer designKratos uses a multi-layer approa
h in its design. This imply that ea
h obje
t only inter-fa
es with obje
ts in the same layer or in lower ones. Layering redu
es the dependen
yinside the program. It helps in the maintenan
e of the 
ode and also helps developersto understand the 
ode and 
lari�es their tasks.The layers stru
ture has been designed to be addressed to di�erent 
ategory of users. Itwas 
on
eived to lead the user to work with the minimum number of layers as possible.This was done in order to redu
e 
on�i
ts between users and espe
ially to redu
e asmu
h as possible the part of the 
ode tou
hed by ea
h developer.Following the design mentioned above, Kratos is organized as follow:Basi
 Tools Layer. It holds all the basi
 tools used in Kratos. This layer usingadvan
e C++ te
hniques is essential in order to maximize the performan
e. It isdesigned to be implemented by an expert programmer not ne
essarily FEM expert.
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Figure A.2: Graphi
al summary of the multi.layer design. Image taken from [47℄.This layer may also provides interfa
es with other libraries.Base Finite Element Layer. It holds the obje
ts that are ne
essary to implementa �nite element formulation. It also de�nes the stru
ture to be extended fornew formulations. This layer hides to the �nite element developers the di�
ultimplementations of nodal and data stru
ture and other 
ommon features .Finite Element Layer. The layer for �nite element developers. It only uses basi
and average features of C++ and uses the previous des
ribed layers in order tooptimize the performan
e without entering into optimization details.Data Stru
tures Layer. It 
ontains all obje
ts organizing the data stru
ture. Thislayer has no implementation restri
tions. Advan
ed language features are used tomaximize the �exibility of the data stru
ture.Base Algorithms Layer. Generi
 algorithms are implemented here to be availablefor users in di�erent �elds.User's Algorithms Layer. This layer is to be used by high level �nite element
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sprogrammers. It 
ontains all 
lasses implementing the di�erent algorithms inKratos.Appli
ations' Interfa
e Layer. It holds all the obje
ts that manage Kratos and theirrelation with other appli
ations. The 
omponents of this layer are implementedusing high level programming te
hniques in order to provide the required �exibility.Appli
ations Layer. It 
ontains the interfa
e of 
ertain appli
ations with Kratos.S
ripts Layer. Holds a set of IO s
ripts whi
h 
an be used to implement di�erentalgorithms from outside Kratos. Pa
kage users 
an use modules in this layer or
reate their own extension without having knowledge of C++ programming or ofthe internal stru
ture of Kratos. Via this layer they 
an a
tivate and dea
tivate
ertain fun
tionalities or implement a new global algorithm without entering intoKratos stru
ture details.A graphi
al representation of the stru
ture 
an be seen in �g. A.2A.1.3 Python interfa
eKratos uses the fa
ilities of Python language for IO data transmission [4℄. This �exibleinterpreter with its obje
t-oriented high level language 
an be used to implement andexe
ute new algorithms using Kratos. Python allows an high level of �exibility, withoutthe need of re
ompiling the 
ode when debugging or testing new algorithms.A.2 GiD problem types and interfa
esThe pre and post- pro
essing is done using the in-house 
ommer
ial sofware GiD [2℄.Di�erent problem types have been developed in TCL to 
ustomize GiD insert the dataand print the results of the di�erent appli
ations presented in this work. They are allavailable in the kratos website [3℄.
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