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Abstract

Rockfill dams are nowadays often preferred over concrete dams because of their economic
advantages, their flexible design and thank to the great advance achieved in geosciences
and geomechanics. Unfortunately their behavior in case of overtopping is still an open
issue. In fact very little is known on this phenomenon that in most cases leads to the
complete failure of the structure with catastrophic consequences in term of loss of lives
and economic damage.

The principal aim of the present work is the development of a computational method
to simulate the overtopping and the beginning of failure of the downstream shoulder of
a rockfill dam. The whole phenomenon is treated in a continuous framework.

The fluid free surface problem outside and inside the rockfill slope is treated using a
unique Eulerian fixed mesh formulation. A level set technique is employed to track the
evolution of the free surface. The traditional Navier-Stokes equations are modified in
order to automatically detect the presence of the porous media. The non-linear seepage
is evaluated using a quadratic form of the resistance law for which the Ergun’s coefficients
have been chosen.

The structural response of the solid skeleton is evaluated using a continuum viscous
model. A non-Newtonian modified Bingham law is proposed for the simulation of the
behaviour of a granular non-cohesive material. This approach has the possibility of
considering a pressure sensitive resistance criterion. This is obtained inserting a Mohr-
Coulomb failure criterion in the Bingham relation. Due to the large deformation of the
mesh during the failure process, a Lagrangian framework is preferred to a fixed mesh
one: the Particle Finite Element Method (PFEM) is therefore used. Its specific features
make it appropriate to treat the rockfill material and its large deformations and shape

changes.



Finally a tool for mapping variables between non-matching meshes is developed to allow

passing information between the fluid fixed and the dam moving meshes.

All the numerical results are compared with experiments on prototype rockfill dams.



Resumen

Hoy en dia las presas de escollera resultan a menudo una eleccion preferible respeto a
las tradicionales presas de hormigén por su menor impacto econémico y, sobretodo, por
su mayor flexibilidad de diseno gracias a los grandes avances alcanzados en geociencias
y en geomecanica.

Sin embargo, desafortunadamente su comportamiento frente a un sobrevertido sigue
siendo un aspecto desconocido y muy dificil de analizar. Cuando el nivel de agua supera
la coronacion, en la mayoria de los casos se produce la rotura completa de la presa con
consecuencias catastroficas tanto en términos de perdida de vidas humanas como en
términos econémicos.

El principal objetivo de este trabajo es el desarrollo de un método computacional que
pueda simular el sobrevertido y el principio de la rotura del espaldon aguas abajo de
una presa de escollera. Todo el fenomeno se trata con modelos continuos.

El problema de flujo en superficie libre tanto fuera como dentro de la escollera se trata
con una unica formulacién usando un método Euleriano de malla fija y una técnica de
level set para trazar la evolucion de la superficie libre. Se han modificado las clésicas
ecuaciones de Navier-Stokes de manera que se detecte automaticamente la presencia
de un medio poroso. La filtracion no lineal se evaliia mediante una ley de resistencia
cuadratica en la cual se han empleado los coeficientes de Ergun.

La respuesta estructural se evaltia usando un modelo continuo viscoso. Se propone
una version modificada de la ley de Bingham para fluidos no Newtonianos que permite
simular el comportamiento granular no cohesivo de la escollera. La diferencia de este
enfoque consiste en la posibilidad de considerar un criterio de resistencia que sea funcion
de la presion. Esto se obtiene insertando un criterio de fallo de Mohr Coulomb en la

relacion de Bingham. Debido a las grandes deformaciones a las que se ve sometida



la malla durante el proceso de rotura se ha preferido usar un método Lagrangiano
respecto a uno de malla fija: el Métodos de Elementos Finitos y Particulas (PFEM). Sus
caracteristicas lo hacen apropiado para simular la escollera y sus grandes deformaciones
y cambios de forma.

Finalmente se ha desarrollado una herramienta para interpolar datos entre mallas no
coincidentes para permitir la transferencia de informaciones entre el modelo fluido de
malla fija y el modelo de la presa con malla en movimiento.

Todos los resultados numéricos se han comparado con experimentos hechos sobre presas

prototipo.
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Chapter

Introduction

The rehabilitation of existing dams and their safety analysis are nowadays open fields of
research. In fact in many countries the design criteria of these structures have recently
been reviewed with the intention of increasing safety level facing an exceptional flooding.
This is justified considering that many dams and dikes exhibit now a higher potential
to experience overtopping during exceptional flood events. Climate change induced
by global warming is, for instance, one of the main causes that might lead to more
devastating flooding than ever [128].

While in a concrete dam, an overflow does not easily affect the integrity of the structure,
in an embankment dam in most cases it compromises the dam body [64]. If a dam or
dike fails, loss of life and economic damage are direct consequences of such event. Early
warning is therefore crucial for saving lives in flood-prone areas. That is the reason
why an increasing interest is rising on the study of rockfill and earthfill dams, termed
embankment dams, during extreme phenomena.

The analysis of the possible consequences of an accidental overspill is still impossible
or very imprecise and the necessary economical measures for solving the problem are
then inefficient. An appropriate computational method will help to reduce the economic
impact of the investments in dam safety and in emergency plans for embankment dams.
The possibility of studying the behavior of water throughout and over the dam in case
of sudden change of upstream conditions and of his effect on the rockfill is currently
limited by the absence of a suitable numerical tool. It should simulate the sudden
dynamic change in the seepage and flow condition and predict the subsequent onset and

evolution of breaching in the rockfill slope. The current work aims to give a contribution
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to this field, creating and validating a new computational method of general applicability
for simulating, with a unique formulation, the flow throughout and over the dam while

failure occurs together with the dam structural response.

1.1 Embankment dams

In recent years technology on embankments dams has developed sensibly due to the
advances in soil mechanics knowledge and in all related sciences. This, combined with
the evident economic advantage of construction, make often this kind of structure a more
appealing choice than the traditional concrete dams [64]. The design of embankment
dams is in fact very flexible and makes use of different shapes and materials, that
can often be found in situ. The tallest dams in the world are embankment dams (i.e.
Rogun dam (335m) or Nurek dam (300m)) and their number exceed that of the classical
concrete dam structure [64].

Nevertheless the vulnerability of embankment dams to overtopping still remains their
weakest point. In fact, according to the ICOLD bulletin [64], this is their principal
or secondary cause of failure in 31% and 18% of cases respectively. In concrete dams,
on the contrary, the effects of an overflow usually does not compromise the structure
integrity and the causes of failure should be found in other reasons, often connected
with problems in the foundations.

Several examples of dam failures as a consequence of overtopping can be found in the
literature. Usually the causes of the overflow are an extreme meteorological event, often
accompanied by malfunctioning of the spillway capacities.

By far the most catastrophic dam disaster ever happened was the failure of the Banqgiao
dam (see Figure 1.1). It was a 118 m high embankment dam built in the early 1950. It
was designed to support the once-in-1000-years-flood. Nevertheless in 1975, due to the
Typhon Nina the once-in-2000-years-flood was reached and Banqiao dam failed (followed
by the failure of other 62 dams of the same basin). 62000 people died because of the
flood and around 145000 because of famine and epidemics. This event is, for dam
engineering, what Chernobyl and Bhopal have represented for the nuclear and chemical
industry respectively [128].

Among others, the failure of the Tous dam in Valencia should be mentioned. In October
1982, a tsunami of 20 million of m? of water flowed through the Comunidad Valenciana

(Figure 1.2). In that case the cause of the exceptional flooding was a particular mete-
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Figure 1.1: Image of Banqgiao dam. Image taken from [1].

Figure 1.2: Image of Tous dam after the overtopping of October 19th, 1982.
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orological condition called “gota fria” which consists of a cold high-altitude depression
surrounded by warm air with high moisture content that leads to extremely heavy rain
fall in the hinterland of the Mediterranean coast of Spain.

These and many other similar historical events demonstrate that when the water exceeds
the crest of the dam, the consequences can be catastrophic. An exceptional flooding
compromises seriously the structure, leading, in almost all cases, to its failure. Nev-
ertheless the breaching formation is a relatively slow process. It is never an explosive
sudden failure. Chanson in [30] for example, reported that in the case of the Glashiitte
dam (Figure 1.3), the complete failure of the structure occurs 4 hours later the begin-
ning of the overtopping. In the case of the Teton dam the reservoir was drained after

approximately 12 hours.

LS

Figure 1.3: Glashiitte embankment dam (Germany). Image taken from [30].

When the water overpasses the crest of the dam a seepage process begins in the down-
stream slope that leads to its progressive saturation. The first breach usually appears
at the toe of the dam, where the resistance is lower. According to Toledo [122, 123, two

are the main mechanisms that compromise the rockfill:

e Mass sliding or loss of stability of a part of the downstream region due to the land
slide. This is the predominant failure mechanism when the downstream slope is
very steep. The saturation of the rockfill leads to a reduction of effective stresses
that, together with seepage, induce the formation of a failure circle that abruptly
crumbles. This phenomenon usually affects the whole width of the dam as can be
observed in Figure 1.4(a).

e Superficial dragging of rockfill particles. When the downstream slope is flat (1V" :
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3H for instance) this is the predominant failure mechanism. The water coming out
from the toe of the dam drags away the superficial rocks. It leads to the formation

of channels in the downstream slope (see for instance Figure 1.4(b)).

(a) Mass sliding failure. (b) Superficial dragging failure.

Figure 1.4: The images show two experiments carried out at the UPM laboratories. On
the left an example of mass sliding failure (initial slope 1V : 1.5H) whereas on the right
the failure is mainly due to superficial dragging of particles (initial slope 1V : 3H).

These two mechanisms usually act in a combined way depending on the failure process
evolution [122].

The clay core represents an additional barrier before the complete failure of the structure
when the protection given by the rockfill is no longer present (see Figure 1.5 for a typical
cross section of a rockfill dam). Its failure can be the consequence of surface erosion or

of mechanical fracture of the same under the pushing of the water retained upstream.

CLAY CORE

Figure 1.5: Schematic cross section of a rockfill dam.

1.2 The XPRES and E-DAMS projects

In the last years the Spanish Ministry of Science and Innovation has been funding
the XPRES [127] and E-DAMS [53] projects, a joint work between the Polytechnic
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University of Madrid (UPM), the Centre for Hydrographical Studies of CEDEX and the
International Centre for Numerical Methods in Engineering (CIMNE).

The principal aim is the study of beginning and evolution of the breach caused by an
overtopping on rockfill prototype dams both from a physical and numerical point of
view.

UPM and CEDEX team have a wide experience on this topic and their effort has
been addressed to reach a better characterization of the failure in function of a series
of parameters. These are for examples, the downstream slope, the impervious system
adopted, the material used for the experiments and so on.

Their extensive experimental campaign consists of more than 100 experiments. Further
information can be found in Chapter 5 of the present work and for more details on the
topic, the consultation of |21, 76| is recommended.

All the experiments have been performed in three flumes of different dimensions shown

in Figure 1.6.

(a) Small channel. (b) Medium channel. (c) Large channel. 2.48m
0.4m  width, 0.6m 1.0m width, 1.1m width, 1.4m height, 13.7m
height, 12m long. height, 16m long. long.

Figure 1.6: UPM and CEDEX experimental channels used for XPRES and E-DAMS
projects.

The experimental data in terms of bottom pressure distribution and evolution of the
seepage line, have been largely used in this work to validate the numerical approach
of the .. code during its development. Some examples of validation are presented in
Chapter 5.
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1.3 Objectives

This work faces the problem of the numerical simulation of the overtopping and begin-
ning of failure in a prototype rockfill dam.

This leads to the development of two different numerical tools:

1. A fluid code to simulate a free surface flow in a variable porosity medium in order

to accurately predict the hydrodynamic forces acting on the rockfill slope;

2. A coupled fluid-structure analysis code to simulate the beginning of failure in case

of overtopping.

The idea is to solve both problems (seepage and unset and evolution of failure), using
a continuous approach and to integrate an Eulerian fluid model with a Lagrangian
structural one. This is done in order to minimize the computational effort for the
fluid calculation and to have a Lagrangian tool which can naturally following the large
deformation of the rockfill slope.

Three are the main developments to be done in this work in order to achieve its objec-

tives:

e A free surface fluid model able to take into account the presence of a porous media.

It should work with any variable incoming discharge condition.

e A structural model to simulate the behaviour of a rockfill slope in presence (or

not) of variable hydrodynamic forces.

e A coupling tool to integrate the previously mentioned models and to simulate
the whole transitory phenomenon of failure of a rockfill slope due to exceptional

flooding.

The assumption of a Newtonian incompressible viscous fluid is taken for the flow of
water. The solution system is a modified form of the traditional Navier-Stokes equations.
The effect of porosity is implicitly taken into account using the Darcy velocity as a
variable of the problem and adding the corresponding extra term in the momentum
equations. This term takes into account the seepage forces.

For the study of the fluid behavior in a variable porosity medium an Eulerian approach
with a fixed mesh is chosen. A level set technique is used for the tracking of the evolution

of the free surface.
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A Non-Newtonian constitutive law is used to simulate the behaviour of a rockfill slope.
A Bingham plastic with a variable yield threshold is proposed to accurately identify
the beginning of failure of the slope material, according to a Mohr Coulomb failure
criteria. The Particle Finite Element Method (PFEM) is the technique used for the
structural analysis. Its Lagrangian approach is a key feature to accurately follow the
large distortion of the slope in case of failure.

The presence of water should be taken into account in terms of variable hydrodynamic
forces. The problem is always fully drained since the pores can be considered intercon-
nected according to experimental results.

The coupling of the two models is done in an explicit staggered way by projecting
information between the Eulerian and the Lagrangian models. For that purpose a tool
to project information between non-matching meshes is developed.

The objectives of this work can be considered fulfilled when the experiments on the
prototype rockfill dams carried on by UPM and CEDEX can be reproduced.

All the algorithms presented in this work have been implemented in Kratos [47, 48|, a

framework for developing finite element codes for multiphysics problems.

1.4 Layout of the document

The layout of the document is the following:

Chapter 2. The physical problem of seepage in rockfill is described and the non linear
form of the resistance law governing the phenomena is chosen. A brief overview
of the state of the art is presented. The governing equations are derived and the
numerical formulation is presented in detail. Two different Eulerian approaches
are described, a traditional element-based approach and an edge-based one. In

both cases the level set technique is used to track the evolution of the free surface.

Chapter 3. The behaviour of the rockfill material is treated as a non-Newtonian
granular fluid. After an overview of traditional non-Newtonian materials, a regu-
larized Bingham model is presented. This classical approach is modified to take
into account the variability of the yield stress in a granular non cohesive mate-
rial. A Lagrangian kinematical description is adopted and PFEM is used for the

structural analysis.

Chapter 4. The governing equations of the monolithic coupled problem are presented
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and the balance equation of the fluid and structure models are derived The cou-
pling is performed in a fully staggered way using a tool to manage the transfer
of informations between the two models. This is done using an algorithm that
allows the data mapping between non matching meshes, described at the end of
the chapter.

Chapter 5. The code is validated by reproducing experiments carried out by UPM
and CEDEX using either 2D and 3D models. Different prototype dam models are
considered in the examples.

Chapter 6. The summary of the achievements is described and the main points of the

future research work are outlined.

Appendix A. The main features of Kratos Multiphysics are briefly presented.
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Chapter

The fluid problem

In this chapter the numerical algorithm developed for the simulation of the free surface
flow in presence of a variable porosity medium is described.

First, a brief overview of the traditional studies of flux in porous media is performed in
order to chose a suitable resistance law for the problem of interest. The balance equations
are obtained and two solution strategies are adopted for their numerical treatment. An
element-based formulation and an edge-based approach are studied and implemented.
The choice of a fixed mesh method leads to the need of tracking the evolution of the
free surface. The level set technique adopted for this purpose is described in the last
part of the chapter. The chapter finishes with a series of examples that aim to check

the correct behavior of the presented algorithms.

2.1 Introduction

The classical approaches of fluid flow in porous media are not applicable for the analysis
of the water motion within the rockfill of a dam. Traditionally water is considered in
slow motion or as a stationary load [130]. On the contrary in the case of an overtopping,
the possibility to follow the rapid transition of the water level in the downstream slope
is a key point for the identification of the beginning of the failure mechanism.

On the other hand, the typical problem of evaluating the saturation level of the pores
loses its importance in the case studied, due to the large dimension of the granular
material. Under these circumstances, in fact, the pores can be considered always inter-

connected and the problem fully drained [122].
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According to traditional studies of flow in porous media [117, 122|, at a micro level
the flux between the rocks is assimilated to flow in pipes. This analogy is used for the
derivation of the resistance law used for the calculation of the hydraulic gradient® due
to seepage. The well known Darcy law is not applicable to the analyzed problem. In
the following sections it is explained how to obtain a suitable resistance law to be used
in the balance equations.

It should be pointed out that a key point for the complete simulation of the hydro-
dynamic effect of an overtopping is the capability of the code for simulating at once,
not only the seepage, but also the fluid flow upstream, downstream and over the dam.
For that purpose the balance equations are derived considering the flow inside a generic
porous material. The key point is represented by the fact that they automatically reduce
to the classical Navier-Stokes equations when porosity is equal to one; that is when no
porous medium is present. The resistance law is inserted in the balance equation as well.
Its contribution goes to zero out of the granular material. A similar approach has been
used by Nithiarasu and coworkers [88-90| to study the natural and forced convective
flux in a cavity filled by a variable porosity medium.

The easy definition of a control domain and of spatial variables (like for instance the
porosity, defining the presence of a granular material), induces to choose an Eulerian
fixed mesh approach. Moreover this kinematical framework is also more efficient allowing
an easier parallelization of the code.

This choice leads to the need of choosing a level set technique for tracking the evolution
of the free surface.

Two different solution strategies are presented in the chapter, an element based and an
edge based approach. After a comparative analysis of both methodologies, the latter is

chosen for being implemented in 3D and being coupled with the structural code.

2.1.1 Flow in rockfill material

The flux in porous media is traditionally studied using the empirical relation that Darcy
obtained in 1856. Studying the flow of water through a sand-filled column he discovered

that the pressure drop (i) and the velocity of water inside a porous material (u) are

!The hydraulic gradient is the measure of the variation of the hydraulic head for unit length [58].
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linearly related. This observation leads to the formulation of the well known Darcy law,

=~
I

=

u. (2.1)

where p is the water dynamic viscosity and k is the permeability of the porous media
[12].

Relation 2.1 was derived studying the unidirectional flux in sand at low Reynolds num-
bers. On the contrary,in the case of flux through rockfill material, the local fluid ve-
locities were observed not to be linearly related to the pressure drop. In fact it was
experimentally proved that over certain average dimension of the particles, equation 2.1
is not anymore valid.

Many authors have deeply studied this aspect with essentially two objectives:
- Discover the range of validity of Darcy’s law (equation 2.1).

- Define an alternative resistance law? in case equation 2.1 is not anymore valid.

Remark 1. Velocity u in equation 2.1 is by definition the Darcy velocity, i.e. the fluid
velocity averaged over the total control volume € (often called macroscopic velocity or
unit discharge being the discharge per unit volume), whereas the fluid velocity w is
averaged over the empty part of {2 (called Qg). Their relation is stated by the Dupuit-
Forchheimer equation [87]:

u=nu (2.2)

where n is the porosity that, by definition 2 is

ni=—. (2.3)

See Figure 2.1 for a graphical explanation.

?Equation 2.1 and all the alternative non linear formulations that are presented in the next sections
are commonly called resistance laws because they measure the resistance made by the porous matrix
to the fluid flow.

3 Equation 2.3 is by definition the volumetric porosity n” whereas in Figure 2.1 a cross section of
the control volume is considered and a sectional porosity n® := Ag/A should be defined like the ratio
between the area of pores and the total cross section area. Consequently, a lineal porosity can be also
defined as the ratio between the length of pores over the total length (n! := Iz /l). Fortunately Bears
in [12] demonstrated that in a porous medium this distinction is unnecessary being

n’ =n®=nl.
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Water |

Fluid velocity U Darcy velocity

Figure 2.1: Graphical description of fluid velocity u (averaged over the empty volume
Q) and Darcy velocity u (averaged over the total control volume ().

Remark 2. Permeability k£ introduced in 2.1, also called intrinsic permeability, is

measured in squared meters (m?) and is defined as

372
nDp

ki=——"—
5(1 —n)20

(2.4)
where D, is an equivalent diameter of the porous material*, whereas 6 is a shape coef-
ficient of the particles. It is important to stress that the Darcy’s law can also be found
in the form .
1= —u.

K
where K is the permeability coefficient, often called simply permeability as well, which
represents the hydraulic conductivity and has the dimension of a velocity (m/s). In this
case i is not any more the pressure drop i (measured in Pa/m), but it represents the

head loss per unit length, that is the hydraulic gradient and it is dimensionless.

2.1.2 Analogy between flow in porous media and pipes flow

It is generally accepted to consider the flow in the pores of rock particles essentially
similar to flow in a pipe network but with a more complicated configuration [117, 122].
All the empirical formulae to evaluate the pressure drop due to friction in pipes have been

used and adapted to get similar empirical relationships in the case of porous material

4Dp is the diameter of the sieve at which the p% of the material passed.
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50, 79, 125].

Some brief recall of flow in pipes

The Darcy-Weisbach formula is traditionally used for the evaluation of the hydraulic
gradient ¢ in pipes (only in a second time it was adapted to be used in open channel

flows). It states
C Ja U2‘

— . 2.5
! dry2g’ (2.5)

where f; if the Darcy-Weisbach friction coefficient, rg is the hydraulic radius® (in pipes
of diameter D is ry = D/4), g is the gravity acceleration and u is the velocity.

In general f; is function of the Reynolds number®(Re) and of the roughness of the pipe
(e). It is demonstrated [58| that:

- In laminar regime f; is a function of Re only,

64
fo= 5.
- In turbulent regime f; is constant
fa = const.
- In the transition regime
fa= fa(Re,e).

Above explanations imply that the hydraulic gradient, using equation 2.5, can be cal-

culated as follow

- For laminar regime

64
i=—1 (2.6)
29D;p
- For turbulent regime
. const
= . 2.7
i= (2.7)

5The hydraulic radius is defined as the ratio between the fluid area and the wet perimeter.
6The Reynolds number is the dimensionless coefficient that, being the ratio between inertia and
viscous forces, quantifies the relative importance of each one for a given flow [58]. It is defined as %l

where p is the fluid density and [ is a characteristic length (in pipes it coincide with the diameter).
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Therefore in case of laminar regime, the relation between the hydraulic gradient and
velocity is linear (like it is in Darcy’s law), whereas in turbulent regime it becomes
quadratic. Hence, as a preliminary conclusion, the possibility to classify whether the
regime of the flux is turbulent or laminar seems to be very important to define the range
of validity of Darcy’s law. Even though, as explained in the next sections, this is not

the only aspect to be taken into account.

Definition of the range of validity of Darcy’s law

Many different approaches are present in literature on the application of the Darcy-
Weisbach relation to flow in porous media to define the range of application of Darcy’s
law. The deep analysis of each of them is not relevant for the aim of this work and
the consultation of [79, 122] is recommended for a more comprehensive understanding
of the topic. Nevertheless some important aspects that led to the definition of different
resistance law are reported here to fully introduce the problem.

The main issue is related to the definition of the Reynolds number Re in a porous

material. In fact the following aspects have to be taken into account:

- Whether to take the velocity of equation 2.5 equal to the Darcy velocity (u) or to
the fluid velocity (@). This choice leads to a different definition of the Reynolds
number

Re(u) = — = — = n Re(u); (2.8)

v 14

(equation 2.2 has been used).

- How to define the characteristic length [ in equation 2.8. Some authors prefer to
chose an equivalent diameter D, (often the choice is Dy or Dsy). In fact it is
easier to measure the granular dimension than the dimension of the pores. Others

define [ &~ ry arriving to express [ as a function of the permeability k.

- Finally it is important to remember that equation 2.5 is one of the most popular,
but not the only possible choice for the calculation of the hydraulic gradient [50].

Different choices lead to different values of Re. Nevertheless all authors agree that the
beginning of appearance of turbulence is for values of Re in the range 60 — 150 (not
2000 like in pipes).
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Many authors think that the range of validity of Darcy’s law coincides with the laminar
regime, considering that turbulence appears at lower Re for higher D,. Nevertheless

according to [122], the experimental results put in evidence that:

- The transition between the linear and the non linear relation between 7 and u is

gradual (differently from the transition from laminar to turbulent regime in pipes);

- The starting point of non-linear behavior appears for Re € [1 — 10] whereas tur-

bulent phenomena appear for Re € [60 — 150].

Following [122], Scheideger justifies the first aspect with the co-presence of a laminar
regime in the thinner “porous channels* and a turbulent one in the thicker ones. On
the other hand, non-linearity is often attributed to the presence of inertial forces that
are usually small but can be important for low Re in comparison with the viscous one.
Considering that inertia forces are proportional to the square of velocity, a quadratic
relation between velocity and pressure drop is justified.

In Figure 2.2 some classification of the range of validity of Darcy law are shown. For

more details on how they are obtained the consultation of [79, 122, 125| is recommended.
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(a) E. Prinz diagram (taken from [77]). (b) J. Bear diagram (taken from [12]).

Figure 2.2: Range of validity of Darcy law in its linear form.

2.1.3 Resistance laws

Forchheimer was one of the first authors in proposing in 1901 a quadratic resistance law
like
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i =oau+ pu’; (2.9)

where constants « and [ depend only on the characteristics of rockfill material. Alter-

natively Prony in 1804 and Jeager in 1956 proposed an exponential law like
i=n~u’; (2.10)

where v and 7 depend on the flow condition, the characteristics of the porous medium
and the fluid.

Both the quadratic and the power relationships are based on experimental results al-
though some theoretical basis have been provided for their justification [79]. Nowadays
both equations 2.9 and 2.10 are accepted and widely used. In recent years almost all
efforts have been addressed in determining the o and /3 or v and 7 constants.

In fact in some of the formulae the coefficients depend on physical parameters of the
rockfill material only, such as the size of the particles, porosity and the particle shape
(following [122] this is the case of Ergun (1952), Wilkins(1956), McCorquodale (1978),
Stephenson(1979), Martins (1990) and Gent (1991)). In other cases, the coefficients de-
pend on the experimental value of the hydraulic conductivity. Since building prototypes
for estimating these parameters can be very expensive, it is often easier and cheaper to
choose one of the first group of formulae.

A comprehensive overview of the different models can be found in [79, 122, 125].

Selection of the seepage model: Ergun’s correlation

In the previous paragraphs an overview of the state of the art of seepage models has
been presented. In order to choose the suitable non-linear resistance law to be used in

this work, some additional remarks should be done.

- The objective of the model is to develop a tool to simulate the free surface flow
through the rockfill and outside of the same, so an essential requirement for the

resistance law is that it should automatically go to zero when n = 1.

- The quadratic form of the resistance laws is easier to implement than the expo-

nential one;

Collecting the previous considerations, a quadratic form of the non-linear resistance

law is adopted and the Ergun’s definition of the constant coefficients is chosen [57].
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Therefore, the pressure drop is
i= Fju+ Eyu® (2.11)

Following Ergun theory and calling D, the average diameter of the granular material
(D, = Dsp), Ey and Es coefficients are defined like

(1-n)? n
E, =150 —— - —; 2.12
1 n3 DIQ)’ ( )
and (1 )
E,=1.75- C = (2.13)
n3 D,

Defining the permeability shape coefficient # = 30 of equation 2.4, the permeability k

can be calculated as a function of n and D,

n3D?
k=—8'3"2 2.14
150(1 — n)? (2.14)
The final form of the resistance law chosen in this work is then:
7 1.7 p 9
1=-u+ — u“. 2.15
k V150 Vkn3/? (2.15)

It is interesting to observe that the linear part of equation 2.15 is equivalent to the

Darcy’s law

2.2 Continuous form

Once the resistance law has been chosen, the balance of linear momentum and the
continuity equation for an incompressible fluid can be derived. The principal objective
of the present approach is to define a unique set of balance equations governing both the
free surface flow and the seepage problem. In other words the governing equations have
to be able to reproduce the free surface flow in a variable porosity medium (considering
the open air as a porous medium with porosity n = 1).

An approach similar to the one presented in the following sections, can be found in
chapter 5 of the 5 edition of [132]. This methodology is largely used for the treatment
of heat transfer in a fluid saturated porous media [8, 88, 89, 124].
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2.2.1 Variables of the problem

The unknowns of the problem are:

- u, fluid Darcy velocity (see equation 2.2 for its definition).

- p, fluid pressure;

Other parameters are:

- p is the fluid density. In the present work water is treated as an incompressible

fluid with constant density over the whole fluid domain, regardless of the presence

of a porous medium.
w1 is the fluid dynamic viscosity.

n is the porosity (see equation 2.3 for its definition). In the most general case it

is a function of space and time:
n=n(x,t); (2.16)

In the present work, according to experimental analysis, the variation of porosity
in time, within the fluid solver, can be neglected, considering only its variation
in space. Nevertheless it should be remarked that porosity does change in time
according to the structural deformation of the porous material, which will be
explained in chapter 3 and has been considered in the coupled problem described

in chapter 5.

Therefore, as a fluid variable, n is only function of the spatial coordinates

n = n(x); (2.17)

The fluid is considered here as a continuum and the presence of a porous matrix is

implicitly taken into account via the porosity n as will be explained in sec 2.2.3.

2.2.2 Constitutive law. Water as a Newtonian incompressible

fluid

The water is treated as a Newtonian incompressible fluid. In general a fluid at rest does

not present shear stresses and the Cauchy stress tensor takes the form o = —pl. The



Continuous form 21

tangential stresses are non zero in a fluid in motion and the stress tensor becomes
o:=-pl+T1 (2.18)

where 7 is the deviatoric part. The latter is linearly related to the strain rate tensor
through viscosity which is assumed to be constant.

Therefore the stress tensor for a Newtonian fluid is
o = —pl+ 2pV*u; (2.19)

where g is the dynamic viscosity and

L ( Oty am). (2.20)

(Vi) = B (a—xl—Fa—xk

is the symmetric part of the velocity gradient [51, 132]. It should be observed that
equation 2.19 does not take into account the possible presence of a porous medium. A
more general form of the same will be derived in the next sections in order to have a

relation that holds both for the case of free fluid and of flow in rockfill material.

2.2.3 Modified form of the Navier-Stokes equations

In order to take into account the flow in a variable porosity medium, some modifications
should be introduced in the traditional form of the Navier-Stokes equations. The mod-
ified system of solution equations is derived here imposing continuity and conservation
of linear momentum within a fixed control volume.

In the following sections a balance on a finite volume is first carried out and brought
later to the infinitesimal form.

Remark 3. [t is important to stress that it is always used a continuous approach to

treat the fluid in the whole domain regardless of it is inside or not the porous media.

Continuity equation

Let us consider a 2D square finite control volume dxdy as the one plotted in Figure
2.3, and let’s define dzdy = ndxdy as the empty part of it, that is the portion of this
volume that can be occupied by the fluid (see the definition of porosity at equation 2.3).
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Figure 2.3: Balance of conservation of mass in a discrete volume dx dy. dzdy = ndx dy
is the empty volume where the fluid can circulate.

Imposing the continuity of the fluid field velocity @ = [@, 7] over the fluid control domain

dzdy, yields

_ d
o(w+ Lz dy - pudg + p (v+ Layg ) dz — podz + Lazdg = o, (2.21)
Ox dy dt

Considering that the fluid is incompressible, equation 2.21 can be rewritten as

P
P fwdy + S dzdy =
Ox dy 999
Oy + Ldady = 0 2
—Aax —ax e
o oy J
where the definition of the Darcy velocity u = [u,v] (equation 2.2) has been used.
Therefore the continuity equation is
ou Ov
— + —=0; 2.23
9 "oy =V (2.23)

that can be rewritten as

V-u=0; (2.24)
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Momentum equation

The balance of linear momentum in the ¢ — th direction is

dﬂi &TU

dTdy — =2 dzdy — p L dTdy = 0: 2.25
o dzdy axj:vy pfi*dzdy = 0; (2.25)

P

where £t are the volumetric forces and the sum over j spatial index is supposed.

Observing Figure 2.4 and remembering that the constitutive equation 2.19 is

Op Tay | | PO
Toy Oy 0 p

ot/ 1/2(@/0y +00/00) |,
1/2 (0 dy + 00/ 0x) v/ 0y ‘

(093 4 dos df) g
Oxd@ &r
dy < l
0T,
ngydy (Tmy + &Ey df) dy

- T T

oydT

dx

Figure 2.4: Balance of conservation of linear momentum in a discrete volume dx dy.
dzdy = ndx dy is the empty volume where the fluid can circulate.

the balance equation in x-direction becomes
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0 iy + a2 dmdg + 4ol dwdy
ot o 9 (2.27)
~ %% imdy + T dmdy — pbydidy + Dodzdy = 0;
ox dy

where the D, represents the x component of the hydraulic gradient due to seepage, e.g.
the resistance law discussed in Section 2.1.3 (i.e. equation 2.15). Its matricial form will

be detailed at the end of this section. In equation 2.27 the definition of material time
. o . du; Ju _0Ju _ou

derivative has been implicitly taken into account | p— = p— + pu— + +pv— |.
dt ot ox oy

Substituting dzdy = ndxdy into equation 2.27 and inserting the definition of Darcy

velocity gives

Ou g w2 2
Pot TP TP

dy ox
-2 Ou — O u + il n — pbyn +nD, = 0; 229
Fogr —H Oxdy  Ox2 PP e

This expression holds for any infinitesimal domain dxzdy.
Finally, calling D, = nﬁy, and using the same procedure in the other spatial dimension
leads to analogous results. In summary the equation of balance of linear momentum is

written as

popu+ pu - Vu + nVp — 2V - uV*u — pbn + D = 0; (2.29)

ou
where 0;u = —. In equation 2.29 D is the matricial form of the resistance law 2.15
or, what is the same, the Darcy term. It represents the dissipative effects due to the
interaction between the solid and the fluid part. Details of this term can be found in
Section 2.1.3. The matricial form of the non-linear Darcy’s law 2.15 is
1.75 u
D _ " pn |u]

= P+ 22 7y 2.30
k V150 k n?/? (2:30)

Remark 4. Let us define the Ergun coefficients £, and E, per unit density as

(1-n)* n

E{=150- . : 2.31
1 n2 DIQ)p’ ( )
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and a -
—n

C— 2.32
D (2.3)

These expressions will be useful in the next chapter especially during the explanation

of the stabilization techniques.

Remark 5. A more general form of the constitutive equation of water can be now
formulated as
o = —npl + 2uV°u. (2.33)

This equation automatically reduces to equation 2.19 if the porosity is equal to one (i.e.

the free surface flow problem is considered).

2.3 Weak form

Equation 2.24 and 2.29 represent the modified form of the Navier-Stokes problem. They
take into account the presence of a porous medium and reduce to the classical Navier
Stokes equations when the porosity is n = 1 (free fluid flow). The equations to be solved
are therefore

pou+ pu - Vu+nVp — 2V - uVeu
—pbn + Eiju+ EyJulu =0inQ, t € (0,7); (2.34)
V.ou =0inQ, te(0,7).

where @ C R? (where d is the space dimension) is the fluid domain in a time interval
(0,7).

The boundary and initial condition of the previous problem are:
u(x,0) = ug(x) in €

u(x,t) = g(x,t) on 9Np, te(0,T); (2.35)
n-o(x,t) = t(x,t) on Ny, te(0,7T);

where o is defined by equation 2.33 and €2p and €2y are the Dirichlet and Neumann

boundary respectively.

Remark 6. Note that n indicates the outer unit normal vector whereas n is defined in

equation 2.3 and indicates the porosity.
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The weak form of equations 2.34 is derived next using a Galerkin formulation. A mixed
finite element method is obtained, that is the approximation of both the velocity compo-

nents and the pressure (and their respective weighted functions) need to be introduced.

The weak form of equation 2.34 is

/WpatudQ—l—/wpu VudQ—i—/ande

/WV 2uViudQ) + / w(Eu + Eslulu)df) — /anbdQ =0 VYw € V;(2.36)

/qV~u =0 Vge9;
Q

where, for a fixed ¢ € (0,7, u is assumed to belong to the velocity space V € [H'(Q)]¢
of vector functions whose components and their first derivatives are square-integrable,
and p belongs to the pressure space Q € Ly of square-integrable functions. w and ¢
are velocity and pressure weighting functions belonging to the velocity and the pressure
spaces respectively. Integrating by parts the pressure and convective terms, calling
' = 09) gives

/ wnVpd() = / npV - wdS) + w - npndl’;
Q o0 (2.37)
/ wV - 2uViudQ) = —2/ Vw : puVoud( + w - (2un - Vu)dl;
Q o0
where n is the outer normal vector (see remark 6). Substituting relations 2.37 into
equations 2.36 and considering the Neumann boundary condition, the system to be

solved becomes

/WpatudQ+/Wpﬁ~VudQ—/an~wdQ
Q Q Q

Vw : uViudQ + / w(Eu + Esuju)ds?
L 9 (2.38)
—/anbdQ— w-tdl' = 0 VYwe;

Q oy

/qV~udQ = 0 Vge Q;
Q

Let V, be a finite element space to approximate V, and Qj, a finite element approxima-



Element-based approach: monolithic solver 27

tion to Q. The problem is now finding u, € V), and p;, € Q) such that

/ Wy p0updS) + / wypuy, - VuydS) — / np,V - wpdS2
Q Q Q

—|—2/ Vwy, : uvsuth -+ / Wh(Elllh -+ E2|uh|uh)dQ
—/WhpnbdQ — wp - tpdll = 0 Vwy, € Vy;
Q oQN

/th-uth = 0 Vg, € Qp;
0

In the next sections the two different solution strategies developed in the present work

are described:

e An element-based solver;
e An edge-based solver;

The traditional finite element (i.e. element-based) approach implies a loop over the
elements in order to recalculate all the elemental contributions at each iteration of each
time step. In the calculation of the elemental contributions a gather/scatter procedure,
from nodal to elemental to nodal information is needed in order to build the global solu-
tion system together with an assembling solution procedure. Lohner [81], demonstrated
that these indirect addressing operations are very time consuming and can be reduced
using an edge-based data structure. Nevertheless, the simplicity and the accuracy of an
element-based formulation makes it a very attracting choice. Advantages and drawbacks

of both technologies are detailed in the following pages.

2.4 Element-based approach: monolithic solver

A traditional element based approach is presented here. Equations 2.39 are solved using
a monolithic scheme. Namely velocity and pressure are calculated at the same time.

The nodal degrees of freedom (velocity u and pressure p) form the vector of unknowns of
the solution system. The Navier-Stokes equations are stabilized with an ASGS technique
presented in Section 2.4.1 and a particular form of the generalized o time integration
schemes is used: the Bossak method, as explained in Section 2.4.3. The linearization is
achieved with a quasi Newton method using a residual based approach and a predictor

multi-corrector scheme.
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Remark 7. All the material variables (density p, dynamic viscosity p, porosity n and
average diameter Djg) that appear in the solution equations have to be understood as
elemental variables although, for reason of simplicity, the upper index el will be omitted.
A short remark should be made on the evaluation of elemental porosity of boundary
elements. Porous nodes are characterized by n < 1 whereas non-porous ones have n = 1.
In the present work a dominant porosity approach is used: if the element has one node
which is non-porous, then the elemental porosity is n = 1. This can be done because
porosity is assigned on geometric entities that are then meshed inserting nodes on the
boundary of the objects (figure 2.5 shows a graphical example). This will lead to an
error in case of variable geometry of the porous material. For instance, this is the case

of the coupled problem treated in Chapter 4 where this error is accepted.

® nodal n = 0.5 ® clemental n = 0.5
o nodal n = 1.0 o elemental n = 1.0
(a) Geometrical Entities (b) Nodal porosity (c) Elemental porosity

Figure 2.5: Definition of elemental porosity with a dominant porosity criteria.

2.4.1 Stabilized formulation

The instabilities connected with the convection term in a convection-dominated problem
and the violation of the inf-sup condition are the two well known causes of instability
of the numerical solution of the Navier-Stokes equations. The first problem is induced
by the Galerkin approximation itself, whose truncation error appears in the form of
a negative diffusion operator. This lack of diffusion leads to serious oscillations when
convection dominates. This is measured by the mesh Péclet number (Pe) that is an non-
dimensional coefficient expressing the ratio between convective and diffusive transport.

Considering u the convective velocity and A the dimension of the mesh, the solution
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presents a lack of diffusion if

i.e. when convection dominates over diffusion [51].

The second reason of instability is connected with the choice of the finite element space
for pressure and velocity.

In order to better understand the origin of this kind of instability it is convenient to

recall the classical stationary Stokes problem

—vAu+Vp = b;

2.40
V-u = 0 ( )
that, in matrix form, becomes
K G F
) (2.41)
D O P 0
where K = —vL < —vA is the viscous operator (being L the Laplacian), G is the

discrete gradient operator, D is the divergence operator (D = GT) , u is the vector of
nodal velocities, p is the vector of nodal pressures and F is the external force vector.
The zero matrix on the lower diagonal position of the system matrix, derived from the
imposition of the incompressibility constrain, leads to some restrictions in the numerical
solvability of the problem. It can be shown that the solution of system 2.41 exists and it
is unique (i.e. the global matrix 2.41 is non-singular) if the kernel” of matrix G is zero.
In fact from the first equation it is possible to get u = K~'(F — Gp) that substituted
in the second equation leads to

(DK 'G)p = (DK 'F);

where DK~'G is symmetric, being K symmetric, but it is positive definite only if
ker G = 0. In the latter case the pressure matrix is non singular and the value of p can
be calculated and substituted in order to evaluate u [51].

Ladyzhenskaya - Babuska - Brezzi demonstrated that both the continuous and the
discrete space of velocity and pressure (see Section 2.3 for their definition) cannot be

arbitrarily chosen but they have to satisfy the so called inf-sup (or LBB from the initials

" The kernel of a matrix A is defined as kerA := {q|q € R and A q = 0}.
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of the authors) condition. It states that a stable finite element solution wuy,py, to the

Stokes problem exists if it is ensured that
Vprh€Qnr 3 u, el such that Bllowll | an| g < 0(ph, ap); (2.42)

or equivalently
inf sup _ blpn,un) > 6 (2.43)

PnEQn eV, |[pnl] [[unl|
where b(,) is the bilinear form b(ps, w,) = — [, PV - u,dQ and ||| is the Ly norm
whereas || ||g1 is the H! norm |9, 16].
There are several pairs of pressure velocity interpolations that allow the satisfaction
of 2.43 like for instance the Q1/P0 element (continuous bilinear velocity, discontinuous
constant pressure), or the ()2/P1 multiquadratic velocity, piecewise linear pressure or,
among the continuous pressure interpolations, the so called mini-element (P1 + /P1)
for example, with a linear velocity enriched with an internal bubble and linear pressure.
More details can be found in [10, 42, 51, 106].
Unfortunately the simplest element, the P1/P1 (piecewise linear velocity and pressure),
which is used in the present work for practical reasons, does not satisfy the inf-sup
condition and a stabilization technique is necessary to fixed both sort of instability.
A wide range of stabilization techniques can be found in literature. One of the first ideas
to overcome numerical oscillations on convection dominated problems, was to introduce
diffusion on the direction of the stream lines. This led to the classical and extensively
used streamline-upwind/Petrov-Galerkin (SUPG) method by Brooks and Hughes [17].
A generalization of SUPG for Stokes flows was proposed by Tezduyar [120, 121]: the
pressure-stabilizing/Petrov-Galerkin (PSPG). In this case the stabilization term varies
with the Reynolds number. In the zero Reynolds number limit, the PSPG stabilization
term reduces to the SUPG one. Another, more general, stabilization approach was
proposed by Hughes [63| (the Galerkin least-squares or GLS). He found out a way
to use an equal order interpolation for velocity and pressure for the Stokes problem
for incompressible fluids just adding the pressure gradient in the stabilizing terms in a
SUPG-like strategy. The GLS method for time dependent problems uses both space and
time finite elements discretization leading to a space-time finite element formulation of
the problem.
So far all the stabilization techniques presented require the addition of some artificial

diffusion term. As an alternative Onate derived the stabilization terms using a Finite
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calculus (FIC) approach based on imposing the balance equations over a finite domain
[92, 93, 97, 101]. This approach allows to reinterpret the stabilization terms as an
intrinsic and natural contribution to the original differential equations, instead of a
correction term introduced at discrete level. With this natural stabilization approach
many of the already existing stabilization techniques can be reinterpreted in a more
physical manner.

A popular family of stabilization methods is derived by the so called subgrid scale (SGS)
approach, introduced by Hughes in [62]. His novel idea is to split the unknowns (u) into
a part that can be represented by the finite element mesh (u;) and another part that
accounts for the unresolvable scale (@), that is for the variation of the unknown that
cannot be captured by the finite element mesh. This corresponds to a splitting of the

space V into the space of the finite elements (V,) and the subgrid space (V) as
V=V,0V; (2.44)

Among the different SGS methods, two are the chosen techniques used in this work:

- The Algebraic Sub-Grid Scale stabilization (ASGS) that has been implemented in

the element based formulation;

- The Orthogonal Subgrid Scale (OSS) technique that has been employed to stabilize
the edge-based equations (see Section 2.5.1).

The main difference between these two techniques is that in ASGS the whole residual
is used to approximate the sub-scales whereas in OSS only its orthogonal projection is
used.

Typically, stabilized methods add to the left hand side of the discrete residual of the

problem (i.e. the discretized weak form), a term of the form
f(uh, Wh) = Z/ Pel(Wh)T TelRel(uh)dQ; (245)
ol Qel

'is an algorithmic parameter with dimension of

where the so called intrinsic time, ¢
time, P (wy},) is a certain operator applied to the test function (it will be defined later
on) and R (uy) is the residual of the differential equation to be solved. The upper index
el in equation 2.45 indicates that the contribution is element-wise and will be omitted

later on for the sake of simplicity.
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Let us introduce the stabilized form of equation 2.39 using an ASGS technique.
Referring to equation 2.45 Table 2.1 can be obtained. « € [0, 1] is an input parameter
to control the influence of dynamic contribution, h is the element length®. The upper-

indexes m and c refer to the momentum and the continuity equation respectively

Momentum equation

Pm(wh)
T1

R™(uy)

ﬁh : VWh + th
o 4v N 2|ay|
At h? h

ooy, + 1y, - Vuy, — vAuy, +nVpy, + Ejuy, + Es|uy|uy, — nb

-1
—+ El + E2|uh|)

Continuity equation

Pe(wn)
T2

Re(un)

A h|uy|
p 2
V'llh

Table 2.1: Stabilizing elemental terms in the ASGS method.

Therefore the stabilized problem becomes:

/ Whpatuth + / Whpﬁh : Vuth - / nphV : thQ
Q Q
+2/ Vwy, : uVuth+/wh (Eruy, + Es|ug|uy,)d2

2.46
/WhpnbdQ / WhthdF+Z/ 7 P™-R™MAOL = 0 VYwy EVh(; )
891\7

/th -updS) + Z/ TP -RAQY = 0 Vg, € Op;
9] ol Qel

8The element length is defined as the edge of a regular triangle in 2D (or of a regular tetrahedron
in 3D), inscribed in the circumference (sphere in 3D) that circumscribes the element itself.
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2.4.2 Discretization procedure

Calling u and p the vector of nodal velocities and pressures respectively, system 2.46 in

its matricial form is expressed as

IANEEN NS

where the correspondence between the block matrices of 2.47 and the continuum form

F

0 (2.47)

of the solution equation 2.39 can be seen in Table 2.2. Every block matrix is obtained, as
usual, from the assembling of elemental contributions. Each node has as many degrees
of freedom as the space dimension (ng;) plus 1. That is the upper left elemental block
matrix (K) has dimensions nyy X ng and G is a ngg X 1 matrix (consequently D is a
1 X ngq). Therefore the global stiffness matrix is a square matrix of n,ts - (nsg+ 1) X Mpts -
(nsa + 1) (where ny is the number of nodes). The nonlinear terms are treated using
the Picard method and they are evaluated at the element GGauss points at the previous

iterations.

The matrix form of the stabilized system of equation 2.46 can be written as:

M+S¥ 0 i N u|
0 0 p p|
where all the stabilization matrices are inserted. Their detailed meaning can be found

in Table 2.3 where S, = S§, + 8%, + S, and S, = S{, + S, + SL.

Equation 2.48 can be written in compact form as

K+S,,+5° G+8,,
D +S,, S,

F+S/

S;

(2.48)

MY + £ (V(1), 1) = feu(t); (2.49)

where v = |

u, p] and vI' = [, p] are the vector of unknowns and their time derivatives

respectively.
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Matricial term Continuum term
Mu Z/ Wy, p0,updS)
el VS
KCU Z/ Whpﬁh . Vllth
el Qel
Ku K*u -2 Z w,Vwy, : uVu,dS2
el Vel

KDU Z / Wh(Eluh -+ E2|uh|uh)d(2
el /e

Gp —Z/ nppV - wpdS2
el Qel

Du Z / th . uth
el S

F Z/ wy, pnbdS?
el Qel

Table 2.2: Matrices and vectors of system 2.48 without stabilization terms.
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Matricial term

Momentum equation
Continuum term

S%u / Tay - thatuth
; Qel
SC¢ u > /Q Ty, - VW, - Vug,dS
el el
S,uu Sk .u — Z Tay, - Vw,rAuy,dS)
el VSl
Sguu Z/ Tlﬁh . th(Eluh + Eg|uh|uh)dQ
el Qel
SupD > / Ty, - VWrnVprdQ)
el VS
s/ -> / T, - Vw,nbd
el I
chuu Z/{; TIthﬁh : Vuth
el el
Spau  Shu -> / 71 Vapv Auy,dQ
el Qel
SgLu Z g nVa,(Eray, + Esyluy|uy,)dQ
el el
SpeP Z/ 71 VgrnV prdS2
el /e
s/ -3 /Q 1V qnnbdQ
el el
Continuity equation
S‘u

Z/ TQV . th : uth
el JQe

Table 2.3: Stabilization matrices and vectors of system 2.48.
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2.4.3 Bossak time integration scheme

The Navier-Stokes equations are solved in time using a Bossak scheme. First of all, let
us recall the Newmark scheme from which it takes its origin. This is one of the most
popular time integration procedures in structural dynamics and it is used with success
in the linear regime. Its use in non-linear problems is possible, however in presence of
large geometric non-linearities it is known to lead to unstable results unless the time step
is severely reduced. This drawback derives form the fact that, in the stability of linear
problems, the balance of energy equation implies an upper bound to the solutions. On
the contrary, in a non linear regime this is not automatically verified when a linearization
is performed. A stable algorithm can diverge in problems in which energy can grow up
unlimitedly. It is therefore necessary to introduce some parameters in the time scheme

able to lead to energy dissipation in high frequency modes [61, 118].

The momentum equation in structural problems is written in the general form as
Mz + Cx + Kx = fop (2.50)

where x is the vector of displacements and M, C, K are the stabilized mass, damping
and stiffness matrices respectively. The overbar is used to distinguish the stabilized
operators from those presented in equation 2.47.

Let’s call vI' = [u, p] and v = [, p] the vector of unknowns and their time derivatives
respectively. Equation 2.50, rewritten in terms of v and its derivative, represents the

compact form of equations 2.48. It is
MY + £, (v(t), 1) = four(t); (2.51)

where M is the mass matrix. f;,,; takes into account of all the terms that depends
on velocity and pressure (the internal forces) and f.,; is the vector of external forces,
including all the contributions independent from the unknowns. Let’s remark that

equation 2.51 is an alternative way of writing equation 2.48.

Following the Newmark formulation v and x can be obtained at time step n + 1 as

v = v 4 (1 — §) ALV + AT (2.52a)

1
X" = x" + Atv" + (5 N ﬁ) APV + APV (2.52b)
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where At is the time step and § and 3 are the two parameters that control the stability
and accuracy of the scheme [116, 118|. The Newmark family of methods has its origin
from the different choices of § and £.

In implicit schemes, for instance, stability is ensured by

26202

I

DO | =

that leads to an unconditionally stable method. Alternatively, using

o>

| S

g <

I

N | —

leads to a conditionally stable method. The stability condition in this case gives an

upper bound to the natural frequency times the time step.
Calling ¥"*! and £"*! the prediction of the unknowns and displacements in terms of

the known variables at time step n, equations 2.52 can be rewritten as

vt = 9 L ALV (2.53a)
X" = " BAEE T (2.53b)

Equation 2.53a can be alternative written as

_
OAL

Finally inserting equation 2.54 in equation 2.51 it gives

e n+1

v (virt =), (2.54)

1

@M (vt =) e = £ (2.55)
whose residual can be defined as
n+1 M n+1 ~n+1 n+1 n+1
r(v') = N (V —v ) — (2.56)

The definition of the residual of the solution system (equation 2.56) discloses the residual
based approach that is used in the predictor corrector solution strategy to solve the

linearized system. This will be clarified in the next pages.
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The a-method Hilber Hughes and Taylor in 1977 presented the e — method able to
introduce numerical dissipation at high frequency modes without degrading the order of
accuracy of the solution [60]. The unknowns and their derivatives are calculated through
a weighted average of their values at time step n and n + 1. For instance in the case of

a velocity formulation, the vector of unknowns is defined as

vittter — (1 4 ag)v" — agv?; (2.57)
that reduces to the Newmark method if ag = 0.
In equation 2.57 the choice

1

g € |:—§,

. (1 —OéH)2'
=" (2.58)

1-— 20(]-]

0 ) 5 = 5
| 2

retains the second order accuracy and the unconditional stability. Maximum dissipation

is obtained for ay = —1/3. In this scope the residual is slightly different form equation

2.56, taking the following form:

— |1
r(vn—l—l—l—aH) _ [ ;—AO;H (Vn+1 _ \/}n-‘,—l) — apv"
(2.59)

_fn—l—l—l—aH + fn+1+aH

int ext

Bossak scheme The Bossak scheme follows a similar approach, but the modification

affects exclusively the term related to the inertia forces. In fact

‘-,n-l-l—aB — (1 _ OCB)‘.’TH—l + OZB\.In; (260)

and the residual form of the equilibrium equation is expressed as

_[1-
() = N |8 (v ) g | S (260)

Introducing the prediction of velocity stated by equations 2.52a and 2.53a and grouping
the unknowns at time n + 1 the final expression of the residual linearized in time used

in this work is
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— (1 -
I.(VTL+1*CVB) — _M< 5AO£BVTL+1) _sz:LJtrl—i_feantrl
2.62
—[1l—ap , (1—ap)(1—=0)\ ., (262)
-M SAL Y + | ap — 5 v

Also in this case the unconditional stability and 2"¢ order accuracy are achieved with
the following values of the parameters

1 1-— QO[B (]_ — 043)2
The a—method was proven to be more accurate than Bossak scheme when the numerical
dissipation is maximal [61, 126]. However the latter presents some implementation

advantages for non-linear problems as explained in [6]. These are the reasons for the

choice of the Bossak scheme in this work.

Predictor multi corrector residual based strategy

The solution of the non linear problem is achieved using a residual based approach. A
quasi Newton method allows the linearization of the non linear terms. Using a Taylor
expansion of equation 2.62 at iteration k, the residual at iteration k + 1 is obtained and

is imposed to be zero, i.e.

Or(vHLk)

r(vn+1,k+1) — r(anrl,k) 4+ aanrl

AVF + O(AVF)? = 0; (2.64)

where AvF = yntlritl _ yntlk and

or(vtthy M of; Lk

nt .
vitl At Qvntl) (2.65)
The final solution system is
n+1,k
—%Avk = r(v"TRy; (2.66)
\'ah N——
T RHS
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where LH S stands for left hand side and it is the matrix of the derivative of the residual
at the current iteration with respect to the unknowns. Whereas RH S stands for right
hand side, it is the vector of the residual of momentum and continuity equations at the
previous iteration.

The basic steps of the Newton-Raphson solution procedure are:

n+1,k+1 — Vn—l—l,k.

)

1. Prediction v

2. Solve the system in its residual based form (equation 2.66);

o

) Update Vn+1,k+1 — Vn+1,k + Avk;

4. Check convergence;

[

. Go back to step 2 till convergence is achieved.

2.5 Edge-based approach: fractional step solver

Concerning the element-based approach presented in the previous sections, two set of
variables are necessary in the evaluation of the right hand side (RHS): the nodal variables
like velocities and pressure and the elemental contributions like elemental volumes, shape
functions and shape function derivatives.

The main steps of the evaluation of the residual in an element-based formulation are:
1. Gather nodal information into the element;
2. Operate on element-data to evaluate the elemental residual;
3. Scatter the elemental information to point-data in order to obtain the global RHS;

The cost of addressing operations in steps 1 and 3 can be drastically reduced using
an edge-based approach. With this different data structure some redundant opera-
tions are avoided. Lohner and co-workers demonstrated that the FLOPs (floating point
operations) overhead ratio between element-based and edge-based formulation is ap-
proximately 2.5 [115]. All the matrix operators (mass, Laplacian, strong and weak

gradient and divergence) can be calculated only once at the beginning of the run in the
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case of a fixed mesh approach, like the one considered in the present work, because the
connectivities between nodes do not change along the calculation [115] .

The idea is to express all the integral operators of the classical Galerkin discretization
in terms of the neighboring contributions accessing each node only once and taking
advance of the Compressed Sparse Row (C'SR) matrix storing format®.

Since symmetry is not exploited in the present implementation, the parallelization of
an edge-base code is straight forward. Two nested loops are performed, the main loop
(which is the one to parallelize) is made over the mesh node ¢, and the inner one is made
over node j surrounding node ¢ (the edges connected to node i). The contributions of
the edge ij are computed only when the node i is accessed (edge ji for simplicity is
considered different from edge ij). On the contrary in an element-based approach edge
ij is accessed more than once being part of at least two different elements (see Figure
2.6). This implies that the contribution ij of every matrix comes from more than one

element, thereby introducing some difficulties in parallelizing the elemental loop.

contribution of olé'r“ﬁ'c"ﬁf"ﬁ"-t“(;.odgc ij

Figure 2.6: Build up contribution in an edge-based data structure for the elemental
contribution.

9In CSR format, suitable for sparse matrices, only the non zero entries of the matrix are stored.
Considering for example matrix A below. It can be stored in a CSR format through vectors a;;, j and
i that are the vector of the non zero entries of A, the vector of the column indexes of every non zero
entry of A and the position of the first non zero entry of each row of A in a;; respectively, i.e.

5 7 0 1 aj = {6 7 1] 3 1 4 9}
000 3 :

A=y 1 o0 4 ¥ = {01 3 3 1 3 2}
009 0 i = {0 3| 4 6 6}
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2.5.1 Stabilized formulation

As already mentioned in Section 2.4.1 in the edge-based approach, as well as in the
element-based one, SGS methods are employed to stabilize equations 2.39. In the present
work the Orthogonal sub-grid scale OSS method introduced by Codina [34, 38| is used.
In this case the space for the sub-grid scale is taken orthogonal to the finite element one.
Following strictly the operations outlined in [39, 41, 115|, the problem already presented
in equation 2.39, with the insertion of the convection and incompressibility stabilization
terms, is: find (up, pp, 7h, €,) in Vi, X Qp X Vj, X V), such that

/Qwhﬁtuhdﬂ + /Qwhﬁh - Vu,dS)
—/anh(v - Wy )dS) + Q/QVWh : vVu,dQ)
—i—/ﬂwh(Eluh + B |up|uy)dQ — /QwhnbdQ (2.67)
— [ 7@, - Vwp) Pyt (@, - Vuy, + Es|ug|un)dQ = 0 Vwy, € Vy;

Q
/th-uth+/TthPhl(anh)dQ =0 th € Qh;
Q Q

where Pt is the space of orthogonal projections P,t =7Z — P, and Py is the Ly —
projection onto V. That is

'PhJ'(ﬁh : Vuh -+ E2|llh|llh) =y - Vllh + F2|uh|uh — TTh; (268&)
Pu(Vpr) = nVpp, — & (2.68b)

with 7, and &, defined as
/ Wth'th = / Wh(ﬁh : Vuh +E2\uh|uh)dQ; VWh € Vh (269&)
Q Q

/Whghdﬂ = / Wthpth; VWh € Vh (269b)
Q Q

The additional unknowns & and 7r can be easily expressed in function of velocity and

pressure through this equations.

Remark 8. A split-OSS is implemented. The correct form of applying OSS to the

momentum equation would be to consider a stabilization term like equation 2.45 where
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the P™(wy,) and 7 correspond to those presented in Table 2.1 for ASGS. The difference
is represented by the choice of the R (u;) term. Instead of taking the whole residuum
of the momentum equation, only its orthogonal projection (the projection onto Phl) is

taken into account. Two considerations should be made:

- The inertia term, the body force term and the linear part of the Darcy term belong

to the finite element space Vy (i.e. their projection onto P, is zero);

- The viscous term disappears using linear elements (i.e. the Laplacian of a linear

function is zero);

Therefore R (uy,) takes the form
R™(wy) = Pp™ (W - Vuy, + Es|ug|uy 4+ Vpr); (2.70)
and the stabilization term should be
/Q (W - VWi + V) R™ (uy)d; (2.71)
which is different from

/ (T, - VW) Prt (T - Vuy, 4 Ea|uy|uy,)dQ + / V@ Pt (Vpr)dQ; (2.72)
Q 0

In practice this second form has been seen to be very effective [115] and it is the one

implemented in this work.

An error analysis leads to the definition of 7;in function of the parameters of the differ-
ential equation (like advective velocity u or kinematic viscosity v) [51]. Following the
analysis of Codina [35, 37|, and considering the additional presence of the Darcy term,

7 is defined as

_ -1
T = (%+4h—';+25i| +(E1+E2\ui\)> (2.73)
where h; is the mesh size taken equal to the minimum edge length (I;;) of the edges ij
surrounding node 7. « is a parameter that controls the importance of the dynamic term
in the stabilization (« € [0, 1]). In the case of pressure stabilization the optimal « value
is 1, whereas for the convective term, « it is taken equal to 0.01 therefore decreasing the
importance to a 1%. Finally F; and F, are the Ergun’s coefficients defined in 2.31 and
2.32 respectively.
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2.5.2 Discretization procedure

System 2.67 can be rewritten in a semi discrete form as

Mou + K (u)u — Gp + K'u + K? (u)u + S"u — S"7 — F = 0; (2.74a)
Du + SPp — S¢¢ = 0; (2.74b)

Mm — K(u)u = 0; (2.74c)

M¢ — Vp = 0; (2.74d)

where u is the vector of nodal velocities and p the vector of nodal pressures. The
operators take the form presented in Table 2.4 and the stabilization operators S’ are
defined as shown in Table 2.5.

In order to simplify the problem, equations 2.74c and 2.74d can be substituted in
equations 2.74a and 2.74b respectively, giving

Mou + K¢ (u)u — Gp + K*u
+K?” (u)u+ S*u — S"M 'K (u)u — F = 0; (2.75a)
Du + S”p — SSM~'Vp = 0; (2.75b)

The residual of the momentum equations without the dynamic term is defined as

r(u = K (u)u-—G K u
(u,p) K (uwju-Gp+K (2.76)

+KP (u)u+ S*u — "MK (u)u — F;

Remark 9. The tilde super-index over the matrix operators emphasizes the difference

between the same operators in the element-based formulation presented in Table 2.2.
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Matricial term Continuum term
— Jo
J

Q

Sh
al

ij ij

KD (u) > /Q Nyu, N;dQ

J

Q
61']‘ /nZNZVN]dQ,
Q
D;; / N;VNdQ;
Q
F, / i N;d)
Q

Table 2.4: Matrices and vectors of the semi discrete form of equations 2.75.

Matricial term Continuum term
Si; /QTi(ﬁg -VN;)(a, - VN, + Es|ug|N;)dS2
ST /QTiNZ-(ﬁg - VN, + Es|ug|N;)dS2
Sy /QTiVNi - VN;dS2
S5, /Q 7:N;V N;dS)

Table 2.5: Stabilization matrices and vectors of system 2.75.
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2.5.3 Fractional step solver using an explicit 4" order Runge

Kutta time scheme

The modified form of the Navier-Stokes equations are solved using a fractional step algo-
rithm. Pressure-splitting approaches of the fractional-step type are very convenient due
to their high computational efficiency for flows at high Re, and have enjoyed widespread
popularity since the original works of Chorin [33] and Temam [119]. The fundamental
idea is to solve the momentum equation keeping fixed the pressure and later correcting
the pressure so as to guarantee the satisfaction of the divergence constraint. A modern
algebraic presentation of the method can be found in [36|. The fractional step approach
is traditionally presented in an implicit context, typically using a first or second order
Backward Differentiation Formula (BDF1 or BDF2 algorithm respectively) for the time
integration of the momentum equation. In dealing with free-surface problems unfortu-
nately, the shape of the fluid domain, and consequently the boundary conditions on the
free surface, are subjected to frequent and radical changes. This implies that, to allow
a satisfactory representation of the solution, an accurate tracking should be performed.
In practice, it is typically observed that, even fully implicit schemes are practically lim-
ited to time steps for which the free surface approximately moves of one element length
per time step. Such heuristic constraint is equivalent in essence, to a restriction on
the practical CFL (Courant Friedrichs Lewy)!® number to values in the order of unity.
This observation effectively implies that explicit schemes will be competitive provided
that CFL ~ 1 can be used and meshes of sufficiently good quality can be generated.
This motivates the use of an explicit form of the fractional step scheme (see for example
[109]) based on the use of a 4th order Runge Kutta (RK4) in dealing with the momentum
equation.

Before proceeding in the description of the method, it should be observed that the
algebraic splitting proposed by Codina in [36] leads naturally to the definition of a dis-
crete Laplacian DM™1G which in principle does not introduce any additional error in
the imposition of the divergence freeness condition with respect to the original mono-

lithic scheme. However, in practice the use of the discrete Laplacian implies a large

0The CFL, for hyperbolic system of partial differential equations (PDEs), is defined by

)\maz -dt .

FL =
C ) ;

(2.77)

where A\p,qz is the maximum eigenvalue of the system, dt the time step and h the size of the element
[81, 109].
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computational burden as the matrix is rather densely populated. In order to overcome
such problem the discrete Laplacian is typically substituted by a continuum Laplacian
which has a much smaller stencil than the discrete one (around six times smaller in
3D). This fact has important consequences both on the efficiency and on the stability
of the numerical scheme (see e.g. [36]) but in particular it has an important impact on
the mass conservation properties of the method [66]. One practical issue is that while
the use of a discrete Laplacian matrix guarantees an invertible matrix, this is not the
case when the continuum form is chosen implying that pressure needs to be fixed on the
Neumann boundary, that is, pressure is to be imposed strongly, at least for the solution
of the pressure step. This implies that when FS is to be used the pressure is known
beforehand on the Neumann boundary.

Given such situation, it is convenient, to avoid integrating by parts the pressure gradient

term, using the equivalent formula

/ w - VpdQ = — / pV - wdQ) + w - pndl’ (2.78)
Q Q o9

This implies that the pressure space should be in [H!(€2)]¢ which is an additional re-
quirement to the smoothness of the function. Such modified form has the important
advantage that no boundary integrals need to be computed (second integral of the right
and side of equation 2.78) for the pressure which leads to an easier application of the
pressure boundary condition on the free surface as it will be explained in Section 2.6.4.

This consideration leads to the following expression for the residual at node i (note the
use of V instead of G).

F(up) = K(uu+Vp+Kru (2.79)

+KP” (u)u+ S"u — ™M 'K (u)u — F;

Remark 10. Using Eq. 2.78 implies a pointwise application of the normal force on the
Neumann boundary instead of its weak imposition. This is an acceptable approximation
for low viscosity flows for which the term fQ n - pAudS? is negligible.

On the basis of such definition the time integration can now be performed.
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Runge Kutta time integration scheme

The lower computational cost of an explicit time integration technique (that does not
require solving of a system of equations), is not the only advantage of this approach. Its
implementation is highly parallelizable, which is the main reason why it has been chosen
in this work. Moreover considering the m-Runge Kutta schemes, it is known that the
order of the time integration can be arbitrarily chosen, although they give m — th order
of accuracy up to m = 4 [51]. Whenever for m > 4 the order is lower than m. That is
the reason of the popularity of the 4-steps scheme (RK4).
It is demonstrated that the RK4 is the optimal compromise between the number of
intermediate steps and the permissible time step size in spite of its conditional stability.
For more details the consultation of [51] is recommended.
RK4 makes use of the solution at t" to evaluate the solution at time ¢"*! by calculating
the residual of the equations at a certain number of intermediate steps.
This means that for a general Cauchy problem

! (2.80)

a one step explicit approach leads to a time scheme with the following general format

n+1 n
Y

At —f(y it )7 (2'81)

whereas for the 4" order Runge Kutta method

n

n+l 1
% :6(7“1—1—27’2—1—27“3—1—7’4); (2.82)

where r; with ¢ = 1,2, 3,4 are the residuals of the stationary form of 2.80 evaluated at

rn = f(tn’yn);
_ t?’l g n g .
ro = f + 9 » Y + 9 AN
At At (2.83)
rzy = f(tn‘f‘?ayn'i“'i“?'m);

ry = f{"+ At y"+ At -r3).
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In order to fully explain every stage of the integration scheme applied to the momentum
equation let us use the definition of the stabilized residual obtained in equation 2.79.
The semi-discrete form of the momentum equations in terms of the residuals at the

intermediate stages is then

-~ u"tt —u” 1 ~ o
M = g [F 28 4 28 + E)
A (2.84)

[f‘(u”,p”) +2f‘(u91,p91) +2f‘(u92,p92) +f,(u93’p93)];

| =

where T(u’, p%) are the residuals of the momentum equations defined by equation 2.79
evaluated at 6; intermediate stages.

To correctly evaluate the residual at each intermediate time step, the solution of the
continuity equation would have been required. This would have considerably reduced
the efficiency requiring a huge computational effort. In order to overcome this issue,
according to [111], a linear variation of pressure is assumed in the time step. It should
be remarked that this assumption leads the velocity field to be divergence free only at
the end of the step.

Redefining equation 2.79 as

I(u,p) =1"(u) + (p); (2.85)

being *(u) the part of the residual related to velocity and rP(p) the part related to

the pressure gradients. The residuals become

i =Fu",p) =i"(u")+ Vp"
1/~ 3
¥y =t p?) =(u’) + 5 (Vp” + Vp”“) ;
(2.86)

- l /e =
(U2, p®) = F(u®?) + 5 (Vpn n Vpn+1) :

-
w
I

L2

(%, p) = "(u”) + Vpm,

—
Ny
I

-

And the global momentum equation 2.84 can be symbolically rewritten as
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utt—ur 1
6 [f‘“(u“) + 2 f,u(uﬁl) + 2 f,u(ut%) + f,u(uﬁ?,)}

2
Il

(2.87)

+ [6p” - 6p”+1]

N | —

Final system using a fractional step approach and a RK4

In order to decouple the solution for the velocity and pressure, the traditional pressure

splitting procedure is performed and the fractional step velocity u is inserted. This gives

cd—u 1 1~
4 At“ == [f“(u") + 28 (a”") + 28"(a%) + (@] + 5P’ (2.88a)
~ un+1 . ﬁ 1 ~
M— 4+ V("' —p") =0: 2.88b
Du" + SPp"t! — SEM ' Gp™t! = 0; (2.88¢)

where it has to be remarked that equation 2.88a only depends on the pressure at the
previous time step and on the intermediate fractional step velocities, leading to a slightly
different RK4 steps as explained later on.

From equation 2.88b

n+1

— -

At - =
u - MV (Tt - p"); (2.89)

that substituted in equation 2.88c gives

. At ~ \T—1 ¢ n+1 n n+1 ENA—L1 140 +1

Dua — 7DM V' —p")+Sp" —SSM T Gp"T = 0. (2.90)
Finally substituting the discrete Laplacian (DM ~'V) by the continuous one (L), the

final system to be solved is [109]:

~1u—-—u" 1 1 N
B = ) + 2 @) + 28 (@) + (@) + SV (291a)

At 6
At = Yete
?L (pn+1 _ pn) =Da+ SPp"t — SEM'Gpttl: (2.91Db)
At ~ <
W =i - SN (p ) (2.91¢)
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where the residuals of equation 2.91a are evaluated according to the following steps

~01 _ _.n \/ —1§ [<u/ n VAN

F(d%); (2.92¢)
~ AL le

a” ="+ M‘lg () + QVPR] : (2.92d)

7 (d%2) (2.92e)
- le

a’ = u" + M At {f"“(ﬁ”) + QVPR] : (2.92f)

7 (6%); (2.92g)

2.5.4 The edge-based operators

Having made the choice of using an explicit scheme for the time integration of the
momentum equation, a suitable data structure for the fast calculation of the residuals
should be devised. The idea to be exploited is that many of the integrals involved in the
computation of the residual can be written in terms of constant operators which can be
directly applied to the nodal values. Different techniques were developed over the years
to reach such goal. In writing this work the nodal-based approach described in [34] is
blended with the edge-based proposed in [81, 115].

The starting point is the systematic usage of the partition-of-unity property of the FE

shape functions, which provides the relations

d Ni=1 = Ni=1-) N (2.93)

J#i

and, as a consequence,

Y VN;=0 = VN;=-)» VN, (2.94)
i j#i

The edge-based approach is obtained by applying systematically such relations for the
computation of the discrete operators of interest.

In the following the different terms involved in the calculation of the residual are con-

sidered one by one, by expressing the contributions to the entry corresponding to a given
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node ¢. The j index indicates one of the neighbor nodes of ¢ which share an edge with
it.

Gradient term. The gradient term (not integrated by parts) which appears in the

momentum equation, reads

> / N,V N;p;dQ = / N;V N;p,;dQ + / N;V Nip;dS
; Q
J#i

- Z / N;V N;p;dQ2 — / i(ZvNJPidQ (2.95)

J#i J#i

- Z/NVN pi) dQ
= Zez‘j(pj_pi)'

ji

Applying equation 2.94 it can be demonstrated that the pressure gradient term can be
computed by using the 61-]- for any edge ij. Note that the term ¢ is never needed with
the approach proposed.

Divergence term. The derivation of the divergence term is basically identical to
the previous one, with the only difference that a scalar product is involved. Following

exactly the same steps as before it can be readily shown that

Z]jij -u; = Z ]:N)Z‘j . (llj - lli) dS). (296)
J

J#

Convection term. The non-linear convection term has to be approximated to fit
within the framework of the present edge based formulation. Several possibilities exist

to obtain a suitable form to be used in the calculations. One could start by considering
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the conservative form of the convection operator V - (u®@ u) .
Z/ NZVN] . (llj & Uj)dQ =
— Ja
J

= Z QNZVNJ : lljllde — /QNZ (Z VNJ> : l_llllZdQ7
JF

J#i

(2.97)

which tells us that the convective term can be estimated as

S (T w) =30 (T i) w (2.98)

J#i J#i

Alternatively, one can start with the non-conservative form of the same equation and
use a nodal integration rule as proposed in [34]. This approach estimates the convective
term contribution as

Z <6m : ui> (u; —w). (2.99)

J#
The first approach is “globally conservative” by construction in the sense that the sum
over all of the nodes in the mesh is guaranteed to give zero. This property is only
approximately verified by the second technique, since the integration rule is not exact.
In practice, both approaches work effectively. Nevertheless the second approximation

appears to be slightly more robust and was the one chosen in that work.

“Weak” gradient term. The migration from a classical finite element to an edge-
based implementation requires describing the gradient of a scalar function integrated by
parts. Since in the current formulation the pressure gradient term is not integrated by
parts, this is not strictly needed for the implementation of the present method. In any
case, following [86]

j Q Q Q

J#i
g#i 78 @\ jzi

Gijpj — Vipi.
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Viscous term. The viscous term in the Navier-Stokes equations requires estimating
the scalar Laplacian operator L;;. Although the possibility exists of storing directly on
each edge an entry of the type L;; := fQ VN;-VN;dSQ, in the present work it is preferred

to store a matriz term of the type
L{ = / VN; ® VN;dS; (2.101)
Q

on each edge of the mesh. The scalar gradient can then be obtained as needed by the
trace operator as
L =Tr(L}); (2.102)

which allows writing the viscous term as

ZTT (LE) 1 (0j — uy) (2.103)

i#]

“Special terms”. The terms described until now include all of the terms that are
needed for the implementation of the Navier-Stokes equations. Nevertheless, it is appro-
priate to remark that storing the matrix Laplacian Lglj instead of its scalar counterpart,
is justified for the implementation of the stabilization operators. A detailed description
of the use of Lglj in this context can be found in [83|. The need for storing such operator
can be also understood by considering a SUPG-like stabilization operator. On a given

node 7, the stabilization operator has the form
DV (w@u)V(uy - w). (2.104)
i#j

By using the matrix laplacian operator, this can be approximated as
i#]

which requires considering Lj-lj in the computation. Similarly, the matrix form is also
useful in the computation of the sub-scale residuals and for the definition of a cross-wind

dissipation term which is useful for controlling unwanted numerical oscillations.

Remark 11. The common features of all of the terms described is that they can be

evaluated for each node ¢ independently of all of the others. This implies that the
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calculation of the residuals can be performed in parallel for each node of the mesh.

Remark 12. All the other magnitudes that have not been specifically treated here are

taken as nodal, such as, for instance, the intrinsic time 7.

2.5.5 Improving mass conservation

Independently on the time accuracy of the numerical scheme used for the first step, the
overall scheme can not be more than second order accurate due to the pressure splitting
procedure. Furthermore, the use of the continuum Laplacian operator, mandatory in the
context of a semi-explicit scheme, implies some volume loss particularly concentrated
in the vicinity of the free surface (Neumann boundary). The origin of such loss can be

traced back to two distinct phenomena:

1. As observed in [66], the pressure is fixed on the Neumann boundary as this is
needed to make the Laplacian resolvable. This implies that it loses the capacity

to adapt locally so to attempt guaranteeing the local mass conservation.

2. The divergence constraint (Du = 0) is generally evaluated at time step n + 1
implying that it depends exclusively on the velocity at n + 1. Any error in the
fulfillment of this constraint at the preceding step (Du” = 0 ) is simply discarded

and never recovered.

The algorithm devised for the solution of the free surface problem attempts to minimize
the first issue. The idea, as shown in Section 2.6.4, is that the pressure will be fixed
on the nodes outside the free surface, thus letting some freedom to the nodes in its
proximity.

On the other hand, the fulfillment of the divergence free condition at the present time
step (n+1) and at the previous one (n) are combined in order to overcome the drawback
stated in point 2. The idea is the following: if no error was made in the past, it can be
stated that Du” = 0. However this assumption is not verified in practice and volume is
either created or destructed at a rate of Du”. While usually this information is simply
discarded, in the present work the divergence free condition (Du™*! = 0) is modified in
order to sum up the volume variation lost (or gained) at the previous time (Du").

In mathematical terms the proposal is simply to modify the divergence constraint as

Du"™ +Du" =0 (2.106)
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As shown in some of the examples, this simple modification improves the volume con-

servation of the overall scheme.

2.6 Free surface tracking. The Level Set method

The proposed technique is based on the use of a fixed-grid approach. Hence at each

time step the fluid domain should be defined, implying:
1. The definition of a tracking method that allows:

- moving the fluid free surface;

- defining the position of the fluid boundary at each time step;

2. The application of the boundary conditions at the fluid boundary that do not

necessarily coincide with mesh edges;

A level set technique is employed to face the first issue. The level set method was
conceived as a methodology to following moving interfaces. The moving boundaries are
composed of the zero-valued iso-surface of a given smooth function (at least Lipschitz
continuous™ [11]) ¢(x,t).

Let us call Q° C RY (where d is the space dimension) the global control domain of
analysis. The fluid domain defined in the previous section at time ¢ is Q(t) C Q°. The
boundary of £(¢) is defined by part of 9Q° and by a moving boundary defined as

O (t) == {x ]| ¢(x,t) =0} (2.107)

From now on (t) = Q, and Q,,(t) = €2, and the explicit indication of time will be
omitted for simplicity. Following the same criteria, the fluid domain at a given time
step t" is Q") = Q™.

Tn mathematics Lipschitz continuity is a stronger requirement than simple continuity conditioning
the speed of change of the function. Let f : R™ — R™. Given an open set B C R™, { is Lipschitz-
continuous on the open subset B if there exists a constant A € Ra’ such that

If(x) —fIl < Allx =yl vxy€B.
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The level set function is defined as

o(x,t) >0 if ¢ Q;
o(x,t) =0 if x=00,; (2.108)
o(x,t) <0 if ze

CONTROL DOMAIN €2

- -

NOI\II FLlle DOMAIN
o(x,t) >0

FLUID DOMAIN £?
o(x,t) <0

FREE SURFACE O$)n
o(x,t) =0

Figure 2.7: Graphic representation of the level set function ¢.

see Figure 2.7 for a graphic representation of the level set function.
In the present work the level set function is taken to be a signed distance function. The

Euclidian distance function is by definition
d(x) = min|x — x| Vx; € 0, (2.109)
The level set function, for a given time instant ¢, is defined as

p(x) = d(x) it ©¢Qte(0,7);
p(x) = dx)=0 if z€0Q,,te (0,T); (2.110)
p(x) = —d(x) if xeQ,te(0,7);

As exhaustively detailed in [103]| this function inherits of all the properties of implicit
surfaces (being signed distance functions a subset of the latter). Moreover, its mono-

tonicity across the interface allows its differentiation.
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The fundamental idea of using the level set approach can now be understood considering
the mass conservation equation for a variable-density fluid:
dp

$+u'v,o—|—pV~u:O (2.111)

The case of interest is that p # 0 inside the fluid domain and p = 0 outside the free
surface, where a regularization function should be considered to be applied to p to make

it differentiable in space.

Let us split equation 2.111 in the following two equations

dp
i . = 2.112
4 tu Vp=0 ( )
and
pV-u=0—-V-u=0 (2.113)

It is easy to understand that if such two equations are verified equation 2.111 will also
be verified. This requirement is in fact stricter the the original one. Now, equation 2.112
represents the transport of the density with the mean flow velocity. Since the density
can be rather badly behaved as it approximates a jump, it is convenient to replace it
by the transport of a smooth scalar ¢ (in the present work ¢ is the distance function)
which can be used to recover the density distribution at any moment. The problem is

thus transferred to the solution of the transport problem

de+u-Vo = 0 in Q° te(0,7),
Y = @ on annv tE(OvT)a (2114)
¢(x,0) = ¢o(x) in Q°

where 99, ;== {x € 90" | wu-n <0} is the inflow part of 9Q,,. When the fluid enters
the porous matrix an acceleration of the advancing front can be observed because of a
restriction of the empty area. This is taken into account by considering the advective
velocity equal to the actual fluid velocity defined in equation 2.2.

Two different solution approaches are used for the edge-based and the element-based
algorithm for the solution of the convective system 2.114. In the edge-based technique a
4" order Runge Kutta scheme 2.114 is implemented and an OSS stabilization technique

is used, similarly to what has already been explained in Section 2.5.1. Conversely a
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Crank-Nicolson time integration scheme is employed in the element-based approach
stabilized with the ASGS method.

2.6.1 Coupling the level set equation and the Navier-Stokes

solver

In order to completely define the approach used in this work, the description of the
coupling between the Navier-Stokes solver and the newly added level set equations is
needed. Conceptually, the velocity obtained from the solution of the Navier-Stokes
equation has to be used in convecting ¢, while the zero level set function provides
the position of the free-surface and is consequently needed to prescribe the pressure
condition on the Neumann boundary. Many different approaches have been proposed
over the years to perform such coupling; some based on sub-integration techniques on the
cut elements [42] and others based on some form of regularization for the density function
in the vicinity of the free surface. The proposal in this work rises from the observation
that, once a continuous pressure distribution is assumed, only the gradient of the existing
pressure appears in the momentum equation (as already observed before,the pressure
term is not integrated by parts). This implies that the momentum equation can be solved
approximately without knowing exactly the position of the free surface, provided that
an estimate of the pressure gradient is given in any active (or potentially active) area
of the fluid domain. On the other hand, the imposition of the zero traction condition
on the Neumann boundary could be applied in the pressure correction step through the
imposition of adapt boundary conditions at the level of the pressure Laplacian system.

To complete the algorithm some other ingredients are needed:

- An eztrapolation function to define the values of the velocity on a band containing
the free surface of the fluid and to allow the imposition of the incompressibility

condition on the free surface;
- A tool for calculating the nodal distances in the whole domain €2g;

- A method to impose the boundary conditions on the free surface.

2.6.2 The extrapolation procedure

In order to allow the convection of the free surface 0€2,, in regions of 2y out of (2" | an

extrapolation of the velocity field in the part of the domain close to the free surface but
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external to 2" is needed and it should be extended sufficiently far to cover all of the
region upon which the fluid domain is likely to extend during time step n + 1.

On the other hand, the pressure gradient and the pressure nodal values are needed in
order to impose the incompressibility condition in the edge-based procedure (for more
details see Section 2.6.4). In the present work an explicit extrapolation is performed.
An auxiliary data structure is defined. It contains the layers of nodes close to the free
surface. As an examples, let us refer to Figure 2.8 that represents the domain at the
end of t". The gray area is the fluid part and the black circles represent the calculated
nodes.

The layers are defined using the following criteria:

- LAYER 0 (L) is the first layer of nodes of the fluid domain internal the free
surface (LY € Q").

- LAYER i (L*) (k =1,2,...,nl'?) is the layer of non-fluid nodes neighboring with
k-1 (Lk ¢ Q”)

® CALCULATED NODES
O NOT CALCULATED NODES

Figure 2.8: Extrapolation layers and calculated nodes in the time interval ¢* — "1,

The fluid velocity and pressure fields on the layers L¥ with & < 1 are known from the
previous time step ¢" (the black nodes in Figure 2.8). In the present work however, such
values are not used in performing the extrapolation of pressure, velocity and gradient of
pressure, but rather velocity is taken starting from layer LY and pressure and pressure
gradient from L~!. The rationale of this choice is that the pressure and pressure gradi-
ents in the immediate vicinity of the free surface may show a certain level of spurious

oscillations, since pressure is imposed strongly on layer L' and the effect of a non-smooth

2] denotes the number of extrapolation layers set up by the user.
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pressure boundary condition may be still felt on layer L. The extrapolation of pressure
(and pressure gradient) is thus started from the inner layer (L™'), which guarantees a
much smoother behavior of the extrapolation area.

In symbols, we define the pressure gradient on each node i of a given layer k, as the
arithmetic average (avg) of all of its neighbors j which belong to the layer of lower order,
ie.

Vpl = avg (fo’l) Vk=0.nl icLF jeLF! (2.115)

Given such pressure gradients, pressure is then evaluated on node 7 so as to maintain

the extrapolated pressure gradient, that is
pf=avg (py 4+ hy - VP ) Ve =0.nl i€ L* je L' (2.116)

where h;; := x; — x; is the vector from i to j.
The extrapolation of the velocity is performed in a very similar way, with the only
difference that the extrapolation starts from layer L% not from L' (see Figure 2.8 for

a graphical representation).
uf = avg (uﬁf_l) Vk=1.nl ic L’ jec L' (2.117)

The extrapolation procedure described above provides a prediction of the velocity and
pressure fields that is likely to be found outside of the pressure domain. Such extrap-
olation is performed before convecting the distance function, and should be extended
sufficiently far to cover all of the area upon which the fluid domain is likely to extend dur-
ing the following time step. It should be remarked that the data structure that contains
the different layers should be updated every time the distance function is convected.

It is interesting also to observe that the choice of using the strong form of the pressure
gradients in the momentum equations appears at this point to be beneficial. The idea
is that since the pressure gradient was not integrated by parts, no boundary integral of
the pressure is needed on the free surface (in the solution of the momentum equation)
and the only thing needed on any fluid element (including the elements cut by the
free surface) is the correct computation of the pressure gradient, which is automatically

available once the pressure is extrapolated as described.

Remark 13. The data structure that contains the different layers should be updated

every time the distance function is convected.
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Remark 14. The extrapolation of pressure and pressure gradient is necessary only in
the edge-based formulation in order to approximately prescribe the zero pressure condi-
tion on the free surface, as it will be explained in Section 2.6.4. For the element-based

formulation a virtual sub-splitting is proposed and no pressure gradients are needed.

2.6.3 The distance function

Once the convection operation has been performed the level set function is no longer the
Euclidean distance function presented in 2.110. To recover its original nature a tool to
re-evaluate the nodal distance from the new calculated free surface, has been developed.
Due to the dynamic nature of the analyzed problem, a redefinition of the fluid domain
Q:={xe€Q | ¢(x) <0} is necessary at each time step. In the present section the
methodology for the calculation of the distance field is described. The 3D case is taken
into account although the 2D case has also been implemented. For the calculation of
the distance field of the domain )3, numerical methods have to be employed because
the use of analytical solution is not trivial. The method proposed by Elias, Martins
and Coutinho (see [56] for more details) is taken as a reference. It takes its origin from
the Fast Marching Method (FMM), a technique, first developed by Sethian (see [114]),
for the computation of the arrival time of a front. In the FMM the Eikonal equation

(equation 2.118) is given as a boundary condition

IVT| - F =1; (2.118)

where 7' is the time arrival of the front and F' is the speed of the front. That means
that T'(p) is the time arrival of the front to point p. Taking F' =1, T'(p) is nothing but
the distance missed by the front to arrive at the point p. That means that

function T coincides with the signed distance function ¢ adopted in the present work.

VT = Vel

The key idea of Elias and coworkers, that makes the difference from the FMM, was the
use of a finite element interpolation for the calculation of the level set function p(x,1).

For each element its gradient is then discretized as follows

Vel = B d|; (2.119)
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where d?' = (dy, dy, ds, d4) is the vector of the nodal distances of a tetrahedral element,
and B

Niz Niy Ni.
1 Noyp Nay Na.
60 N3, N3, Ns.
Nyz Nyy Ny

is the matrix of the derivatives of the shape functions in the three cartesian directions.
Then

P Ny zdy + Ny zdo + N3 pds + Ny pdy;
0y | = | Niydi+ Noyds + N3 yds + Nyydy; (2.120)
P,z Ni.dy + N .dy + N3 ds + Ny .da;

Therefore, equation 2.118, with F' = 1 can be written as

(%) + (5% + (¢5.)* = 1 (2.121)

That means that if the distance of three over four nodes of a 3D element is known
(suppose known dj, dy, d3) the value of dy can be easily calculated. Considering the
following simplification:

dy, = Njgdy + Noydy + Ns,ds;
dy == Nl,ydl + N2,yd2 + N37yd3; (2122)
dz - Nl,zdl + NQ,zd2 + N3,zd3;

and substituting equation 2.122 into equation 2.121 it results

(dy + Nyods)® + (dy + Nyyds)?® + (d, + Nyody)? = 1. (2.123)

Equation 2.123 is a second order equation where the only unknown is dy. The maximum
value between the two possible solutions of equation 2.123 will be the solution of the
problem. In the case of an imaginary solution, it is possible to define the distance
function arriving from another element. If this is not possible, the node will be skipped
and the solution will be interpolated at the end of the loop [56].

Using a fixed mesh approach the free surface will not necessarily coincide with a layer

of nodes but it will cut the elements. This means that the distance values of at least
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one layer of nodes have to be known in order to define the initial conditions for starting
the above described procedure. The problem is solved by evaluating in a different way

the distances of the nodes of those elements crossed by the interface.

Figure 2.9: Calculation of nodal distances d; on the nodes ¢ of one element cut by the
free surface.

Once all these elements are identified, for each of them the steps are the following:

1. Calculate the coordinates of point A of Figure 2.9. It is one of the points of

intersection between the convected free surface and the element edges;

2. Calculate the distance of any node to point A (d;4 with i =0, ..., nys).

In Figure 2.9 they are represented by the blue dotted arrows;
3. Evaluate V. It is the gradient of the level set function inside the element;

4. Calculate the components of the distances d;4 in the direction of Vi

Vo

di = dia o
Vel

(2.125)

where d; are the distance values of the nodes from the new free surface (blue arrows in
Figure 2.9).
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Once these initial conditions are defined, a loop over all the elements is performed, in
order to identify those elements whose nodal distances are all known but one. Equation
2.123 can then be used.

2.6.4 Prescribing the boundary condition on the free surface
o,

Finally the last important issue is the imposition of the zero pressure boundary condi-
tions on the evolving free surface 0€2,, at each time step. In boundary fitting meshes,
the imposition of boundary conditions is straightforward, since the whole boundary of
the domain coincides with some edges or faces of the mesh. This is not possible if a fixed
grid approach is used, as there are no element edges which define the free surface of the
domain. This requires devising some alternative strategies to prescribe boundary con-
ditions. Reading [40] is recommended to have an overview of many different fixed grid
approaches and respective technique to assign boundary conditions. In the present work
two different methods are implemented in the element and the edge-based approaches.
In the first case a virtual splitting of the elements is performed at each time step in
order to consider in the calculation only the fluid portion of the element divided by the
free surface. In the edge-base case an approximate technique using the extrapolated

pressure gradients is presented.

Element-based approach

In the element-base approach a virtual splitting of the elements cut by the free surface
is performed without modifying the global degrees of freedom of the problem. This is
done in order to evaluate the integrals only on the portion of the element covered by
fluid.

When an element is crossed by the free surface, it is split in 4 virtual sub elements. If
an edge is crossed by the free surface, a linear interpolation of the distance values of the
nodes is performed in order to identify the point of intersection between the free surface
and the edge itself, if not, the virtual point is set in the middle of the edge.

In Figure 2.10(b) an example of splitting is shown. The position of node 3 and 4 is
calculated with a linear interpolation of the distance value of the nodes 0 — 2 and 2 — 1
respectively. Node 5 is finally placed in the middle of the edge 0 — 1. Four virtual sub

elements are identified and their geometric and material characteristics are calculated,
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e.g. their Gauss points (called auxiliary Gauss points), their area, density, viscosity and

SO Oon.

(a) Free surface elements (b) Virtual division in sub ele-
ments

Figure 2.10: Splitting procedure for the elements cut by the free surface.

A numerical integration on the four auziliary Gauss points (aGPi in Figure 2.10(b))
is performed but only the contribution of the fluid part (i.e. sub-elements 0 — 5 — 4,
4—5—3and 5—1— 3) is assembled in the global system. Just as an example, looking
at element 0 — 1 — 2 of Figure 2.10(b), any X degree of freedom of node 0 will be given
as the sum of the values of X evaluated on aGP0, aGP1,aG P3 multiplied for the area
of the respective sub-elements. On the contrary sub-element 2 — 4 — 3 is not taken into

account as it is not a fluid element.

Edge-based approach

Despite its advantages, the pressure extrapolation described in Section 2.6.2 does not
impose in any way the traction-free condition on the free surface. This is done in the
second step of the fractional step procedure, by fixing the value of the pressure at the
time step n + 1 so that the pressure field is zero on the free surface.

Since the free surface cuts the element at an arbitrary position, as already explained in
the previous sections, no nodes are available for directly fixing the pressure In the case
of the edge-based procedure, an additional difficulty is that element splitting of the cut
elements, as described in the previous section, and the subsequent integration only on
the fluid portion, is impossible within an edge-based formulation unless one wants to
recompute the edges and lose efficiency.

The chosen approach is to consider correct the predicted pressure gradient in the vicinity
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of the free surface. Therefore pressure at nodes laying in L' is fixed so to guarantee
that its value is zero on the free surface, provided that the pressure gradient is kept
fixed. Note that in doing so layer L' should be recomputed since it does not necessarily
coincide with the one used in the extrapolation step.

The idea is to evaluate the gradient of pressure of node i (€ L') in the direction of the
distance (which is the gradient of the level set function) and calculate the pressure at
nodes ¢ considering a zero pressure on the free surface whose distance from node 7 is

known and then interpolating linearly.

4

Vp; - —oLi 5 i ;
P iVl & bi

[FLUID DOMAIN ©)]

Figure 2.11: Graphical explanation of the evaluation of pressure on the first layer of non
fluid nodes in order to respect the incompressibility condition.

Defining as i-patch the cluster of elements whose node i belongs to (elements 1 — 6 of
Figure 2.11), pressure on node i is evaluated as the value of the level set function on
node 7 times the gradient of pressure in the direction of the gradient of the level set

function itself, i.e.

gOnJrl

where V!

"tand ||V | are the gradients of the level-set function at node i and its Lo

norm respectively and 7 is the level-set function itself. V't

7" is calculated considering

the contribution of the gradient of the level-set function on each edge concurring on

node i. For instance edges ij, (with p = 1,2, ..,6) of Figure 2.11.
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Remark 15. It is important to observe that Eqn.2.126 is the only point at which the
level set function is actually required to be a distance. Since its value is only needed on
L', it is convenient to recompute it as accurately as possible at every time step. This
can be done geometrically for the elements crossed by the zero of the level set function

with a minor computational cost.

Remark 16. The correct calculation of the residual of the momentum equations would
have required integrating only on the fluid area of the cut elements. This is impossible
within an edge-based formulation, unless one wants to recompute the edges and lose
efficiency. In this work it is accepted to integrate on the whole element area considering
that both the body force and the pressure gradient are extrapolated on the outside of
the fluid. This is acceptable for most situations and is exact for the hydrostatic case
where the gradient of pressure and the body force exactly cancel each other (see Section

2.8.1 for an empirical verification).

2.7 The algorithm

The steps of the global algorithm are finally summarized in the box below.

Element-based algorithm

1. Given the level set function ", extrapolate velocity, pressure and pressure
gradient so to obtain ul,, p7., and Vp?,, defined as the velocity, pressure and

pressure gradient over the extrapolated domain.

2. Convect the level set function ¢ defining the new free surface at "*! using u”
and ul,,. Note that the extrapolated values are only required within a limited
number of layers which are the ones on which the convection will be actually

performed.

3. Re-calculate (if needed) the distances in the whole domain starting from the

zero of the level set function at ¢"*! obtained at step 2.
4. Check split elements and assemble only the fluid sub-elements contributions;
5. Solve the monolithic system:;

6. Move to next time step.
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Edge-based algorithm

1. Given the level set function ", extrapolate velocity, pressure and pressure

n

gradient so to obtain ul,,,

o, and Vpl . defined as the velocity, pressure and

pressure gradient over the extrapolated domain.

2. Convect the level set function ¢ defining the new free surface at "' using u”

and u”

vt Note that the extrapolated values are only required within a limited

number of layers which are the ones on which the convection will be actually

performed.

3. Re-compute (if needed) the distance in the whole domain starting from the

zero of the level set function at "' obtained at step 2.

4. Solve the momentum equations 2.91a. Note that the solution is performed on

the domain at the predicted free surface position (™).

5. Set the approximate pressure boundary conditions on 9Q"*! so to guarantee
that the pressure is (approximately) zero at the position indicated by the zero of
the level set function. In order to do that, the geometric distance is evaluated on
L.

6. Solve for the pressure (equation 2.91b).
7. Solve for the correction (equation 2.91c).

8. Move to next time step.
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2.8 Numerical examples

In the following sub-sections a series of benchmark tests are presented. First two very
simple examples are presented to compare the element-based and the edge-based free
surface algorithms for a variable porosity medium.

Their performance is analyzed both in the static case (Section 2.8.1) and in the dynamic
one (Section 2.8.2). In both cases the analytical solution is known and is compared with
the numerical one obtained.

The mass conservation capability is then analyzed both in a 2D and in a 3D example.
No porous media is considered because its presence has been verified to help mass
conservation thanks to the introduction of an additional dissipative effect.

All the 3D examples are only performed with the edge-based algorithm being the only
one implemented in 3D.

In the last part of the section the edge-based technique for free surface flows (without
porous medium) is tested in a series of examples and its results are compared with

results obtained with a Lagrangian approach using the Particle Finite Element Method
(PFEM).

2.8.1 Still water example

The still water example allows to verify the correct calculation of pressure in a variable
porosity medium.

The domain of analysis is a square of 10m edge. The right hand side of the domain is
porous (n = 0.5) whereas the left hand side is not (n = 1), as shown in Figure 2.12. The
level of water is set at y = 5m and slip boundary conditions are imposed on the bottom
and on the side edges. Gravity is 10m/s*. Pressure is expected to vary linearly from
0Pa at the free surface till 50000Pa at the bottom independently from which vertical
section is chosen.

The element-based algorithm reproduces perfectly the expected distribution. The dis-
tribution of the iso-lines of pressure can be seen in Figure 2.13(a). No oscillations are
formed in the element-based example, confirming the exact imposition of the pressure
boundary condition on the free surface via the element splitting technique described in
Section 2.6.4.

For the edge-based algorithm, although the free surface does not move, a small oscil-

lation on the pressure is observed. This is caused by the approximated imposition of
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Figure 2.13: Pressure distribution.
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the zero pressure condition on the free surface (see Section 2.6.4). The oscillation of the

bottom pressure is shown in Figure 2.13(a).
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Figure 2.14: Pressure distribution in a vertical section. Comparison between the two
algorithms.

Figure 2.14 finally shows the pressure distribution along a vertical section for both
algorithms and it is compared to the analytical solution. The negative pressure of the
first node above the free surface is the consequence of the imposition on the cut elements

of the zero pressure condition on the free surface 2.6.4.

2.8.2 Water flowing through two materials

The second example aims to analyze the behavior of the free surfaces algorithms when
a variable porosity medium is present in dynamic conditions. The domain of analysis is
a square of edge 10m. Only the upper part is porous with porosity n = 0.5 while the
lower part corresponds to a pure air material (n = 1). A vertical entrance of water is

set from the bottom edge. Slip boundary conditions are imposed to the vertical walls
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Figure 2.15: Geometry, structured mesh and conditions of the two material model with
bottom incoming water.

and 0Pa pressure condition is set, in the case of the edge-based algorithm, to the upper
side. The mesh is structured as shown in Figure 2.15.

In the sequences presented in Figure 2.16 the free surface line is perturbed when entering
the porous media. Nevertheless it recovers the horizontal plane shape as soon as the
discontinuity has passed.

Figures 2.17 and 2.18 show the distribution of pressure in the vertical central section of
the two models, when the water level is 2.5m and 9.9m respectively. A comparison with
the analytical results is presented. There is a very good accordance of pressure values
in the case that no porous media is still present, as can be seen in Figure 2.17. The
element-based algorithm perfectly calculate the pressure distribution also when water

has entered the porous media. On the contrary the error of the edge-based algorithm is
not negligible (Figure 2.18).
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Figure 2.16: Evolution of free surface for both algorithms.
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(c) Pressure distribution in a vertical section

Figure 2.17: Pressure distribution when water level reaches 2.5m from the bottom.
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Figure 2.18: Pressure distribution when water level reaches the top.
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2.8.3 Mass conservation
2D vertical column Edge-based and element-based method

A second example has been performed in order to check the mass conservation capability
in both algorithms. No porous media has been considered (n = 1) because its dissipative
effect has been shown to help the mass to be conserved. The worst case is then analyzed.
A rectangular domain of 5m width and 10m height is set. A discharge of 1m?/s is
entering the domain from the bottom edge. The inlet vertical velocity is then 0.2m/s.
Slip boundary conditions are imposed on the vertical edges and zero pressure is imposed
on the upper edge (only for the edge-based formulation).

Two different meshes are considered as shown in Fig.2.19.
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Figure 2.19: Geometry, mesh and conditions of the mass conservation model.

A good conservation of mass is seen in both algorithms. Figures 2.20 and 2.21 show
the evolution of the free surface at 10 — 20 — 30 — 40 — 50 sec respectively.
3D Vertical column edge-based method

In the present example a vertical rectangular column with an inlet in the bottom side

and an outlet on the top face is simulated. Geometry and conditions of the present
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Figure 2.20: 2D Vertical column. Element-based algorithm. Evolution of free surface

at 10 — 20 — 30 — 40 — 50 sec.
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Figure 2.21: 2D Vertical column. Edge-based algorithm. Evolution of free surface at

10-20-30-40-50 sec.
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example are taken from [43| (although in that case the interaction between two fluids
with different specific weight was taken into account). Nevertheless the problem presents
the same difficulties of maintenance of a flat free surface both in the transitory and in
the stationary regime.

The problem has been studied using two meshes: a structured one and an unstructured
one (Figure 2.22).

STRUCTURED UNSTRUCTURED
Medium Medium  Coarse
n. nodes. 2981 1210 723
n. elem 13800 6117 3720
elem length [m] - 1 1.2
elem per side 5 x5 x20 - -

Table 2.6: 3D vertical column. Number of nodes, number of elements, elemental length
(unstructured meshes) and number of elements per edge (structured mesh) of the meshes
considered in the analysis.

Figures 2.23 and 2.24 show the evolution of the free surface (identified with the zero
of the level set function (¢ = 0) during the filling process. Considering that the free
surface at time t = 0 is located at h = 1m from the bottom and the velocity inlet is
v = 1m/s a very good agreement with expected level of the free surface can be noticed
at each time step (Figures 2.23 and 2.24). In both cases the expected level of water at
2s, 6s, 10s, 14s and 18s is respected and it is 3m, Tm, 11m, 15m and 19m respectively.
No oscillations are observed neither for the unstructured nor the structured mesh.

If a lateral entrance of water is considered and the value of inlet velocity is decreased
to vy, = 0.1m/s (see Figure 2.25 for the details on the geometry and the boundary
conditions considered), the improvement of volume conservation explained in Section
2.5.5 plays a relevant role. Two meshes are considered for the calculation: a coarse and
a fine one whose characteristics are summarized in Table 2.7 and shown in Figure 2.27.
Figure 2.26(a) shows the beneficial effect of the volume correction. The expected level
of water is compared with the one calculated for the fine mesh model with and without

volume conservation improvements. On the other hand, it is important to observe that
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Figure 2.22: 3D vertical column. Geometry and mesh taken into account.
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Figure 2.23: 3D vertical column. Structured medium mesh. Evolution of free surface
for 1m/s bottom incoming velocity. On the right of each snapshot the expected level is

indicated.
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Figure 2.24: 3D vertical column. Unstructured medium mesh. Evolution of free surface
for 1m/s bottom incoming velocity. On the right of each snapshot the expected level is

indicated.

with the volume correction, no relevant changes are observed when a coarser mesh is

employed (observe graph 2.26(b)).
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Figure 2.25: Mesh and geometry of the vertical channel with lateral entrance of water
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Another important aspect is that the use of the volume correction leads to a flat free
surface reducing the oscillations. This can be observed by comparing Figures 2.27(a)
and 2.27(b) where the volume correction is used in both the fine and coarse mesh with

Figures 2.27(c) where not.

Fine Coarse
n. nodes. 12100 3050
n. elem 61 600 14 400

Table 2.7: Vertical column with lateral entrance example. Number of nodes and number
of elements for the meshes considered in the analysis.

w
w

- EXACT SOLUTION / - EXACT SOLUTION J
--------- FINE WITHOUT VOLUME CORRECTION —— FINE WITH VOLUME CORRECTION /

—— FINE WITH VOLUME CORRECTION --- COARSE WITH VOLUME CORRECTION

WATER HEIGHT [Pa]
WATER HEIGHT [Pa]

0 50 100 150 200 0 50 100 150 200
TIME [s] TIME [s]

(a) With or without volume correction. Fine (b) With volume correction. Coarse and fine
mesh. mesh.

Figure 2.26: Vertical column with lateral entrance example. Level of water in terms of
time.
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2.8.4 Comparison of the level set algorithm with PFEM

In this section the performance of the edge-based level set approach are compared with
the capability of the particle finite element method (PFEM). PFEM is a well established
numerical method whose own nature makes it very appropriate to simulate free surface
flows and breaking waves. The consultation of [67, 75, 93, 96, 100] is recommended
for an overview of its principal features. More details on the method are presented in
Chapter 3 of the present work. The comparison of the presented level-set approach with
PFEM can be very challenging and can represent a good validation of the developed

free surface tool.

2.8.5 Flip bucket

The present example reproduces an experiment carried out by Hager and coworkers
whose results can be found in [70]. The performance of the present level set technique
is compared with the results obtained using PFEM [67, 98, 100] and published in |75].
The geometry data, initial and boundary condition can be found in [75]. The case with
Froude number 5 is considered. The control domain and the mesh used can be seen in

Fig.2.28 and 2.29 respectively.

WATER
ENTRANCE

=3.5mispm"
v =3amisr CONTROL DOMAIN

SLIP CONDITION

SLIP BC

SLIP CONDITION

Figure 2.28: Geometry and boundary condition of the flip bucket example.

Figure 2.29: Mesh of the flip bucket example.

An entrance of water is imposed in the left side. After a transitory phase shown in

Figure 2.30 the stationary regime is achieved and pressure is registered on the bucket
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e
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Gl
Figure 2.30: Sequence of the transitory phase of the jet.

as shown in Figure 2.31(a). The jet shape is also compared in Figure 2.31(b) where the
darker line is the level set whereas the lighter represents the PFEM results.

A good agreement with experimental pressure along the bucket can be seen in Fig-
ure 2.31(a). The black points are the experimental results found in 70|, whereas the

continuous line and the dotted line are the level set and the PFEM solutions respectively.

2.8.6 3D dambreak

The present example is a 3D dam break example already studied by the authors in [75]
using PFEM.

Data are taken from the experiments performed at the Maritime Research Institute
Netherlands (MARIN) for breaking dam flows [72]. Several numerical results of this case
study are available in literature for VOF techniques. This is the case of [72] employing
Cartesian grids, or [54] using an edge-based approach. Finally other level set simulations
can also be found. Among others, in |7, 71|, an application of isogeometric analysis is
presented.

The water column is left free to fall over a step where pressure sensors are set following
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Fr5

1.0r

PRESSURE HEIGHT [m]

EXPERIMENTAL
--- PFEM

—— LEVEL-SET

(a) Pressure distribution on the bucket. Experimental and numerical compar-

ison.

X [m]

Fr5
- == Parabolic motion
o —— PFEM
— LEVEL SET
0.5
I:I.IE
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(b) Jet trajectory. Relative comparison.

Figure 2.31: Level set and PFEM comparisons in the pressure head calculation and the

jet development
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the scheme of Figure 2.32. The details of geometry can be found in [54].

0.403m

Figure 2.32: Geometry and boundary condition of the 3D dam break example. On the
lower left corner a zoom on the pressure sensors distribution on the step

Two meshes are considered in the present work, their characteristics are detailed in

Table2.8 and they are shown in Figure2.33.

Mesh A Mesh B

n. nodes. 51627 392130
n. elem 296 157 2310984

Table 2.8: Dam break example. Number of nodes and number of elements of the two
meshes considered in the analysis.

A sequence of the falling of the water column can be seen in Figure 2.34 where the free

surface evolution is plotted for the two meshes considered.
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(a) Mesh A. (b) Mesh B.

Figure 2.33: The two meshes considered. On the left Mesh A of 296 157 and Mesh B of
2310984 tetrahedra.

(a) Mesh A. (b) Mesh B.

Figure 2.34: Evolution of the dam break at 0.4s, 0.6s and 2.0s. Comparison between
the results obtained with meshes A and B.
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The pressure evolution in time obtained with the two meshes is compared in Figures
2.35-2.42 with experimental results and PFEM results taken form [75].

16000 Rl

‘ ‘ ‘ — EXPERIMENTAL
140000 [ prEM

12000 | ... |- LEVELSETmeshA||

e—e |EVEL-SET mesh B

10000

OO [

6000~

PRESSURE [Pa]

4000}

20000 fp VIR TNy

0
—20005 1 2 3 4 5 6
TIME [s]

Figure 2.35: Pressure evolution on P1 on the vertical face of the step indicated in Figure
2.32. Comparison of level set, PFEM and experimental results.

A better behavior of the Eulerian approach with respect to PFEM can be observed
especially with mesh B. Mesh refinement improves the accuracy of the solution and the
capability of catching the second pressure waves with a correct timing, whereas a clear
delay can be noticed for the coarse mesh (mesh A).

PFEM uses an unconditional stable scheme which leaves more freedom in the choice
of the time increment than in the semi-explicit scheme of the Eulerian method. Nev-
ertheless PFEM needs a frequent re-meshing procedure for which no parallelization is
available yet. This aspect considerably slows down the time performance of PFEM in

comparison with a parallel fixed mesh approach.
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P2
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DO |-
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8000
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4000~
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Figure 2.36: Pressure evolution on P2 on the vertical face of the step indicated in Fig.
2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.37: Pressure evolution on P3 on the vertical face of the step indicated in Fig.
2.32. Comparison of level set, PFEM and experimental results.



92

The fluid problem
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Figure 2.38: Pressure evolution on P4 on the vertical face of the step indicated in Fig.
2.32. Comparison of level set, PFEM and experimental results.
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Figure 2.39: Pressure evolution on P5 on the top face of the step indicated in Fig. 2.32.
Comparison of level set, PFEM and experimental results.
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10000 P6 1 1
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Figure 2.40: Pressure evolution on P6 on the top face of the step indicated in Fig. 2.32.
Comparison of level set, PFEM and experimental results.
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Figure 2.41: Pressure evolution on P7 on the top face of the step indicated in Fig. 2.32.
Comparison of level set, PFEM and experimental results.
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10000 P8 : :
— EXPERIMENTAL
~— PFEM
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Figure 2.42: Pressure evolution on P8 on the top face of the step indicated in Fig. 2.32.
Comparison of level set, PFEM and experimental results.

2.9 Conclusions

In this chapter the approach to numerically treat the problem of flow in a variable
porosity medium has been presented. After the choice of the resistance law to be used

in the algorithm, the two solution methods developed have been presented in detail:

e Element-based algorithm. It uses a monolithic approach to solve the weak form
of the balance equations that are stabilized using an ASGS technique. A fully

implicit method is used and a Bossak time integration technique is chosen.

e Edge-based algorithm. In this case a fractional step approach is used to solve
the balance equations that are stabilized using an OSS stabilization technique. A

semi-explicit method, i.e. a 4th order Runge Kutta scheme is implemented.

In both cases only simplicial meshes (3-noded triangles or 4-noded tethraedra) are taken
into account.

The dynamic free surface tracking is done using a level set technique described in the
second part of the chapter. An explicit extrapolation is performed in order to define

the values of velocity on a band containing the free surface of the fluid. The level



Conclusions 95

set function (equation 2.110) is updated solving the problem 2.114. Points with zero
distance function identify the new free surface. The calculation of the distance function
is performed as detailed in Section 2.6.3.

Both algorithms have shown a good performance in the simulation of free surface simple
problems in presence of a variable porosity medium. Mass conservation is acceptably re-
spected thanks to the improvement presented in Section 2.5.5. Nevertheless the element-
based approach still needs some effort in order to be used for the simulation of large
problems. It is still limited to 2D problems and no parallel structures have been imple-
mented yet. These aspects make the element-based algorithm to lose competitiveness
compared with the edge-based one.

The performances of the edge-based semi explicit algorithm for the simulation of the
free surface problems have been also compared with PFEM. The results show that the
Eulerian algorithm better represents the pressure peaks both in the dam-break and in the
flip-bucket examples. The parallel structure helps to have very good time performances
despite of the small time step imposed by the conditional stable method.

On the basis of above considerations, the edge-based approach has been chosen for the
study of real experiments on prototype embankments dams in Chapter 5 where a more

extensive and complete validation of the algorithm can be found.
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Chapter

The structural problem

In this chapter an algorithm to simulate the behavior of the granular non-cohesive
material used in rockfill dams is proposed. Taking into account the high deformation
the structure might be subjected to and the intrinsic incoherence of the rocks, the
constitutive law of a non-Newtonian high viscosity material is chosen. After an overview
of the traditional non-Newtonian relationships, a regularized Bingham model is selected
and implemented as a starting point. This approach presents severe limitations in the
simulation of granular behavior having a constant yield threshold. To overcome this
issue a variable yield model using a Mohr Coulomb failure criteria is proposed in the
second part of the chapter.

The weak form of the problem is then obtained and the numerical technique adopted
is presented. The Lagrangian Particle Finite Element Method (PFEM) is chosen for its
wide flexibility. In fact the structural domain is expected to undergo severe deformations
as the failure progresses and therefore a Lagrangian approach is a natural choice.

In the last part of the chapter the validation of the Bingham model is performed through
some benchmarks and the effectiveness of the proposed variable yield model is tested in

some examples.

3.1 Introduction

In the present work, the simulation of the structural response of a slope made of granular
material has been faced using a continuous approach despite the intrinsic incoherent

nature of the rockfill. This is an acceptable choice under the assumption that the
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rockfill size is small with respect to the overall size of the structure.

Nevertheless it should be mentioned that in recent years, the great advance in computer
performance and in parallel computing has allowed the simulation of the mechanical
behaviour of every single particle of a granular slope. The family of the so called discrete
(or distinct) element methods (DEM) has been reaching a widespread popularity in the
computational mechanics community. Their basic idea is that every particle is a discrete
element interacting with the others considering its mechanical and material properties.
This can be a valid alternative to the model presented in this chapter and it is actually
being implemented by other researchers at CIMNE.

The adoption of a continuous approach leads to an additional requirement: the choice
of a suitable constitutive law. Many plastic or rigid-plastic constitutive models are
commonly used in geomechanics to describe the structural response of an incoherent
non-cohesive material. It is usually accepted that a rockfill slope has the capability to
support a certain amount of shear stress with almost no elastic strains before starting
large deformations. When the yield stress is reached the material starts to flow until
arriving to a stable configuration. It should be noted that the behaviour of the yielded
material is more similar to the flowing of a fluid than to the process of deformation of
a solid. On the other hand, in literature there exists a wide category of fluids which
exhibits a rigid behaviour till reaching a yield threshold. They are part of the family of
the so called non-Newtonian fluids.

These aspects, together with the natural way of managing large deformations in fluids,
lead us to concentrate on variable viscosity models for the calculation of the structural
part instead than on any other plastic or damage model. Consequently, a non-Newtonian
constitutive law has been adopted for the rockfill body. This implies that the rockfill
stiffness is controlled by very high values of the viscosity. Only when the yield threshold
is exceeded, the viscosity dramatically decreases and the material starts lowing. When
the material stops its motion, the viscosity recovers its initial values for which the stress
level does not exceed the yield limit.

The model developed in this work has its origin in the traditional Bingham plastics
using the regularization proposed by Papanastasiou to overcome numerical problems
induced by the bilinear stress-strain curve [104]. Nevertheless in order to include a Mohr-
Coulomb failure criteria (without cohesion), the possibility of considering a variable yield

level is introduced.

The two constitutive models with constant and variable yield, are presented at the
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beginning of the present chapter after a brief overview on non-Newtonian models.

The equations governing the structural problem are studied in their weak form arriving
to the algebraic solution system which is solved with a fully implicit approach. A stabi-
lized, equal-order, mixed velocity-pressure element technology is chosen so to guarantee
a locking free behavior. In fact Cervera and coworkers have demonstrated that the use of
a mixed approach is the appropriate framework for dealing with localization problems in
incompressible and quasi-incompressible problems. They have successfully applied this
approach in solid mechanics in plastic and damage models using linear/linear elements,
providing a suitable stabilization technique [25-29, 32].

Since the structural domain is expected to undergo severe deformations as the failure
progresses, the kinematic model has to adapt dynamically to such deformations. The
Particle Finite Element Method (PFEM) provides the necessary flexibility with a pow-
erful remeshing mechanism [75, 100]. Its features are described in the second part of
this chapter.

In the last part of the chapter some examples are inserted to validate the Bingham
model and to appreciate its differences with respect to the proposed variable viscosity
approach. Finally some dambreaks of granular slopes with different frictional angles
are simulated to verify that the model correctly reproduces the expected mechanical

properties.

3.2 Structural constitutive law. An overview of non-

Newtonian models

In Chapter 2 the constitutive model of a Newtonian fluid was used to describe the stress-
strain behavior of water. The stress tensor can be decomposed in its hydrostatic and

deviatoric parts as follow

o=-—pl+7=—pl+2pue(u), (3.1)
where

g(u) := Véu = %(Vu + (Vu)T), (3.2)

The deviatoric part of the stress tensor 7, is therefore linearly related to the rate of

strain e(u) through the constant viscosity f.
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Fluids for which the relations between 7 and e(u) is not constant, are called non-
Newtonians. In this case viscosity cannot be considered as a property of the material
as it is strictly dependent on the deformation process. This classification is very general
and includes a wide range of different constitutive relations. In order to briefly classify
the different non-Newtonian fluids, let’s consider the 1d problem and let’s define an

apparent viscosity [i like the ratio between the shear stress 7 and the shear rate

=) = 3 (3:3)

According to Chhabra [31] a possible classification of the non-Newtonian fluids is the

following:

- Fluids with time independent behavior: those for which the current shear stress
is function only of the shear rate 7 = 7(%). In function of the evolution of their

apparent viscosity, they can be divided in:

1. Shear-thinning or pseudo-plastic fluids. Their apparent viscosity gradu-
ally decreases when increasing the shear rate. This is the case of polymeric

systems like melts and solutions.

2. Shear-thickening or dilatant fluids. Their apparent viscosity increases when
the shear rates increases. This behavior is observed in concentrated suspen-

sions, for instance.

3. Visco-plastic fluids (with or without shear thinning behavior). They are
characterized by the existence of a threshold stress, the yield stress, which
must be exceeded for the fluid to deform. For lower values of stress the visco-
plastic fluids are completely rigid or can show some sort of elasticity. Once
the yield stress is reached and exceeded, they can exhibit a Newtonian-like
behavior with a constant apparent viscosity (Bingham plastics fluids) or not,

showing a shear thinning behavior (yield-pseudoplastic fluids).

- Fluids with time dependent behavior: their apparent viscosity is not only a
function of shear stress and shear rate but also of the duration of the application

of the shear stress and of its kinematic history. They can be classified into:

1. Thixotropic. Under a constant shear their apparent viscosity decreases with

time. A typical thixotropic material is the cement paste.
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2. Rheopectic. Under constant shearing their apparent viscosity increases with

time. For instance printers inks belong to this group.

A schematic overview of the relation between shear stress and rate of strain for different

non-Newtonian models can be observed in Figure 3.1.

NEWTONIAN .=
S— DILATANT P
— — _ PSEUDOPLASTIC PR

BINGHAM -

———— VISCOPLASTIC _,/'

SHEAR STRESS

T0 W

SHEAR RATE

Figure 3.1: Qualitative flow curves for the different categories of non-Newtonian fluids.

A deep analysis of non-Newtonian fluids behavior falls outside the scope of this work.

For a comprehensive review of the topic see |24, 31, 44|.

3.2.1 Constant yield: the Bingham model

It was in 1919 when Eugene C. Bingham, while studying a possible constitutive model
for paints, discovered that their deformation was almost absent till reaching a threshold:
the yield stress. After exceeding this stress limit they followed a Newtonian behavior.
According to Papanastasiou [104] a wide range of materials have been identified to have
a yield threshold. Bird [15] was the first to give, in his book, a lists of several Bingham
plastics, most of these products came from food or chemical industry. Among them we
can list for instance slurries, pastes, nails, or food substances like margarine, ketchup,

mayonnaise and others.

The 1D constitutive relation for a Bingham plastic can be defined as follows. Being 7
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the yield stress

"}/ =0 if T < Ty
1 3.4
¥o=—(t—m1) if 7> (3.4)
Hs

where 7 is the rate of strain, p is the dynamic viscosity and 7 the shear stress.

Figure 3.2 shows the difference between a Newtonian and a Non Newtonian fluid.

— Bingham plastic
- - Newtonian fluid

S SHEAR STRESS

RATE OF STRAIN

Figure 3.2: Comparison between a Newtonian fluid and a Bingham fluid behavior with
a yield stress 7g.

Equation 3.4 can be rewritten as
7o\ . .
T = (Ms + f) ¥ if 7> 1. (3.5)
Y

Special care should be taken in equation 3.5 when the level of stress is lower than the
yield stress. In this case, according to equation 3.3, the apparent viscosity approaches
infinity, i.e. it — oo as ¥ — 0. This behavior might induce numerical difficulties, some
smooth laws are usually preferred. Nevertheless some authors [80] tried to simulate what
is called bi-viscosity model but their predictions leads to inconsistencies. Consequently,
in the present work the regularized model proposed by Papanastasiou [104] is chosen as
a starting point for the development.

Following the ideas presented in [104], equation 3.4 is regularized as follow
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T= {us + % <1 — emﬂ ¥, (3.6)

where m is a regularization parameter that controls the approximation to the bilinear

model as shown in Figure 3.3. The apparent viscosity is defined as
~ /. TO —mA
[i(Y) = ps + B <1 —e ”), (3.7)

Referring to equation 3.7, the problems connected with the singular point of the bi-
linear model are here avoided. In fact, in the un-yielded zone the shear strain rate

=+ T19om as y — 0.

— Bingham plastic
- - Newtonian fluid
| e Regularized models

5] SHEAR STRESS

RATE OF STRAIN

Figure 3.3: Newtonian and Bingham fluid compared with the regularized model for
increasing values of the m parameter.

In order to introduce the constitutive model for 3D problems, the following equivalent
strain rate v and yield stress 1y are defined as the second invariants of the rate of strain

tensor (€) and of the deviatoric part of the stress tensor (7), respectively.

5 — (%r—: ; s)% (3.8)
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1 3
To = (57 : ‘r) (3.9)
Equation 3.6 becomes for 3D problems as
70 s
T =2 {us + — (1 —e T’W)] e(u), (3.10)
Y
where

() = s + %(1 - e—””), (3.11)

3.2.2 Variable yield visco-rigid model

The Bingham model presented in the previous section was conceived for materials with

a fixed yield stress. For granular materials, the definition of the yield stress depends on:
- The characteristics of the rockfill (its internal friction angle).

- The presence of water inside the grains. It acts decreasing the effective stress

leading to a significant loss of resistance.

The model proposed in the present work has its origin in a classical Bingham constitutive
relation but the yield stress 7y is pressure sensitive and it is defined using a Mohr-

Coulomb failure criteria without cohesion.

7o = P, tg(®), (3.12)

where p’. is the effective pressure and ¢ is the internal friction angle. Equation 3.6 in

=2 {us 4 2109) (1 — e‘m)} e(u), (3.13)

3D becomes

g
and the resulting apparent viscosity is therefore
. Lt o
() = ps + Z%w (1 —e "”), (3.14)

The idea of a pressure dependent yield stress has already been exploited for instance in

[107], where a frictional fluid rehological model is used for the simulation of land slides.
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Remark 17. In this chapter the presence of water and the coupling between structure
and fluid behavior has not been taken into account yet. It is treated in Chapter 4.
Nevertheless the failure criteria has already been expressed in function of the effective
pressure in order to derives its more general form. For the structural model, in absence

of water, the Mohr Coulomb failure criteria can be equivalently written as

To = ps tg(9). (3.15)

3.3 Continuous form

In this section the strong form of the equations used to solve the structural problem
are obtained. Their derivations starts from considering the balance equations of the
monolithic coupled problem together with the balance equations of the fluid part, already
treated in Section 2.2.3.

The non-Newtonian variables and parameters are characterized by the s sub-index,

being the model used for the calculation of the structural response.

3.3.1 Variables of the problem

The unknowns of the structural problem are

- u, velocity of the structure.
- ps total pressure of the structure;

- pl, effective pressure of the structure defined as p. = ps; — p (being p the water

pressure defined in Chapter 2);
Other parameters are:

- ps is the solid dry density of the porous material. Calling p, the density of the

single grain, its relation with pg is

ps = (1 =n)ps (3.16)

where n is the porosity defined in equation 2.3. In the present work the structural

material is treated as an incompressible fluid with constant density.
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- [t is the dynamic apparent viscosity. Its definition has been already presented in

the previous sections.

- s is the dynamic viscosity of the yielded material (when Newtonian behavior is

recovered).

3.3.2 Balance equations

The balance equations governing the structural model are represented by the Navier-
Stokes equations for a non-Newtonian fluid.

The presented model has been developed both in Lagrangian and Eulerian framework.
Hence the convective velocity ag of the balance equation is defined in its more general

form as
a, = u, —u’; (3.17)

being uM the mesh velocity. According to 3.17, a, = 0 for a Lagrangian framework

M

M — u,) and a, = u, in an Eulerian one, where u = 0 (as in the previous

(where u
chapter).
Calling Q, C R? (where d is the space dimension) the structural domain in a time

interval (0,7), the modified Navier-Stokes equations are

psOus + psas - Vou, + Vpl, — 2V - iVu, — psb =01in Q,, t € (0,7),

3.18
V-u, =0in{y, t € (0,7), (3.18)
The problem is fully defined with the following boundary and initial condition:
us(x,0) = uge(x) in
us(x,t) = gs(x,t) on 0Qsp, te(0,7T), (3.19)

n-o,(x,t) = tix,t) on 9NN, te(0,7T),

The apparent viscosity fi can be either the one of the Bingham model (equation 3.11),
or that of the variable yield one (equation 3.14).
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3.4 Weak form

The weak form of equations 3.18 is obtained following strictly the same steps than it

was done in Chapter 2 for the fluid problem. No relevant differences are present.

Using the Galerkin formulation the weak form of the general problem becomes

/W,osﬁtusdﬂ—i—/wpsas Vu,df2
/wVpsdQ /WV 2uVu,dS) — /wpsbdQ =0 Ywe, (3.20)

/qV~us =0 VqeOQ,
Q
where |, for a fixed ¢ € (0,7, u, is assumed to belong to the velocity space V € [H'(Q2)]¢
of vector functions whose components and their 1% derivatives are square-integrable,
and p. belongs to the pressure space Q € Ly of square-integrable functions. w and
q are velocity and pressure weight functions belonging to velocity and pressure space
respectively.

Performing the integration by part of the pressure and the viscous terms as explained

in Section 2.3 (see equations 2.37), gives

/ WpsO0pugdS) + / wpsas - Vugd() — / PV - wdS)
Q Q Q
+2/ Vw : qpViugd§) — / wpsbdS) — w-hdll =0 VYwe, (3.21)
Q Q N

gV -u,d) =0 Vge Q,
Q

Let V, be a finite element space to approximate V, and Q) a finite element approxima-

tion to Q. The problem is now finding u,, € V), and ps, € Q) such that

/ wh,osﬁtushdﬁ/ WhpPsUsh * Vusth — / p;hV : thQ
Q Q

—|—2/ VWh : /]Vsusth — / WhpsbdQ — Wy, - tshdF =0 VWh c Vh, (322)
Q Q 00N

/ th . usth =0 th S Qh.
Q
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3.5 The structural approach: monolithic solver

The procedure used for obtaining the algebraic stabilized system of equation is analogous
to what has already been explained in Section 2.4 of Chapter 2. In the following sections
the stabilization technique, the time integration scheme and the solution strategy are
briefly described.

Since many aspects of the structural solver coincide to the element-based one, only the

differences are pointed out to lighten the reader from useless repetitions.

In order to obtain the final solution system, the weak form represented by equations
3.22 have to be stabilized and linearized in time. Finally as well as for the fluid solvers,

a quasi-Newton residual based strategy is adopted to solve the non linear problem.

3.5.1 Stabilized formulation

The choice of adopting equal order linear elements for velocity and pressure, despite
of the simplicity, entails the necessity of using a stabilization technique. An ASGS
stabilization technique is employed for that purpose. The derivation of the stabilization
scheme is analogous to what has been presented in Section 2.4.1. Therefore, in what

follows, only the final stabilized form and the stabilization terms is reported.

The stabilized form of the balance equations becomes

/Whpsatusth/Whpsash’vusth
Q Q
— / p'shV - wpdS) + 2/ Viwy, : /]Vusth
Q
(3.23)
—/wh,osbsdQ — whtshdf—i—Z/ TP - RIdQY = 0 Ywy € V),
Q Gl — Ja
/th U dS) + Z/ TaPC R = 0 Vg, € Qu,
9] ol Qel
where PI", R7, PS and R are defined in Table 3.1.

In a Lagrangian framework the convective term is not present. Therefore only pressure

stabilization is required.
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Momentum equation

P;n(wh) ash'vwh—l—th
« 4 4/] +2|ash‘ !
T. _
! At h?ps h
RZl(uSh) atu5h+a5h'vush_v'ﬂvsush+vp{9h_bs

S

Continuity equation

Pg(wh) V- wy
£y o
Rg(uSh) V- Usp

Table 3.1: Stabilizing elemental terms in ASGS for the non-Newtonian element.
3.5.2 Discretization procedure

According to what was explained in Section 2.4.2 of Chapter 2, the matrix form of the
stabilized system of equations 3.23 can be written as:

M+SM o 1, u,
. . —|— . =
0 0 Ps Ps
(3.24
where the operators are explicitly written in Table 3.2 and the stabilization operators
can be found in Table 3.3.

K+ Sy, +5° G+Sy
D +S,, S,

F, + S/
Si

3.5.3 Bossak time integration scheme

As in the fluid element-based solver, a Bossak time integration scheme is used to advance

in time the momentum equations. For more details about the method see Section 2.4.3.

Equations 3.24 can be written in compact form as

M{/s + fsmt(vs(t)7 t) = fsemt(t)' (325)
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Matricial term

Continuum term

M, > [ wapong
el /e
K%u, Z/ W05 - Vg pdS)
el VS
Ku,
Kiu, +2) / Wi, VW), : AV, ,dS)
el Qel
Gps —Z/ PsnV - WidS2
el /S
Du, Z/ qnV - ugpdS)
el Qel
F, > / W psbsdS
el Qel
h, 0

Table 3.2: Matrices and vectors of system 3.24 without stabilization terms.
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Matricial term

Momentum equation

Continuum term

S, > [ ann- Vw0
el /e
Sguus / Ts1Qsh * thash : VUS th
SUJ?LuS
Sﬁuus - Z/ Ts1QAsh * thV : ﬂvsusth
el Qe Ps
Swpps Z/ Ts1Qsh * VWthsth
el V8
s/ -> / Taas h - Vw,b, »dQ
el Qel
Sc;tlls / Ts thash . Vusth
Squus
S u, = / AV V - Lviu,,d0
el V8 Ps
S,ps S [ ravapad
el VS
Sg - Z/ TSIVthsth
el /S
Continuity equation
Seu, > / 70V - W,V - ug,d€
el Qel

Table 3.3: Stabilization matrices and vectors of system 3.24.
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The resulting residual of the momentum equations linearized in time is

(e = SN (L) -
Y
; (3.26)
— [1— 1-—
+ M [ Oéan + ( @) vy —apvy |,

yAt ° gl

/

'] and v = [0, p.] are the vectors of unknowns.

where vI' = [u,, p

Predictor multi corrector residual based strategy

The predictor multi corrector strategy adopted has been already explained in Section
2.4.3. The linearization of the non-linear terms is performed using a quasi Newton
method.

The viscous terms as well as the convective ones are the non linear part of the balance

equations. When calculating the LH S of equation 2.66, they are linearized as follows

a;’b-‘rl, kvu?—i—l, k;—l—l7

and

[+ P g (9) (1 _ em@ﬂ“v’f)] vegnt kL

,‘YnJrl,k

3.6 Kinematic framework of the non-Newtonian struc-

tural element

The structural model is implemented in order to allow both an Eulerian and a Lagrangian
kinematic description of motion.

The Eulerian formulation described in the previous sections has been developed in
order to validate the Bingham model with some benchmarks found in literature (see for
example Sections 3.8.1, 3.8.2 and 3.8.3).

It important to recall that the final purpose of this work is to couple this model with
the fluid code and simulate the deforming process of a semi-saturated rockfill slope
when failing. Therefore, since the structural domain is expected to undergo severe

deformations as the failure progresses, the kinematic model has to adapt dynamically
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to such deformations leading to the preferable choice of a Lagrangian approach. Among
many possible Lagrangian methods, the Particle Finite Element Method (PFEM) has
been chosen and implemented for its flexibility and reliability [75, 100].

3.7 The particle finite element method (PFEM)

The PFEM is a numerical method that uses a Finite Element mesh to discretize the
physical domain and to integrate the differential governing equations (see [67, 75]). In
PFEM the domain is modeled using an Updated Lagrangian Formulation. That is all
the variables are assumed to be known in the current configuration at time ¢ and they
are brought in the next (or updated) configuration at time ¢ + dt. The finite element
method (FEM) is used to solve the continuum equations in a mesh built up from the
underlying nodes (the particles). This is useful to model the separation of solid particles
from the bed surface and to follow their subsequent motion as individual particles with
a known density, an initial acceleration and a velocity subject to gravity forces [97, 100].
It is important to underline that in PEFEM each particle is treated as a material point
characterized by the density of the solid domain to which it belongs to. The global mass
is obtained by integrating density at the different material points over the domain. The
quality of the numerical solution depends on the discretization chosen as in the standard
FEM. Adaptive mesh refinement techniques can be used to improve the solution in zones
where large gradients of the fluid or the structure variables occur.

Since its first development especially focused on the simulation of free surface flows
and breaking waves [67, 75], PFEM has been successfully used in a wide range of fields.
Just to mention some of them, it is used in FSI and coupled problems [68, 95, 98, 99,
110], multi-fluid problems [65, 84], contact problems [22, 23], geotechnical simulations
[23, 94| and fire engineering [19]. Moreover PFEM has also been successfully used in
the implementation of Bingham plastics model for the simulation of landslides [46] and
cement slump tests [45].

The basic ingredients of PFEM can be summarized in:

e An Updated Lagrangian kinematical description of motion;
e A fast remeshing algorithm;

e A boundary recognition method(alpha-shape);
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e FEM for the solution of the governing equations;

3.7.1 Updated Lagrangian kinematical description of motion

The PFEM was conceived as a Lagrangian method to treat CFD problems including
free surface flows and breaking waves [67, 100]. This approach is in contrast with the
classical Eulerian way to treat CFD problems.

Lagrangian algorithms are traditionally used in structural mechanics where each node
of the computational mesh follows the associated material particle evolution. This is
a good way to trace easily the interface between fluid and structure and to consider
materials with history-dependent constitutive relations. Its weakness is the inability to
follow large distortions of the domain without the necessity of a continuum remeshing.
This implies a difficult parallelization of the code as well.

Eulerian algorithms, on the other hand, are largely used in fluid dynamics because of
the ease way to follow large movements. In this case the computational mesh is fixed and
the continuum moves with respect to the grid. Being a fixed mesh approach, an interface
tracking technique should be employed in Eulerian methods to follow the evolution of
the free surface (see Section 2.6 for more information on the topic).

A third popular technique is a generalization of the two kinematical description of
motion above described. It is known as the Arbitrary Lagrangian- Eulerian (ALE)
description. In this case, the mesh is arbitrarily moved with a velocity uj; and the
domain of the mesh is called the reference domain [51].

For ul, = (0,0,0) an Eulerian configuration is recovered and the reference domain
corresponds to the spatial one. Alternatively, if the mesh velocity coincides with the
particle velocity (uy; = u), then the convective term disappears and the Lagrangian
formulation is recovered. In this case the reference domain coincides with the material
one. The absence of the convective term in a Lagrangian framework, leads also to the
elimination of the problems connected with convection dominating processes (see Section
2.4.1 of Chapter 2), simplifying the stabilization procedure.

According to [51], three possible Lagrangian formulations are possible

e The total Lagrangian , where variables are described in the initial configuration

QQ, at time to;

e The updated Lagrangian , where variables are described in the current configuration

", at time t";



The particle finite element method (PFEM) 115

e The end of step Lagrangian , where variables are described in the configuration

QL at time ¢,

The total Lagrangian formulation is not the best choice for a problem with large domain

deformations. Therefore, PFEM uses an updated Lagrangian description of motion.

3.7.2 Remeshing algorithm

The need of an efficient remeshing algorithm together with the the difficulty of paral-
lelizing this procedure are the biggest drawback of a Lagrangian approach.

The mesh moves in accordance to the material points and large deformations occur.
The code developed in this work uses external libraries to remesh the domain. They are
the TetGen and Triangle for the 2D and the 3D cases respectively (for more information
see [5]).

The mesh generation scheme is based on the Voronoi diagrams' and the Delaunay

tessellation?.

3.7.3 Boundary recognition method: alpha - shape method

Once the continuum domain is partitioned using the TetGen library, a criteria is needed
to define the free surfaces and the boundaries on the material domain. In the case of
PFEM, alpha shape [20] is the adopted technology.

Each node 7 of the domain has its own dimension h; determined as the average distance
of node ¢ from its neighbors. In the same way, an elemental dimension h.; can be defined
for each element as the average of the h; of its nodes. Finally depending on the precision
wanted, an a custom parameter greater but close to one (the alpha shape parameter) is
defined.

If the radius of the sphere that circumscribes the element (r) is bigger than « - ke, then

the element is eliminated (see Figure 3.4). That is

L The Voronoi diagram of a set N is a partition of R? into region V; (closed and convex or unbounded),
where each region V; is associated with a node p;, such that any point in V; is closer to p; than to any
other node p;. The Voronoi diagram is unique.

2 A Delaunay tessellation within the set N is a partition of the convex hull € of all the nodes
into region €); such that 2 = €; where each (); is the tetrahedron defined by 4 nodes of the same
Voronoi sphere. A Voronoi sphere within the set N is any sphere, defined by 4 or more nodes, that
contains no other node inside. Such sphere are otherwise known as empty circumspheres. The Delaunay
triangulation and Voronoi diagram in R? are dual to each other in the graph theoretical sense.
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r < a-hy; (3.27)

has to be respected to keep the element in the domain.
Different values of the alpha shape parameter can lead to different accuracy on the
mesh boundaries as shown in Figure 3.4(c) and 3.4(d) where different values of the

alpha parameter are used.

(a) Cloud of nodes. (b) Mesh of the convex hull ob-
tained with the Triangle library.

(c) Domain after applying alpha (d) Domain after applying alpha
shape. a = ay. shape. as > a;.

Figure 3.4: Possible boundaries of a cloud of nodes using alpha shapes method. Image
taken from [20)].

3.7.4 FEM

A finite element mesh and the connectivities of the nodes are provided by the previous
described steps for the actual time step t"*!. The studied FEM is then used to write

the weak form of the governing equations.
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3.7.5 PFEM algorithm

Considering known the solution at time step n, the basic steps of PFEM algorithm are

summarized in the box that follows.

PFEM algorithm
1. Imposition of mesh velocity at time step n ugn = u™;
2. Laplacian smoothing ¢ (free surface kept fixed);
3. Remesh (see Section 3.7.2);

4. Solve the monolithic system;

5. Back to step 1.

%The Laplacian smoothing is a geometrical technique that allows a more homogeneous
redistribution of the nodes inside the analysis domain without changing the connectivities
between nodes

3.8 Numerical Examples

3.8.1 The Couette flow

The Couette flow refers to the laminar flow of a viscous fluid between two parallel infinite
plates separated by a given distance, one of which is moving relative to the other. The
flow is driven by virtue of viscous drag force acting on the fluid and the applied pressure

gradient parallel to the plates.

The model

The length of the computational domain is 6m and its height is 1m as shown in Figure
3.5. The Neumann boundary conditions are applied on the vertical edges in terms of
external pressure. Dirichlet conditions are then applied on the horizontal edges (the
plates). The lower plate is considered fixed, whereas the upper moves with a constant
horizontal velocity. The horizontal velocity diagram in the central vertical section is

analyzed.
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IMPOSED v
EXTERNAL LEFT EXTERNAL RIGHT
PRESSURE DENSITY = 1 kg/mc PRESSURE
m L VISCOSITY = 10 Pas
6m FIXED EDGE

Figure 3.5: Geometrical data and boundary conditions.

il

Figure 3.6: Linear triangular mesh used in the calculation.

The mesh used in every model is shown in Figure 3.6. It has 14736 linear triangular
elements. Their dimension varies from 0.05m at the sides to 0.01m in the central vertical

section.

The numerical results

In all the numerical examples the value of m and 7y are kept constant as well as the

properties of the material. They are summarized in Table 3.4.

Density Ds lkg/m?
Fluidified viscosity I 10Pa s
Smoothing coefficient m 300s
Yield stress To 10Pa

Table 3.4: Couette example. Material properties.

Figure 3.7 shows the used regularized approximation in comparison with the bilinear
form.
The difference between the effects of a positive pressure gradient (adverse to the velocity

field) and a negative one (favorable to the velocity field) are shown in Figure 3.9. In both
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120,

100

80

60

Shear Stress [Pa]

40

20
- - Bingham exponential approximation

— Bingham bilinear law

H T T
(?.00 0.05 0.10 0.15
Shear Rate

Figure 3.7: Exponential approximation with m=300 and 7, = 100 Pa.

cases an increasing gradient of pressure is taken into account. The velocity of the upper
plate is u, = 0.5m/s. The gradient of velocity is higher close to the plate. Consequently
the value of tangential stress is also higher in these zones that are the regions where the
yield stress is achieved. The central straight zone is the unyielded region where v = 0

and i1 = p+ 79 - m. The viscosity behavior in the central vertical section is shown in

Figure 3.8
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Figure 3.8: Variation f viscosity in the central vertical section.

Increasing the gradient of pressure the rigid plateau is narrowing and the yielded zone

is increasing.
Finally, the upper velocity is set to u, = 0.01m/s to reproduce the results of [105]
and to have a direct comparison with the analytical results as shown in Figure 3.10.
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Non-Newtonian Flow

with upper Vx=0.5m/s and negative Dp.
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(a) Negative Pressure Gradient

Non-Newtonian Flow with upper Vx=0.5m/s and positive Dp.
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(b) Positive Pressure Gradient

Figure 3.9: Velocity diagrams for different values of the gradient of pressure. Upper
horizontal velocity 0.5m/s.

Different values of negative gradients of pressure are considered as shown in Figure 3.10.

Right edge external pressure is kept constant and equal to 0Pa in all the cases, whereas
the left hand side pressure is 1500Pa, 1600Pa, 1700Pa, 1800Pa, 1900Pa and 2000 Pa

respectively. The agreement is good and the yield point is reproduced correctly for all

the pressure gradients.

Non-Newtonian Flow with upper Vx 0.01m/s and negative Dp.
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Figure 3.10: Velocity diagrams for different values of a negative gradient of pressure.
Upper horizontal velocity 0.01m/s.
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3.8.2 Cayvity flow

(a) Homogeneous mesh. (b) Locally refined mesh.

Figure 3.11: Cavity example. Meshes used in the calculation.

In the present section the Bingham model is tested in the classical cavity flow example.
This benchmark applied to non-Newtonian fluids, and particularly Bingham plastics, has
been widely studied in recent years and many examples can be found in the literature
(see for instance [55, 59, 85, 129]).
A square unit domain with edge H is defined and the characteristic speed (that is, the
velocity of the lid) is taken equal to 1m/s.
The dynamic viscosity is s = 1Pa s and density is p, = 1kg/m?.
Let us define the a dimensional Bingham number (Bn) as

Bn = ﬂ, (3.28)

[hsls

where H and u, are the edge length and the horizontal velocity of the upper lid respec-
tively and 7y the yield stress.
In order to make a comparison to the work of Mitsoulis and Zisis [85], the model is
tested for different values of Bn. In other words, the effect of the increasing yield stress

is analyzed (being in the specific case Bn = 7).
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a) Homogeneous mesh. b) Locally refined mesh.

Figure 3.12: Cavity. White color shows the yielded regions. Comparison between the
case with homogeneous mesh (Figure 3.11(a)) and the refined one (Figure 3.11(b)).
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(a) Homogeneous mesh. b) Locally refined mesh.

Figure 3.13: Cavity. White color shows the yielded regions. Comparison between the
case with homogeneous mesh (figure 3.11(a)) and the refined one (figure 3.11(b)).
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(a) Results taken from [85]. (b) Present model. Locally refined mesh.

Figure 3.14: Cavity example. Streamlines and progressive evolution of the yielded area
(white color) for increasing values of the Bingham number Bn (Bn = 2,20 and 200
respectively).
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(a) Results taken from [85]. (b) Present model. Locally refined mesh.

Figure 3.15: Cavity example. Streamlines and progressive evolution of the yielded area
(white color) for increasing values of the Bingham number Bn (Bn = 5,50 and 500
respectively).
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The choice of the mesh is crucial and can influence relevantly the correct definition of
the yielded region. The adoption, for example of an homogeneous mesh with average
dimension h = 0.02m, like the one shown in Figure 3.11(a) can be in some cases insuffi-
cient for the correct capturing of the rigid parts of the domain. This is shown in Figures
3.12 and 3.13 where the comparison of the yielded regions for increasing values of the
Bn is shown for the homogeneous mesh of Figure 3.11(a) (left column) and the mesh
shown in Figure 3.11(b) where a local refinement of h,.; = 0.005m is performed on the
lid and in the upper part of the vertical edges of the cavity (right column). The use of
the mesh with local refinement leads to more precise results, according to [55, 85, 129|.
In fact the direct comparison of the yielded regions and the streamlines results of the
present model is in good agreement with the one in [85|, as shown in Figures 3.14 and
3.15.

3.8.3 Extrusion process

5000 RAMP FUNCTION

1

IS
o
o
o

4000r

EXTERNAL PRESSURE [Pa

3500F

3008% 02 04 0.6 08 1.0

TIME [s]

Figure 3.16: Extrusion example. Ramp function of external pressure BC applied on left
vertical side.

The present example simulates an extrusion process of a Bingham plastic. Data and
geometry are taken from [105]. A material with the characteristics detailed in Table 3.5

is pushed into a square die with a restriction of two-thirds of the cross sectional area.



Numerical Examples 127

Due to the symmetry of the problem, only half of the domain is calculated as shown in
Figure 3.17. An increasing value of the external pressure (pe,;) is imposed on the left
side with a pressure increment of 2Pa/step (the ramp function for applying the external
boundary pressure is detailed in Figure 3.16). On the right side the external pressure is

set to zero and kept constant. The walls are assumed to be frictionless.

= SLIP B.C. "
e 0
> o £
P — fos] ~
51 O LIP B
9 A SLIP B.C. oo
e - -
- Pext = O&L, —
*)‘ 6m ‘ 6m ‘ % B

Figure 3.17: Extrusion example. Geometry and boundary conditions.

Figure 3.18: Extrusion example. Mesh used in the calculation. Average dimension
h = 0.2m with a local refinement 0.05m near point B of Figure 3.17 and in the restriction
area and an additional refinement 0.005m close to point A of Figure 3.17. The total
number of triangular elements and nodes are 11600 and 5 800, respectively.

The mesh used in the calculation is shown in Figure 3.18. It is refined in the area of

appearance of the slip lines to accurately catch their evolution.

As explained in [105], in the hypothesis of perfect plasticity, the value of maximum ram

pressure (p74*) is analytically calculated in [82]. It is given by the following relation

4
p’galgfx = g |:]_ + g:| To = 34267Pa (329)

This is the analytical yield pressure, which corresponds numerically to the time interval
between the onset of the slip line an its full development. In the present model this is
represented by the interval in which the external pressure is between 3418 Pa (beginning
of the formation of the slip line) and 3472 Pa (the slip line is fully formed). The analytical
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value is therefore contained between these two extremes. In the Figures 3.19 and 3.20
the evolution of the slip lines is plotted and compared with the results shown in [105].
According to this paper, a contour fill of the equivalent strain rate 7 is plotted in the
range 0.08s7! — 0.72s7! and white and the dark area indicate values of 4 lower than
0.08s7! (rigid material), and larger than 0.72s~! respectively (these two limits are chosen

for homogeneity with [105]).

Density s 100kg/m?
Fluidified viscosity L 10~%Pas
Smoothing coefficient m 1000s
Yield stress To 1000Pa

Table 3.5: Extrusion example. Material properties.

On the other hand, the yield pressure can be identified plotting the pressure-velocity
graph in point B as shown in Figure 3.21. It can be observed that the material is almost
rigid till reaching an external pressure value of 3418 Pa. After that, conserving the same
external pressure increment per step, the velocity increases considerably indicating that

the material starts to flow. Similar results are found in [105].

3.8.4 Bingham vs variable viscosity model. Pushed slope

The difference between the Bingham and the proposed variable yield model can be
observed in this example.

A square domain in 2D and a cubic one in 3D are pushed towards a wall.

The geometry of the models and the mesh used in both cases is shown in Figure 3.22.
The wall on the left side moves with constant velocity uy = 0.1m/s-

For the Bingham model the yield stress is 7p = 1000Pa, whereas in the variable yield
model the internal friction angle is ¢ = 30.

In the sequences of the pushing process shown in Figure 3.23 and 3.24 the different
behavior of the two models is evident.

For Bingham plastics, those points that do not exceed the constant yield threshold

behave like a rigid body, whereas in the present model the yield stress of the exterior



Numerical Examples 129

) ST Ruasks RATE
nsa
asd

nEM

[
ey

Peat = 3418Pa

P STRuK AATE

L4

P STRuK AATE

nsss
454
(&3]
(]
L]

Pext = 1472Pa

3 ST Rk AATE
058
454
o
o208
Lie- ]

103 ST Rk RATE
nsss

Peat = 3483Fa

asd

nEM

[
ey

Faxt = 3432Fa

Figure 3.19: Extrusion example. Evolution of the slip lines shown with a contour fill of
the equivalent strain rate 4. Comparison between the present model (left column) and
the results presented in [105] (right column).
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Figure 3.20: Extrusion example. Evolution of the slip lines shown with a contour fill of
the equivalent strain rate 4. Comparison between the present model (left column) and
the results presented in [105] (right column).
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Figure 3.21: Extrusion example. Pressure-velocity relationship on point B.
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Figure 3.22: Pushed slope example. Geometry, mesh and boundary conditions of 2D

and 3D models.
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Dry density s 1000kg/m?
Fluidified viscosity U 107%Pas
Smoothing coefficient m 3000s

Table 3.6: Pushed slope example. Material properties.

points is lower and it is exceeded also for lower pressure levels. Two different phases can

be identified in the present example:

- The settlement phase. Tt is the initial part of the example. The granular material
is left free to fall and to reach its stable configuration. It goes from the beginning

of the example to the moment in which the material touches the right fixed wall.

- The squeezing phase. It begins when the material touches the right wall and starts

to be squeezed between the two opposite walls that are getting closer.

In Figure 3.23 the 2D comparison between the Bingham model and the variable yield
model during the settlement phase is shown. The contour fill of the equivalent strain
rate is plotted in different time instances (the blue color indicates 4 = 0).

The Bingham model shows a sliding surface where the tangential stress reaches the
yield stress (1000Pa), whereas all the rest of the model shows an almost rigid behavior.
Conversely, in the variable yield model, if a node has a tangential stress which exceed its
pressure times the friction angle tangent (pstg¢), it shows a drop in the viscosity and it
starts flowing. The main differences can be observed on the “free surface” where the yield
stress tends to zero the closer the node is to the free surface (where the pressure is zero),
i.e. no resistance is present. The variable yield material reaches a stable configuration
that respects the internal friction angle of 30°. For more details the consultation of
Section 3.8.5 is recommended.

In Figure 3.24 the behavior of the two models in the squeezing phase is compared. The
sequence shows how the equivalent strain rate - is almost zero up to the creation of the
failure lines and the subsequent collapse of the material. In the granular material on
the contrary, the “free surface” has zero pressure, which implies zero resistance and as
soon as the material reaches the height of the walls it starts falling.

The same considerations can be done in 3D, looking at the comparison between the

two models in the settlement and the squeezing phase shown in Figures 3.25 and 3.26,
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a) Bingham model. /ariable yield model.

Figure 3.23: 2D pushed slope. # in the initial pushing phase. Difference between the
Bingham and the variable viscosity models.

respectively. The Bingham model in 3D shows less resistance in the squeezing phase
due to the 3-dimensional effects. It is finally interesting to observe that the material

which is falling down in the case of the Bingham model conserves the velocity imposed
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» ¢

(a) Bingham model. (b) Variable yield model.

"

Figure 3.24: 2D pushed slope. ¥ in the squeezing phase. Difference between the Bing-
ham and the variable viscosity models.

by the wall although this is very low, whereas this does not happen in the variable yield

model.
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(a) Bingham model. (b) Variable yield model.

Figure 3.25: 3D pushed slope. Difference between the Bingham and the variable viscos-
ity models in the initial pushing phase.
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Sy \& -
(b) Variable yield model.

(a) Bingham model.

Figure 3.26: 3D pushed slope. Difference between the Bingham and the variable viscos-
ity models in the squeezing phase.
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3.8.5 Settlement of a vertical rockfill slope

The variable viscosity model is finally used to reproduce the settlement of a granular

vertical slope with a given internal friction angle. The objective of this example is to

verify the correct reproduction of the internal friction angle and the dependency of the

stable configuration from the mesh size.

For this purpose a rectangular domain is constrained by a vertical wall in the left side

and is left free on the right side as shown in Figure 3.27. The characteristics of the

material are summarized in Table 3.7.

GRANULAR SLOPE UNSTABLE AREA

characterized by

Figure 3.27: Settlement of a vertical slope. Geometry of the model.

Dry density s 1000kg/m?
Fluidified viscosity Is 107 %Pas
Smoothing coefficient m 3000s

Table 3.7: Settlement example. Material properties.

Variable mesh size

Let us consider an internal friction angle ¢ = 30°. Three different mesh sizes are taken

into account for the simulation:

e Mesh A is 0.1ecm. The model has 444 nodes.

e Mesh B is 0.05¢m. The model has 1580 nodes.
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e Mesh C is 0.0lem. The model has 35466 nodes.

They are shown in Figure 3.28.

(a) Mesh A 0.1m.

(b) Mesh B 0.05m.

(¢) Mesh C 0.01m.

Figure 3.28: Different mesh sizes taken into account in the present example.

The evolution of the settlement is shown in Figure 3.29 for the above mentioned meshes.
As expected the more accurate and realistic settlement process is obtained with the finer
mesh but no relevant differences appear using the coarser ones. This is respected for
any internal friction angle ¢ less than 45°. In fact in the latter case the correct behavior
of the material is influenced by the mesh size. For coarse meshes the material behaves
as rigid as shown in Figure 3.30 where two meshes are taken into account. However in
the next section it will be pointed out that this value of ¢ is in the limit of validity of
the model.
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Figure 3.29: Settlements for a granular slope with internal friction angle ¢ = 30° for the
three different mesh sizes indicated in Figure 3.28.

The same example is run in 3D using the meshes A and B of Figure 3.28 leading to
analogous conclusions. The internal friction angle is well represented independently

from the mesh chosen. A sequence of the 3D results for a slope with internal friction
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(a) Mesh B 0.05m (b) Coarse mesh 0.07m

Figure 3.30: Different results of the model with phi = 45° in case of mesh B (0.05m)
and a coarser mesh (0.07m). Both results are taken after 5s of simulation.

angle ¢ = 30° is shown in Figure 3.31.

Variable internal friction angles

Different values of the internal friction angle are taken into account in order to verify
the correct behavior of the structural model. Mesh B is used for the discretization.

The different mechanical behavior controlled by the values of ¢ is correctly reproduced
by the variable yield model presented in this work if the internal friction angle is lower
than 45°, as can be observed in Figure 3.32 where the stable configuration of rockfill
slope of 30°, 40°, 45°and 47° is simulated. The case with ¢ = 45° represents a practical
limit of the model. Beyond that limit a dependency on the mesh appears as some level
of locking can be observed. The conclusion is that the model is not able to correctly
simulate materials that have internal friction angles higher than 45°. This is not so
relevant considering that in rockfill slopes 45° can be considered an upper limit of the

possible internal friction angles.

3.8.6 Friction angle test

The last example simulate a test for computing the internal friction angle ¢. A cone filled
with granular material with a bottom outlet is lifted up with a velocity of 0.025m/s.

The geometry and the mesh used can be seen in Figure 3.33.
The mechanical characteristics of the material used are summarized in Table 3.8.

As expected, the final slope of the fallen material matches well with the 40° angle as

shown in the last picture of Figure 3.34.

Finally in Figure 3.35 the same example has been repeated in the case of a Bingham
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(a) Mesh A. (b) Mesh B.

Figure 3.31: Settlements for a 3D granular slope with internal friction angle ¢ = 30° in
the case of considering mesh A and B of Figure 3.28.

plastic with a yield threshold 7y = 500Pa.
The different behaviour between the two models is evident: the material of the variable

yield model “flows” down in a nearly continuous way and at the end of the simulation no
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\ 5
(a) 6 = 30° (b) 6 = d0°
(c) ¢ =45° (d) ¢ = 47°

Figure 3.32: Stable results for different internal friction angles ¢. The mesh used in the
calculation is mesh B of Figure 3.28.

Dry density s 1490kg /m?
Internal friction angle % 40°
Fluidified viscosity o 107 %Pas
Smoothing coefficient m 3000s

Table 3.8: Friction angle test example. Material properties.
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material is present in the cone (the cone is 41.6° steep). Whereas the Bingham material
resembles a toothpaste and at the end of the simulation part of the material remains

inside the cone. The tangential stresses, in fact, are lower than the yield threshold.

3m

0.9m }O.Zm} 0.9m
o2m| | I
0.3m |

A A
A A

0.8m % ¢

% ! A ﬁLIT:T \EOCITY
|o-zm Pt oo M |
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Figure 3.33: Friction angle test example. Geometry and mesh used for the calculation.

Figure 3.34: Friction angle test example. Variable yield model with ¢ = 40°.

3.9 Conclusions

In this chapter a model to describe the behavior of a rockfill slope is presented. A
Non-Newtonian constitutive law is chosen and a regularized Bingham plastic model is
developed as first approximation. This choice derives from the observation that the
elastic behavior in rockfill slopes is negligible and when the yield stress is reached the

material starts to flow more like a fluid than to deform like a structure. Moreover among
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1. A

Figure 3.35: Friction angle test example. Bingham model with yield stress 7, = 500Pa.

the non-Newtonian fluids, Bingham plastics have the capability of supporting a certain
amount of shear stress before reaching large strains.

The good behavior of the Bingham model is verified through some benchmarks, but
does not seem to be adequate for the simulation of the behavior of a granular slope. For
this purpose a variable yield threshold is introduced in order to mimic a Mohr Coulomb
failure criterion.

The differences between the regularized Bingham and the variable yield models are
discussed in some examples.

The main advantage of the constitutive law proposed is its simplicity compared with any
other plastic model. The treatment of the granular material as a fluid leads to balance
equations similar to those presented in Chapter 2. Hence, most considerations already
done for the fluid model can be used in this context as well, providing the necessary
adaptation to non-Newtonian materials.

The variable yield model does not present serious limitations on the mesh sizes in general
(although in Chapter 5 it will be pointed out that this is not always true in practical
cases). Finally the variable yield model seems to be adequate to simulate materials
with internal friction angles lower than 45°. Fortunately this value is higher than the

maximum threshold of non cohesive rockfill slopes.
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The coupling

In this chapter the coupled model for fluid-structure interaction analysis is presented.
First the fluid and the structural balance equations, already discussed in the previous
parts of this work, are derived from the monolithic coupled system. A staggered solution
strategy is adopted to couple the Eulerian fluid solver and the Lagrangian structural one.
A simple example is presented to check the correct behaviour of the algorithm. Finally
in order to fully describe the coupling algorithm, the projection tool created to map
information between the fluid and the structural non-matching meshes is discussed.
Additional examples of the application of the coupled analysis method are shown in
Chapter 5.

4.1 Introduction

The structural stability of rockfill slopes is heavily influenced by its interaction with
water. Traditionally the coupled problem of soils or rock and water is faced using a
multiphase material whose behavior is governed by the coupling between the different
phases: soil, water and air. The first mathematical models describing the coupling solid
and fluid phase were developed by Biot [13, 14|. Nevertheless his work was suitable
only for linear elastic materials and its extension to non-linear problems with large
deformations was first carried on by Zienkiewicz and Shiomi only several years later
[131]. Tts should be mentioned that recently important steps ahead in this fieldhave
been made by Lewis and Schrefler [78], Coussy [91| and Boer [49].

These classical and well established approaches in geomechanics were not considered as
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an alternative in the present work for the following reasons:

e The possibility of accurately following the dynamic change of the flow throughout
and over the rockfill is the key point of the model. The coupling of these two
phenomena could be very challenging in the traditional models needing the trans-
ferring of interface conditions between the free surface problem and the seepage
one in order to perform the coupling. On the contrary, in the present work this is

automatically taken into account, as explained in Chapter 2.

e The consideration of the saturation level and of the interaction between air and
water in the partially saturated pores, becomes an useless information. In fact ac-
cording to experimental evidence, the problem of interest can always be considered

fully drained, being the pores inter connected.

e Due to the time scale of the exceptional flooding that can be of the order of minutes
or hours, the dam material can be considered as rigid (avoiding any elastic response

in the unyielded region) and its compressibility can be neglected.

e The capability of tracking the material yield surface is not needed as commented
in Chapter 3.

The need of developing an ad hoc fluid approach for the simulation of the free surface-
seepage problem described in Chapter 2 leads, as a natural consequence, to the choice of a
staggered strategy. Nevertheless for a consistent formulation both the fluid and structure
balance equations should be derived from the imposition of the global equilibrium. For
that purpose, in the following sections the monolithic global problem is used to obtain
the balance equations for the structure. In this case, the equation discussed in Chapter
3 are completed with the coupling terms deriving from the global equilibrium.

Once the fluid and the structural problems are defined, the coupling strategy is pre-
sented. The need of working with an Eulerian and a Lagrangian model leads to imple-
ment a fully staggered explicit scheme. A key point of the coupled tool is the possibility
of transferring information between the moving and the fixed mesh. For such purpose
a mapping between non matching meshes has been developed. The performance of the

tool is presented at the end of the chapter.
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4.2 The coupled monolithic problem

Let us consider the balance equation of the global problem which can be written as

follows

pcouc + peuc - Viug — peV-o0c —pcb =0in ), t € (0,7),

. (4.1)
pcV-uc =0inQ, t € (0,7),

where sub-index C' indicates the characteristics of the coupled homogenized system.
Under the assumption that both the fluid and the structure are incompressible materi-
als, System 4.1 can be expressed in terms of the fluid and the structure contributions

explicitly as

psOus + psu, - Viu, + Vpy — 2V - (Vou, — p;b+
+pou+pu-Vu+Vp -2V .- uVou—pnby =0inQ, t € (0,7),
npV-u+p,V-u, =0inQ, t € (0,7),
(4.2)

Remark 18. Tts should be pointed out that the assumption of fully drained problem is
used. This consideration derives from the hypothesis that all the pores can be considered

interconnected and that excess pore pressure will never develop.

Remark 19. The nodal global density pc can be either a dry density (defined in

equation 3.16) if the node is not immersed in water, or a nodal saturated density psq

pc = psat = np + (1 = n)p,+ = np + ps. (4.3)

4.3 The fluid and the structural balance equations

The balance equations of the fluid have been defined in Chapter 2 and are rewritten

here for clarity. They are defined by
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Fluid problem

pou+ pu - Vu+nVp — 2V - uVou
—pnb+D =0inQ, te (0,7); (44)
V-u =0inQ, t € (0,7);

u(x,0) = up(x) in
g(x,t) on 0Qp, te(0,T); (4.5)
n-o(x,t) = t(x,t) on 9Ny, te(0,7T);

i3

”

~
I

Therefore the equations governing the structural problem can be obtained subtracting

4.4 from 4.2. The structural system obtained is

psOus + psu, - Vou, + Vpl
-2V - i;Vu, — psb+ (1 —n)Vpy —D =0inQ,, t € (0,7), (4.6)
Veou, =0inQ, te(0,7).

Structural problem

psatus + PsUs * vsus + Vp;
—2V - is;Vus — psb+(1—=n)Vp—D =0inQ,, t € (0,7), (4.7)
V.u, =0inQ,, t€(0,7),

us(x,0) = us(x) in €,
u,(x,t) = gix,t) on 9Np, te(0,7T), (4.8)
n-o,(x,t) = tyx,t) on 0y, te€(0,7),

This problem is equivalent to the one treated in Chapter 3 providing the following

considerations:

e The DOFs of the problem stated by system 4.6 are the effective pressure (p.) and
the solid velocity (ug). This is essential in order to fully decouple the fluid and
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the structural equations. This aspect was not explicitly discussed in Chapter 3

because the total pressure is equivalent to the effective one in absence of water.

e The external force term in equation 3.18 is composed only of the body forces
whereas in system 4.6 the Darcy term (D) and the fluid gradient of pressure
((1 —n)Vpy) are also present.

4.4 The coupling strategy

FLUID (Eulerian fixed mesh) DAM (Lagrangian moving mesh)

| TRAMSFERING WATER PRESSLIRE AND DRAG FORCES

| TRANSFERING THE NEW GECMETRIC CONFIGLRATION |

Figure 4.1: Graphical summary of the whole process.

A monolithic approach to the whole problem becomes impossible after the choice of
two different kinematical frameworks for the structure and the fluid model. The use
of a staggered scheme is therefore mandatory. Moreover in the context of partitioned
schemes, the more accurate way of performing the coupling between the structural and
the fluid model is by using an implicit coupling. In this case iterations are performed

between the solution of the two models at each time step, till convergence is achieved.
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This choice is very accurate although very expensive. The second possibility, which is
the one used in the present work, is to perform an explicit coupling. This means that
the solution at each time step is obtained by the solution of the fluid and the structural

model calculated one after the other, without any iteration.

This is acceptable considering that :

e The adoption of a semi-explicit scheme for the fluid problem leads to the need of
using time steps much smaller than for the fully implicit structural problem, to
ensure stability. An implicit coupling would require adopting the smaller time step,
i.e. that for the fluid solver, for both models, leading to an extremely expensive

procedure;

e The coupling between the two models is weaker in one of the two directions. For
the solution of the fluid problem, in fact, only the porosity distribution is needed
to be transfered by the structural model. In other words, the shape of the rockfill
slope or, more generally, of the granular material have to be transfered to the
fixed fluid mesh. On the contrary the other way coupling, the fluid pressure and
velocity are essential to correctly define the external forces acting on the rockfill

material.

In summary the structural Lagrangian model is projected on the Eulerian fixed mesh
domain where, at the beginning of the simulation, the only available information is the
incoming discharge of water and the control domain. The idea is that the fluid analy-
sis step is evaluated once the distribution of porosity is projected from the structural
domain. The solution of the fluid problem is then projected on the Lagrangian struc-
tural mesh. It is necessary to know the fluid pressure and the Darcy forces in order
to evaluate correctly the external force term of the momentum equation in 4.6. Once
this is done, the structural response can be calculated. Therefore, the granular domain
deforms accordingly to the obtained velocity and pressure fields. This new deformed
granular domain is finally projected onto the Eulerian mesh in order to solve for the

subsequent time step.

Remark 20. The time step of the fluid model is typically one order of magnitude
smaller than the one of the structural model. This is the consequence of the already
discussed conditional stability of the semi-explicit scheme used for the fluid model.

Therefore the fluid and the structural models have different time steps.
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The main points of the entire simulation process are shown in Figure 4.1 and the flow

chart of the algorithm are schematically summarized in the box below:

Coupling algorithm

Assuming known the solution of the coupled problem at time step t".

1. Project the configuration of the rockfill material in terms of POROSITY

distribution on the Eulerian fluid domain;

2. SOLVE the water free surface flow problem calculating the VELOCITY
and PRESSURE field in an EULERIAN fixed mesh using the model pre-
sented in Chapter 2;

3. Project the FLUID VELOCITY and PRESSURE fields on the La-

grangian structural mesh;

4. Project the non linear DARCY TERM on the Lagrangian structural

mesh;

5. CALCULATE the structural response in a Lagrangian mesh, using
PFEM;

6. Go back to step 1.

4.4.1 Numerical Example: Still water tank

2m

Figure 4.2: Geometry of the tank and height of the contained porous medium.

The aim of this very simple example is to check the calculation of the effective pressure

distribution when no velocity is present. A tank of porous material with three different
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(a) Case 1 (hya = 0.25m). (b) Case 2 (hyp = 0.50m). (c) Case 3 (hyc = 0.75m).
Figure 4.3: Depth of water in the three analyzed cases.
levels of water is analyzed. The geometry of the model can be seen in Figure 4.2 and

the three analyzed cases are shown in Figure 4.3. The characteristics of the material

are summed up in Table4.1. In the present example gravity is assumed to be 10m/s?.

ROCKFILL

Global density pe = 1895.2 kg/m?
Dry density s = 1490 kg/m3
Porosity n = 0.4052
Average diameter Ds = 35.04 mm
WATER

Fluid density ) = 1000.0 kg/m?
Viscosity W = 0.001 Pas

Table 4.1: Characteristics of the materials considered in the model.

Let us define:

hs: the depth of the porous medium (0.5m in the three cases);

- hy: the water depth (hya = 0.25m, hyp = 0.50m, hyc = 0.75m);

hy: the wet part of hy (hya = 0.25m, hy,pg = 0.50m, hy,c = 0.50m );

hg: the dry part of hy (hga = 0.25m, hyg = 0.0m, hge = 0.0m);

- h;r: the water column over the porous medium (ks 4 = 0.0m, hyp = 0.0m,
hfrC = 0.25m );

The total bottom pressure (ps) in each case can be calculated analytically like the sum

of the pressure of the wet part, the pressure of the dry part and the pressure of the
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Effective pressure |Pal

Analytical Numerical
Case A 5963.0 5836.8
Case B 4476.0 4476.6
Case C 4476.0 4478.9

Table 4.2: Effective pressure at the bottom.

water column , i.e. in symbols

Ps = pcghw + psgha+ pghy = [(1=n)p, +np| ghy+ (1 —=n)p,gha+pghl’s (4.9)
and the bottom water pressure is
U=pgh. (4.10)

Finally the effective pressure can be calculated as the difference between the total pres-

sure and the water pressure
pe=ps—U=(1=n)pghs — (1 =n)pghy. (4.11)
On the other hand equation 4.2 reduces to
Vp, + Vp —npg — (1 —n)p,g = 0; (4.12)
and the equilibrium of the fluid part is
nVp — npg = 0. (4.13)

Rewriting the gradient of fluid pressure of equation 4.12 like Vp = nVp + (1 —n)Vp
and subtracting equation 4.13 from 4.12 the equilibrium of the solid matrix is obtained

as
Vp, = (1—-n)p,g— (1 —n)Vp; (4.14)

In Figures 4.4, 4.5 and 4.6 the numerical results in terms of effective pressure contour
fills and effective pressure distributions are shown for the three cases and compared
with analytical results. As expected the effective pressure distribution does not change
in cases B and C. On the contrary in case A the effective pressure coincides with the

total pressure distribution in the dry part of the solid matrix and decreases in the wet
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Low water level hy, =0.25m
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(a) Contour fill of pressure. (b) Analytical and numerical results.

Figure 4.4: Case A. hyq = 0.25m Effective Pressure ..

Medium water level h;;=0.50m
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Figure 4.5: Case B. hyp = 0.50m Effective Pressure p’s.
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High water level h;;=0.75m
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(a) Contour fill of pressure. (b) Analytical and numerical results.

Figure 4.6: Case C. hyo = 0.75m Effective Pressure p,.

part due to the action of the buoyancy forces.

4.5 Data mapping between non-matching meshes

The effectiveness and efficiency of the model is strictly dependent on the coupling pro-
cedure which up to now has only been explained conceptually. Managing a fluid and a
structural models that are represented in two different kinematic frameworks requires a
tool to transfer information between non-matching meshes.

In the problem of interest, the mapping is to be done on overlapping domains: the fluid
control domain always includes the structural Lagrangian domain. In any case there is
no need for one domain to be fully included in the other. The data transfer is performed
from a 2D to a coplanar 2D domain or between 3D volumes. No mapping between
surfaces or interfaces is needed for the current problem.

When dealing with mapping information between meshes the possible cases that can
be considered are the following [52]:

1. Compatible identical meshes;

2. Nested meshes typical of multi-scale approaches;
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3. Non-nested meshes with a large difference between their sizes, typical of aeronautic

problems;
4. Dissimilar meshes in general.

In the present work the need of mapping from a moving to a fixed mesh and vice-versa
leads to discard the first two groups. On the other hand, there is no particular reason
why the order of magnitude of the two meshes should differ very much. Therefore the
case of interest is the 4th one. Also the fluid and the structural problems do not have
any Gauss point variable to be mapped. This simplifies the problem that reduces to the
transfer between nodal variables of non-matching meshes.

Let us define origin mesh (OM) the mesh from which the variable « is to be transfered
to the destination mesh (DM). In this framework, according to [18] the transfer methods
can be classified as follow:

1. The Element Transfer Method (ETM). For each node of the DM a search is per-
formed in order to locate the element of the OM it is included in. The value of o

is obtained by interpolating the nodal values of such element.

2. The Mortar Element Transfer Method (METM) in which conservation of the fields
is imposed in a weak sense. The difference between the value of the field on the

DM and its value on the OM is asked to be zero weakly performing an integration
on the DM [52].

3. The Finite Volume Transfer Method (FVTM) where the conservation in a weak
sense is obtained using the Finite Volume Method [102].

4. The Convection Transfer Method (CVM) which is a modification of the previous
algorithm suitable for Arbitrary Lagrangian Eulerian methods in which neither

the number of nodes, nor the connectivity change during the calculation [18].

The ETM is a dissipative procedure that might create a serious data loss if the dimension
of the two meshes is very different. Nevertheless, due to its simplicity and considering
the weak coupling of the physical simulated phenomenon , it is the method chosen in
this work.

Let us refer to Figure 4.7 to explain the ETM algorithm. The data transfer can be
performed via the following steps. For every element (ABC') of the OM:
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*\ @ DESTINATION MESH
/@ [ ORIGIN MESH

Figure 4.7: 2D example of the interpolation procedure. Node I, J and K are inside the
circumscribed circle but only node J in inside the element and its value of alpha can be
calculated.

1. Calculate the sphere that circumscribes the element, or circle in 2D (black circle
in Figure 4.7);
2. Search all the nodes of the DM inside the sphere (nodes I, J and K in Figure 4.7);

3. Check which of them is inside the element (verifying that the value of the shape

functions of the element nodes are all positive and smaller than one);

0 < Na(xy) < 1; (4.15)
0< NB(XJ) <1, (416)
0 < Ne(x3) < 1 (4.17)

4. For every destination node inside the element of the OM (node J of Figure 4.7),

interpolate the value of «
aj = NA(XJ)CL/A —+ NB(XJ)OCB -+ NC(XJ)Oéc;

Remark 21. The variable o can be either a scalar or a vector. A third possibility is
left to the user: he/she can choose to map the whole origin model on the destination

one.

In order to perform step 2 the use of a spatial search data structure is needed. The
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alternatives available in Kratos [47, 48] (Appendix A), which is the framework used to

develop all the algorithms presented in this work, are briefly presented in next section.

4.5.1 The searching algorithm

The search algorithm is the key point of the efficiency of the method, in fact it turns

out to be a time consuming part.

According to [113], the suitable containers for this kind of algorithms can be divided in

three families:

1. Hash tables like bins and matrices. These structures are suitable for homoge-

neously distributed data. If this condition is met they are the fastest structure to

be used for searching.

. Trees (quadtrees, octrees, k-d trees for instance). These structures are ideal for a

non-homogeneous data distribution. Nevertheless even if this is not the case, they

are often preferred to hash tables due to their higher robustness.

. The previous two families can be suitably combined in order to optimize the search-

ing procedure.

A deep analysis of the topic is not the objective of the present work and the consultation

of [113] is recommended for a complete overview on the topic. In what follows just a

brief overview of the data structure available in Kratos is done.

The structures available in Kratos are:

1. k-d tree which denotes k-dimensional tree. It is a space-partitioning data struc-

ture for organizing points in a k-dimensional space. The k-d tree is based on a
recursive subdivision of space into disjoint hyper-rectangular regions called cells.
Each node of the tree is associated with such region, called cell, and is associated
with a set of data points that lie within this cell. The root node of the tree is

associated with a bounding box that contains all the data points.

Considering an arbitrary node in the tree, as long as the number of data points
associated with this node is greater than a small quantity, called the bucket size,
the box is split into two boxes by an axis-orthogonal hyperplane that intersects
this box. A representation of how the k-d tree works can be seen in Figures 4.8

and 4.9. There are a number of different splitting rules, which determine how



Data mapping between non-matching meshes 159

p.‘_- p-ﬁ 'Iﬂ‘ =
'] M
Pl
2 ' .
pe Py
Et ﬂ; upf

Figure 4.8: Schematic representation of a k-d tree data structure taken from [69].

A\

Figure 4.9: Representation of a k-d tree partitioning taken from [47].

this hyperplane is selected and characterize the k-d tree. In Kratos the available
options are the following:
a) Mid splitting rule. The cell is always divided by half;

b) Balanced splitting rule. The cell is divided into two cells that contain the

same number of nodes. This is an optimal rule but very time consuming;
¢) Approximated balanced rule. It uses the average of the coordinates of the

points as splitting dimension.

2. Bins It divides the domain into a regular nx x ny x nz sub-domains as shown in

Figure 4.10 and holds an array of buckets storing its elements (see Figure 4.11).
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This structure provides an extremely fast spatial searching when entities are more
or less uniformly distributed over the domain. The good performance for well
distributed entities and their simplicity makes bins one of the most popular data

structure for different finite element applications.

Figure 4.11: Bins structure taken from [47].

Two bins structures are implemented in Kartos:

a) Static bins. This is the most efficient bins structure organizing the data in

sparse matrices but does not allow the insertion of additional data.

b) Dynamic bins. Slower than the previous one, it is basically a matrix of arrays

of entries, allowing a more flexible modification of its content at any time.

3. Octree. It is a type of tree in which every node in 3D has children. Space
is recursively subdivided into eight octants (only octants containing nodes are
divided in turn). The creation of the tree is faster than in th k-d tree case but the
resulting structure can often be less balanced. The searching procedure is faster

than in k-d tree implying less jumps.

4. K-d tree of bins a combination of the previous described structures.
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5. Octree of bins a combination of the previous described structures.

The advantages and drawbacks of every Kratos data structure can be found in [47, 48|.

In the present work the k-d tree, bins and k-d tree of bins data structure have been

used.

4.5.2 Numerical Examples

Mesh dimension influence in the mapping procedure

(a) Mesh A. Origin (PFEM) mesh. (b) Mesh A. Destination (fixed) mesh.

. i Ll |

................................

................................

.................................

(c) Mesh B. Origin (PFEM) mesh. (d) Mesh B. Destination (fixed) mesh.

Figure 4.12: Meshes used in the calculation whose element dimension is reported in
Table4.3. Left: Lagrangian (PFEM) mesh and right: Eulerian fixed mesh.

The breaking of a 2D water column example is considered here to underline the limits
and possibilities of the interpolation algorithm. The initial height and width of the water

column is 0.5m. The calculation is performed in a moving mesh (the origin mesh OM)
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using PFEM, and at each time step the whole model part is projected to the fixed mesh
(the destination mesh DM). A k-d tree data structure is used to perform the searching
of the neighbors.

Mesh A Mesh B

Dimension [m] 0.005 0.05

Table 4.3: Size of the two meshes considered in the projection example.

Two different mesh sizes are considered for the interpolation procedure, a fine mesh
(mesh A of Table4.3) with approximately 100 elements in the water column edge and a
coarser one (Mesh B of Table 4.3) with 10. The Eulerian and Lagrangian initial domains
for the two meshes considered are shown in Figure 4.12. In Figure 4.13 the interpola-
tion is performed from mesh A to a fixed grid with the same mesh dimension. When
interpolating data between coarser PFEM and fixed meshes (mesh B) the interpolation
shows a lack of precision (figure 4.14). Nevertheless it should be observed that original
data are already quite poor and no relevant data loss is present.

The worst performance is observed when interpolating form a PFEM model with mesh
A to a coarse fixed mesh (mesh B). The loss of information is evident in Figure 4.15.
Therefore as a conclusion, the dimension of the origin and destination meshes has to be
of the same order of magnitude to obtain an acceptable precision in the interpolation

procedure.

Performing the projection algorithm

In the present example the time performance of the interpolation algorithm is calculated
for a k-d tree, bins and k-d tree of bins data structures. The example considers the
projection of a scalar variable (the porosity) from a PFEM model to a fixed grid model.
The meshes are unstructured and homogeneous. The same dimension is considered in
the Lagrangian and Eulerian models.

Four different meshes are considered for the comparison. The detail of each of them can
be found in Table4.4. The results are summarized in Figure 4.16 where, as expected,
in the case of an homogeneous mesh, the bins structure is much faster than the k-d

tree one. The difference is clearer as much as the mesh is refined. Nevertheless the
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(a) Origin (PFEM) mesh (b) Destination (fixed) mesh. (c)

Figure 4.13: Mapping between models with Mesh A.
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Figure 4.14: Mapping between models with Mesh B.



164 The coupling

WELOGITY|
&

I%M-’M
J.8880

23333

(a) Origin (PFEM) mesh (b) Destination (fixed) mesh. (c)

Figure 4.15: Mapping from a fine mesh (mesh A) to a coarse one (mesh B).

combination of these two structures resulting in a k-d tree of bins improve relevantly
the efficiency of the simple k-d tree.

The efficiency of the bins can be compromised for a mesh with very high difference in
the dimension. In that case, the splitting rule of the k-d tree is the faster searching
procedure [113].

Concerning the problem of interest of the present work, the results confirm that there

is no reason why the mesh should vary very much in the case of the coupled models of
rockfill dams that will be presented in next chapter.

Mesh A Mesh B Mesh C Mesh D
Dimension |[m] 0.02 0.03 0.04 0.05
Eul Lagr Eul Lagr Eul Lagr FEul Lagr
n. nodes 8200 2600 3600 1200 2000 700 3700 460
n. elem 15900 7400 7000 3300 4000 1800 7000 1200

Table 4.4: Mesh dimension of the four meshes considered in the projection example. The

last two rows indicates the number of nodes and elements for the Eulerian destination
mesh (Eul) and the Lagrangian origin one (Lagr).
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Figure 4.16: Comparison between the performance of k-d tree, bins, and k-d tree of bins
data structures for the projection of a scalar variable for different mesh sizes.

4.6 Conclusions

In the present chapter the staggered balance equations of the coupled model have been
derived from the global balance equations. The explicit coupling strategy is described
and a simple example has been used to check the capability of the model of calculating
the effective pressure distribution for a static case.

In the second part of the chapter a procedure to map variables from non-matching
meshes is presented. After a brief overview of the possible data passing models the
implemented Element Transfer Method is explained. In spite of the diffusivity of the
method and its moderate accuracy, it is chosen because of its simplicity. In the future
this tool could be easily substituted with a more efficient projection technique. The
searching algorithms available in Kratos have been presented.

The examples analyzed lead to the following conclusions:

1. The origin and the destination mesh should be of the same order of magnitude to

ensure an accurate data mapping.

2. The static bins structure is the best choice for an homogeneous distribution of the
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nodes, Nevertheless the k-d tree data structure can be competitive for examples

with an alternation of dense and sparse distribution of nodes.

In any case a deeper study on the performance of the mapping technique is to be done

in order to optimize the code.



|
Chapter

Failure analysis of scale models of

rockfill dams under seepage conditions

In the present chapter the seepage and the coupled models are validated through a
comparison with the experimental results on scale models of rockfill dams in different
seepage conditions, carried out by UPM and CEDEX during the XPRES and E-DAMS
projects [53, 127]. The effectiveness of the models are tested on 2D and 3D models of
rockfill dams with different types of impermeabilization. The influence of some physical

and mechanical parameters is studied to calibrate the codes.

5.1 Introduction

The extensive work of UPM and CEDEX during the XPRES and E-DAMS projects
[53, 127] results in more than 100 experiments. Three experimental facilities of different
dimensions have been used (they can be seen in Figure 1.6 of Chapter 1). The main
objective of the experimentalists during the XPRES project was the analysis of the
influence of a series of parameters and of their combination, on the failure mechanism

of the dam.

The experimental campaign investigated the effect of
e the type of impermeabilization;
e the slope of the downstream part;

e the dimension of the material used;
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e the randomness in the experiments;
e the incoming discharge!;

e the scale effect;

Each experiment studies a scale model dam under a series of incremental “steps of
discharge”. After each increment, the incoming discharge is maintained constant till
reaching the steady state. When a breach appears in the downstream slope, its stabi-
lization is achieved before measuring its advance.

Pressure heads is registered and the length of failure is therefore measured at each

“step”.

(a) Front view of UPM channel with ~ (b) One of the panels for reading
the pressure sensors tubes. pressure heights.

Figure 5.1: Pressure instrumentation.

Pressure at the bottom of the flumes is evaluated by a network of sensors Figure 5.1(a).
Its value is read on millimetric panels like the one shown in Figure 5.1(b).

The deformation of the dam is analyzed through the evolution of the so called length
of failure (B parameter in Figure 5.2(a)). It is, by definition, the horizontal projection
of the distance between the initial undeformed downstream toe and the higher point of
the failed area.

Usually colored horizontal strikes are painted on the initial slope. This helps the mea-
surement of B (see Figure 5.2(b) for instance). In some of the experiments a more
detailed measurement of the evolution of failure is performed using a close-object-

photogrammetry-technique. It consists on taking a series of photos with a very short

!The incoming discharge is a boundary condition of the experiment. It is the discharge (in 1/s)
pumped upstream by the laboratory pumps.
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CHARACTERIZATION OF THE LENGHT FAILURE

(a) Schematic view of the length of failure (B). (b) Visual measurement, of the ad-
vance of failure with the help of col-
ored lines.

Figure 5.2: Length of failure. Characterization and operative measurement.

Figure 5.3: Length of failure. Digital model of the deformed slope to evaluate the
evolution of failure B.
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time interval until the end of the simulation. Through the re-elaboration of this data,

the creation of a digital model of the deformed dam is possible and the dynamic evolution

of the breach is followed with high precision (see for instance Figure 5.3).

The experiment ends when failure reaches the crest of the dam.

The analysis of the experimental campaign is not the objective of the present work and

for more details on the topic, the consultation of [21, 76| is recommended. Nevertheless

some important conclusions of the experimental study are summarized here in order to

motivate the choice of the case study presented in the following sections.

. As explained in Chapter 1, there exists two main failure mechanisms in a rockfill

slope when overtopping occurs: mass sliding and dragging of particles. They act
in combined or alternative way principally depending on the geometrical charac-
teristics of the downstream slope. For steep slopes (1.5H : 1V for instance) mass
sliding predominates over dragging of particles. The opposite occurs when the
slope is very flat (3H : 1V for instance). Taking into account this important as-
pect, UPM and CEDEX observed that data-scatter is higher in the experiments
with “intermediate” slopes, where neither the mass sliding nor the erosion are

predominant but their action is combined.

. The length of failure of the first steps of discharge (that is for low water level),

presents a rather high data scatter concerning the evolution of the breach. On
the contrary the discharge for which failure reaches the crest is always in great

accordance.

. No clear relation can be found between the unit failure discharge? and the down-

stream slope.

. Considering prototype dams of the same dimension, it has been observed that for

a core dam, the unit failure discharge is between 10 and 20% lower than for other
kind of dams.

. The unit failure discharge increased for material with higher Ds.

. Failure is observed to be more fragile in the case of steepest slopes for which the

predominant failure mechanism is mass sliding.

2The unit failure discharge is the discharge for unit length of the flume, for which the failure reaches

the crest of the prototype dam.
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5.2 Overview of the case study

As a first step in the validation of the fluid and coupled code, a group of experiments
has been reproduced numerically. A selection of the results is presented in this work.
The evolution of seepage and beginning of failure in three different types of dams is
simulated: an homogeneous dam, without any sort of impermeabilization, a core dam
and a dam with an impervious screen in order to identify the difficulties and limitations
in all these cases.

All the dams considered have the same downstream slope: 1.5H : 1V. This geometrical
aspect does not have any influence in the modeling of seepage but strongly determines
the deformation of the rockfill. In fact, according to experimental evidence (see point
6 of the previous section), mass sliding is predominant in this kind of slopes. The
coupled code has been conceived for representing the predominance of this failure mode.
For flat slopes (i.e. H3 : V1), the inclusion of an algorithm to simulate dragging of
surface particles is required. This module has been already developed following [94, 98|,
nevertheless it still requires extensive testing and is not yet sufficiently mature to be
presented in this context.

Only one material has been analyzed its characteristics are summarized in Table 5.1.

Porosity n 0.4052
Average diameter Ds 35.04mm
Dry density s 1490kg /m?
Saturated density Dsat 1910kg/m?
Apparent specific weight W 2500kg/m?
Pore index P, 0.68
Internal friction angle range ) [37° — 42.5°]

Table 5.1: Properties of rockfill material.

All the previous values are obtained by an external laboratory according to the Spanish
norms. For instance the granulometric distribution, according to the UNE-EN 933-1, is
the one shown in Figure 5.4. From this analysis, the diameter for which the 50% of the

material passes the sieves (D) is 35.04mm as detailed in Table 5.1.
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Figure 5.4: Granulometric analysis of rockfill material according to the UNE-EN 933-1.

This is the largest material used in the experimental campaign. A direct relation be-
tween the dimension of the grains and the discharge of beginning of failure was observed.
This implies the possibility of working with higher velocities. In fact this represents a
positive aspect because the level set technique can present some problems with very low
velocities (i.e. very low water depth). Just to make an example, at the beginning of the
simulation the Froude number? can be of the order of 1072,

Finally for each experiment, different steps of discharge have been simulated. In all
the cases with the lower discharge considered no movements in the downstream slope is
observed. This implies that, in order to speed up the calculations, the fluid uncoupled
code can be used for the simulation. The coupled model is used for the higher discharges.
Before presenting of the results, the nomenclature used to classify the cases is briefly
resumed here.

Three different type of dams are simulated in the present chapter:

- CASE A: an homogeneous dam without impermeabilization.

3Froude number is an a-dimensional number indicating the ratio between gravity and inertia forces.
It is used to classify the flow regime [58].
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- CASE B: a dam with internal core. Only the downstream slope is simulated.

- CASE C: a dam with an upstream impervious face.

For each case i (i = A, B, and ('), two sub-step analyses have been carried out:

- Case il: Analysis of the non-linear seepage given an incoming/overtopping dis-
charge. Experimentally no deformation is observed in the dam. This analysis is
carried out with the fluid uncoupled code.

- Case 12: Analysis of the evolution of failure given an incoming/overtopping dis-
charge. Several increasing values of discharges are considered for each case accord-

ing to experiments. In this case the coupled code is employed.

Finally in Table 5.2 the discharge (@ in [/s) for every simulated case is detailed.

CASE A CASE B CASE C
Homogeneous dam Core dam Impervious face dam
WITHOUT Al @ =25.461/s Bla @ = 5.930/s C1Q=>517l/s
FAILURE Blb Q = 4.0l/s

Ble Q = 16.71/s

WITH A2.1Q=51750/s B2a.lQ=19.36l/s C2.1Q =15.36/s
FAILURE | A22Q=69.07l/s B2a.2Q=23045l/s (2.2 Q =25.05l/s
A2.3Q=090.68/s B2a.3Q =39.56l/s (2.3Q =30.27l/s

Table 5.2: Case study.

The detailed position of the pressure sensors and the experimental data for each case
are not reported here but can be found in [74]|. This benchmark was selected to be one
of the three themes of the XI Benchmark workshop of ICOLD on Numerical Analysis of
Dams that held in Valencia in October 2011. The proposed solution to this benchmark
can be found in [73].
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Figure 5.5: Experimental setting.

5.3 CASE A: Homogeneous dam

The first example reproduces an experiment carried out by UPM: a dam without any

internal core or impervious screen is analyzed.

5.3.1 Case A. Experimental setting and geometry

The geometry of the prototype dam is presented in Figure 5.6, where also the distribution

of the bottom pressure sensors is indicated.
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Figure 5.6: Case A. Geometry of the experimental setting and map of the sensors
distribution.
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SLIP B.C.

n = 0.4052
Dso = 35.04 mm

Un—x
—

SLIP BOUNDARY CONDITION

Figure 5.7: Case Al. Qualitative model geometry and boundary conditions

5.3.2 Case A1. 2D numerical model and results

The numerical model is built following the geometry of the experiment [74]. The control
volume of the Eulerian fluid model has to be large enough in order not to influence the
solution.

Concerning the boundary conditions, an inlet with fixed velocity is set in the left side
of the control volume. A slip boundary condition is imposed on the walls as shown in
Figure 5.7. The mesh used for the simulation has 16 347 linear triangular elements. As
explained in the next sections, the mesh size does not affect relevantly the quality of the
results.

The code can simulate the unsteady regime of the filling of the upstream reservoir even
if experimental data only refers to the steady state. Figure 5.8 gives an example of the
unsteady part of the simulation.

In Figure 5.9 the comparison between numerical and experimental head of pressure is
shown.

The agreement is good even if the numerical code underestimates the experimental
values. This is the consequence of the model chosen for the resistance law (see Section
2.1.3 for a discussion of the topic).

Considering that the geometry of the experiment and the inflow discharge are correct,

the parameters that might influence the results of the model are:
1. The quality of the mesh;
2. The value of the porosity n;
3. The value of the average diameter Ds.

In order to understand how an error in the determination of each of these parameters

can influence the solution, a deeper analysis is carried out in the following sections.
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Figure 5.8: Case Al. Evolution of the seepage line in a dam with porosity n = 0.4 and
Dso = 35mm. @Q = 25,461/s.

Q=25.46l/s
1.0k i : -{==Dam shape
f f L Sl f —— Numerical results

EO.S*" ey fo L *‘\\ - : 1 ® Expresults
o f e N :
x 0.6 et -
-] R4 :
w 0.4 :';'f”
x ™
o ’/

0.2y

0'8.0 0.5 1.0 15 3.5

Figure 5.9: Case Al. Bottom pressure distribution at stationary regime for ) =
25,461 /s. Porosity n = 0.4, Dsg = 35mm. Numerical and experimental comparison.
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5.3.3 Case Al. Mesh influence

In order to understand how the mesh influences the results, case Al is run with different
meshes. The inlet area has been left constantly refined (h,.; = 0.01m*) in order to ensure
a constant incoming discharge before entering the porous medium. The characteristics

of the meshes are summarized in Table 5.3 and can be seen in Figures 5.10.

Mesh A Mesh B Mesh C Mesh D

Dimension |m] 0.01 0.1 0.15 0.20
n. elem 43500 950 310 220
n. nodes 86 100 970 510 340

Table 5.3: Case A1l. Mesh sizes used in the mesh sensitivity study.

Results shows that the mesh does not seem to have a strong influence on the quality of
the results at least inside the dam when no impervious structures are present. The main
difference can be observed at the downstream toe of the dam, where water comes out of
the granular material. For coarser meshes an important loss of volume can be observed
outside the rockfill. The presence of the porous medium with its dissipative effect is
helpful in enforcing the volume conservation properties also for very coarse meshes like
mesh D, for instance. This is no longer true outside the granular material.

This aspect should be taken into account when choosing the mesh for a simulation.

5.3.4 Case Al. Influence of porosity

The porosity of the material used in the experiments presented in this chapter is evalu-
ated by an external laboratory according to the Spanish norm UNE-EN 1936:2007 and
is 0.4052.

Keeping all the parameters of the models and the calculation mesh fixed, porosity is
changed in the range 0.30 — 0.45 in order to see the influence of this parameter in the
analysis. A constant variation in the porosity value An induces a constant jump in the

pressure head distribution as can be observed in Figure 5.12.

4h is the average mesh dimension. In this case the sub-index ref indicates that this h refers to the
refined areas at the inlet.
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(a) Mesh A
o] . il R 7
(c) Mesh C (d) Mesh D
Figure 5.10: Case A1l. Meshes used in the analysis of mesh sensitivity. Detailed charac-
teristics of the meshes can be found in Table 5.3.
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Figure 5.12: Case Al. Pressure head distribution for porosity n = 0.3,0.35,0.4 and

0.45.
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The numerical results obtained for n = 0.4052 yields a lower pressure head, while
the case with n = 0.35 overestimates the experimental data. The same problem was
subsequently analyzed in more detail considering smaller porosity increment. The results
adopting n = 0.37,0.38 and 0.39 are shown in Figure 5.13. The experimental data agree
well with the case of n = 0.38.

0.40 1 1 T T T < T T
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E 0.35 : : : : : : S : ® Exp.n=0.4052
§ 0.20f R ——— [ 1 =03
0.05 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
[m]

Figure 5.13: Case Al. Zoom of the pressure head distribution for porosity n = 0.37,0.38
and 0.39.

5.3.5 Case Al. Influence of the diameter of the material

The last analysis concerns the influence of the Dsy value. This value is changed with
an increment of lem from 1 to 8cm. It is interesting to observe Figure 5.14 where the
decrement of pressure head is not linear with respect to Dsg. Moreover if Dsq > Sem
its influence on the pressure distribution is negligible. On the contrary, the smaller the

Dy is, the bigger its influence on the pressure distribution.
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Figure 5.14: Case Al. Influence of the diameter of the material.
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5.3.6 Case A1l. 3D numerical model and results

The 3D model of case A has been considered following the geometry given in Figure 5.7.
The control volume is meshed with a 1264 015 4-noded linear tetrahedra linear elements

as shown in Figure 5.15.

Figure 5.15: Case Al. 3D model and mesh.

Three lines of pressure sensors where activated during the experiments (respectively
lines 1, 4 and 7 of the plane view of Figure 5.6). They are located along the central line
and at 4cm from each side of the channel. By identifying Y with the coordinate in the
transversal direction (as shown in figure 5.6), the exact position of the sensor lines for
case A is detailed in Table 5.4.

A
] ]

4.

Figure 5.16: Case Al 3D. Evolution of the seepage line in a dam with porosity n = 0.4
and Dsy = 35mm. Q = 25,46l/s.

A sequence of the transitory phase of filling of the dam can be observed in Figure 5.16.
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Line 1 at Y = 0.04m
Line4 at Y =1.23m
Line 7 at Y = 2.42m

Table 5.4: Activated sensors lines in case A.
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Figure 5.17: Case Al (3D). Bottom pressure distribution at stationary regime along the
three sensors lines (Y = 0.04m, 1.23m, 2.42m respectively) for @) = 25,461/s. Porosity
n = 0.4, D5y = 35mm. Numerical and experimental comparison.
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Figure 5.18: Case A1l. Bottom pressure distribution in 2D and in 3D models at different
instances of the transitory regime. @ = 25.461/s. Porosity n = 0.4, Dsq = 35mm.
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Figure 5.17 shows the comparison between experimental values measured at different
Y and the correspondent numerical results. The 3D results for case Al confirm that
the model underestimates the experimental results.

Finally a comparison between the 2D and 3D models is performed for the unsteady
regime at different time instances and the bottom pressure distribution is plotted as

shown in Figure 5.18.

5.3.7 Case A2. 2D coupled model and results
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Figure 5.19: Case A2. Fluid and dam qualitative models and boundary conditions for
the coupled analysis.

The coupled models aim to simulate the seepage line and the overtopping flow while

following the evolution of the breach in the dam material. It is composed of two parts:

- The fluid Eulerian model. Its construction is analogous to the case Al and the
mesh properties are the same. The main difference derives from the absence of
any porous material. This information is passed during the calculation, by the
PFEM model.

- The PFEM structural model. The dam model is constructed in a Lagrangian
framework. This implies modeling only the material domain (i.e. the dam initial

shape and the walls if present). The definition of a bounding box is required. It
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sets the maximum calculation domain. If a node exits the bounding box is no

longer calculated and is deleted.

Remark 22. A preliminary remark on the interpretation of the experimental data
should be made here. The experimental B length of failure is by definition the horizontal
projection of the position of the higher particles that moves. This movement is not
quantified. In the present work it was assumed that a particle is to be considered
“moved” if its total displacement is higher than the average dimension of the granular
material (3.0cm). This choice is arguable and, as it will be shown later on, it often
makes our model too deformable. Nevertheless this empirical criterion was used in all

the models analyzed in order to allow a comparative analysis.

. :
il

Figure 5.20: Case A2. 2D mesh of the dam model. 3.400 linear triangular elements.

In Figure 5.19 a schematic view of the fluid and structure boundary conditions is shown.
The mesh used for the fluid model is the same used in case Al, whereas for the structural
model, the mesh is composed of 3400 linear triangular elements (Figure 5.20).

The photogrammetric analysis of the A cases was also available and helped the com-
parison between experimental and numerical results. Figures 5.21-5.23 show on the left
the digital model derived by the photogrammetric analysis, and on the right the contour
fill of the displacements. The colored area indicates the displacements larger than 3cm.
The reason for this choice is explained in Remark 22. A very good agreement is observed
between experimental and numerical length of failure in the three cases.

Looking at the pressure head distribution (figures 5.24-5.24), the experimental bottom
pressure head is underestimated by the numerical one. This aspect is more relevant than
in case Al. It might be the signal of an internal variation of the material conditions
(such as porosity or permeability) that is not taken into account in the model.

Figure 5.26 shows that in case A23, the pressure head presents a lower experimental

value where the water exits the dam. The contraction of the flux can be induced by
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Ba=1.50m
B =0.68m

(b) Numerical length of failure B= Bnum= 0.68m.

(a) Experimental length of failure
B= Bexp = 0.71m.

Figure 5.21: Case A21. 2D comparison between experimental and numerical length of
failure.

B: =1.50m

(b) Numerical length of failure B= Bnum= 1.04m.

(a) Experimental length of failure
B= Bexp = 1.08m.

Figure 5.22: Case A22. 2D comparison between experimental and numerical length of
failure.
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(b) Numerical length of failure B= Bnum= 1.58m.

(a) Experimental length of failure
B= Bexp = 1.56m.

Figure 5.23: Case A23. 2D comparison between experimental and numerical length of

failure.
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Figure 5.24: Case A21. Bottom pressure distribution at stationary regime for ) =
51.751/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.

Q [Z/S] Bea}p Bnum EI'I'OI"

Case A21 51.75  0.71  0.68  4.2%
Case A22 69.07  1.08 1.04 3.7%
Case A23 90.68 1.56 1.58 1.3%

Table 5.5: Case A2. Comparison between experimental (B.,,) and numerical (Byum)
length of failure.
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Figure 5.25: Case A22. Bottom pressure distribution at stationary regime for @) =
69.071/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.

the absence of the rockfill that flowed away during the failure process. This leads to
the conclusion that the failed material in the numerical model is more rigid than in the
real case. Its accumulation over the original toe of the dam induces a higher value of
pressure than in the experiment.
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Figure 5.26: Case A23. Bottom pressure distribution at stationary regime for @) =
90.681/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.

5.3.8 Case A2. 2D sequence of incremental discharges

The code was conceived to analyze the consequence of transitory incoming discharges,
allowing inserting flooding curves as an input. Unfortunately this capability has not
been exploited in the examples presented because the experimental results where given
for the stationary regime and no comparison can be made in the transitory regime.
Fortunately in the last months, the UPM partners in the E-DAMS project have been
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performing some experiments considering variable incoming discharges according to a

hydrogram.
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Figure 5.27: Imposed incoming discharge in function of time.

As a preliminary test, cases A1-A21-A22 were run in sequence leaving the sufficient time
for the intermediate stationary regime to be achieved. The imposed curve representing
the inlet discharge in function of time, is reported in Figure 5.27. The pressure head in
correspondence of two pressure sensors location is registered as can be seen in Figure
5.28. The two points are located at 2.2m and 2.7m from the upstream toe of the dam.
The dotted line in the graph is the stationary value of pressure read from the piezometers
in the cases A1, A21 and A22 respectively. Also in this case the numerical results
underestimate the experimental ones and the error is analogous to the one presented in

the previous section.

5.3.9 Case A2. 3D coupled model and results

Some preliminary results have been obtained also in 3D. The fluid and structural models
have been developed according to what explained in Section 5.3.7 for the 2D validation.
On the other hand, the deformation of the dam is not so clear as in the 2D case. This
happens because the deformation is partially skewed by the remeshing at each time step.
As explained in Section 3.7, remeshing is a key point of PFEM. In fact this method was
originally conceived to treat Newtonian free surface problems where the regeneration of
the mesh is always required. This is not the case of the present non-Newtonian algorithm

where in most of the steps all the nodes are in the unyielded region and do not move.
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Figure 5.28: Bottom pressure distribution considering the hydrogram presented in Fig-
ure 5.27. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.
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Figure 5.29: Case A22 3D. Numerical and experimental length of failure.
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For this reason the possibility of inserting a conditional remeshing in the problem is to
be added in the code in order to have a viable 3D coupled analysis code.

A preliminary tool that allows a conditional remeshing has already been inserted in the
code and yields good results like the one shown in 5.29.

The plots of the pressure drop (figure 5.30) shows a good agreement between the results
of the 2D and 3D models (dotted and continuous line respectively). This confirms the

results obtained in Section 5.3.6 for the A1l case in 3D, where only the fluid code was

used.
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Figure 5.30: Case A22 3D. Bottom pressure distribution at stationary regime for ) =
69.071/s. Porosity n = 0.4, D5 = 35mm. 2D and 3D numerical results compared with
experimental data points.

5.4 CASE B. Core dam

Figure 5.31: Core dam. Experimental setting.

The second experiment simulated in this work is the seepage inside a core dam. The core

is considered fixed and undeformable. The experiment is carried out building exclusively
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the downstream slope as can be seen in Figure 5.31. The water entrance is set in the
upper left part, omitting the simulation of the filling of the reservoir that is useless in

the present analysis.

5.4.1 Case B. Core dam. Experimental setting and geometry

The geometry of the dam is presented in Figure 5.32 where the distribution of the
pressure sensors on the bottom of the channel can be seen.

The model is built in order to reproduce the real geometry of the experimental setting.
Since the case of interest is the simulation of the overtopped flow, the geometry of the
model does not include the reservoir. The entrance of water is set in the upper left part

as shown in Figure 5.33.
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Figure 5.32: Case B. Geometry of the experimental setting and map of the sensors
distribution.
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Figure 5.33: Case B1. Qualitative model geometry and boundary conditions.
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A slip boundary condition is imposed on the bottom of the channel and on the core

side.

5.4.2 Case Bla. Core dam. 2D numerical model and results

Figure 5.34: Case Bla. Mesh used in the calculation.

The mesh used for the calculation can be seen in Figure 5.34. It has 14859 linear
triangular elements. The comparison between experimental and numerical pressure
heads can be observed in Figure 5.35.

A refinement of the mesh is performed in the critical zones of the falling of the water
and near the bottom of the channel. The reason for that choice will be explained in

Section 5.5.2 when describing case C1.
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Figure 5.35: Case Bla. Bottom pressure distribution at stationary regime for @) =
5.931/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.



CASE B. Core dam 193

Case B presents an additional difficulty in the fluid dynamic problem. It is particularly
challenging to simulate correctly the falling jet of water (especially if the incoming water
velocity is very slow), without suffering serious mass loss. The good agreement between
experimental and numerical pressure heads confirms that this problem can be accurately
modeled with the method developed in this work. This is confirmed in the 3D simulation

of case Bla in Section 5.4.4.

5.4.3 Cases Blb and Blc. Core dam. Comparison with theo-

retical Ergun model

It has been observed that the numerical pressure head gives lower values than the exper-
imental ones. To verify if the problem can be attributed to the choice of the resistance
law, a comparison with the theoretical results is performed according to the work of
Lopez Verdejo [125]. In order to do that a slightly different geometry is taken into
account. The dam studied is made of the same material as the one presented in the
previous sections but the height of the dam is 0.5m and the length of the downstream
slope is 1.5m. The slope ratio is H3 : V1.

The mesh used is shown in Figure 5.36. It has 2865 nodes and 5728 linear triangular

elements.

A

6l
Figure 5.36: Case B1(b-c).Mesh used in the calculation.

The theoretical solution for an incoming discharge of 4.0{/s and 16.71/s is plotted in red
dotted line in Figures 5.37 and 5.38 respectively. The numerical approximation is very
close to the Ergun theoretical one as expected. Both these curves underestimate the
experimental values. This confirms that Ergun model might not be the best choice for
the resistance law of this kind of problem. In order to overcome this issue the next step

will be to modify the code in order to let the user insert a custom quadratic resistance
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law.
As a consequence of this observation CEDEX will build a permeameter for rockfill in
order to study deeply this aspect and eventually derive an experimental resistance law

for the materials used in the project.
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Figure 5.37: Case Blb. Bottom pressure distribution at stationary regime for @) =

4.0l/s. Porosity n = 0.4, D5y = 35mm. Numerical, experimental and theoretical
comparison.
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Figure 5.38: Case Blb. Bottom pressure distribution at stationary regime for @) =
16.7l/s. Porosity n = 0.4, Dsg = 35mm. Numerical, experimental and theoretical

comparison.

5.4.4 Case Bla. Core dam. 3D numerical model and results

Case Bla has been simulated in 3D as well. Figure 5.39 shows a sequence of the
transitory regime of the filling of the core dam. Three different meshes are taken into
consideration in order to understand which is the minimum element length to correctly

reproduce the experiments, without relevant volume losses.
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L~_ L~.
;.‘- .1.‘
Figure 5.39: Case Bla 3D. Evolution of the seepage line in a dam with porosity n = 0.4
and Dz = 35mm. Q = 5.931/s.

Mesh A Mesh B Mesh C Mesh D

Dimension |m] 0.02 0.03 0.04 0.05
n. elem 1460000 517000 281000 183000
n. nodes 250000 89 600 49 000 34000

Table 5.6: Case Bla. Meshes used for the analysis.
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The characteristics of the four meshes analyzed are summarized in Table 5.6. The
refinement is performed only in the dam volume, whereas the dimension of the elements

is kept fixed in the rest of the domain as it can be observed in Figure 5.40.

(c) Mesh C (d) Mesh D

Figure 5.40: Case Al. Meshes used in the analysis of mesh sensitivity. The character-
istics of the meshes can be found in Table 5.6.

Figure 5.41 shows the pressure heads for the different mesh sizes. The convergence is
achieved when the mesh is finer than 0.03m. For larger meshes the volume conservation
is seriously compromised. This loss takes place when the flux falls down vertically.
Therefore particular care should be taken in the refinement for the analysis of a core

dam.

5.4.5 Case B2. Core dam. Coupled model and results

The construction of the models for the coupled case is analogous to what already ex-
plained in Section 5.3.7 for the A2 case. A schematic representation of the boundary
conditions can be found in Figure 5.42.

Figure 5.43 shows the Lagrangian mesh used in the calculation. It has 8000 linear

triangular elements.
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Figure 5.41: Case Bla (3D). Bottom pressure distribution at stationary regime for
Q = 5.93l/s. Porosity n = 0.4, D5y = 35mm. Numerical, experimental and theoretical

comparison.
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Figure 5.42: Case B2. Fluid and dam qualitative models and boundary conditions for

the coupled analysis.
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Figure 5.43: Case B2. 2D mesh of the dam model. 8000 linear triangular elements.

5.4.6 Case B21. Core dam. Sensitivity analysis: internal fric-

tion angle

The numerical length of failure obtained for material with friction angle of 40° and 41°
exceeds significantly the experimental measurements. Additional tests were carried out
increasing ¢. The dam remains completely rigid if ¢ = 42°. Therefore, the intermediate
angles were considered as shown in Table 5.7 where the length of failure B obtained for

different values of ¢ is summarized.

¢ [ Bm]
40 0.92
41 0.76
41.5 0.75
41.54 0.75
41.548 0.74
41.55 0.0
42 0.0

Table 5.7: Case B21. Length of failure B for different ¢.

The model is able to catch the motion if ¢ < 41.55°. Moreover in the range ¢ €
[41 —41.55] no relevant differences are found in the evaluation of B. This indicates that

the model is not able to catch correctly the first deformation of the slope. As expected
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no relevant changes are observed in the pressure head of the considered cases (figure
5.44).
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Figure 5.44: Case B21. Bottom pressure distribution at stationary regime for @) =
19.361/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison for
different internal friction angles ¢.

The accuracy improves for cases B22 and B23 as explained in the next sections. This
fact coincides with what was observed experimentally: the length of failure induced by
the lower step of discharge presents a high data scatter whereas the failure achieves the

crest always at the same discharge level.

5.4.7 Case B2 with ¢ =41°

Since the difference in the length of failure is not so relevant if ¢ € [41 — 41.55], the
internal friction angle adopted for case B2 is ¢ = 41°.

Figures 5.45-5.47 show the comparison between experimental and numerical dam de-
formation at each step of discharge for ¢ = 41°. The error in the evaluation of B is
progressively reduced when increasing the discharge as detailed in Table 5.8.

An additional consideration can be made looking at the pressure head distribution of
the three cases shown in Figures 5.48-5.50. As for the A2 case, the amount of moved
rockfill is lower in the simulation than in the experiments. In fact the higher value of
numerical pressure at the toe of the dam indicates that granular material is present
over the sensor position (i.e. the resistance given by the grains increases the water level
and the pressure head as well). This seems to indicate that the material settles faster
than in the experiment. It may be the consequence of the visco-rigid constitutive model
adopted.
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(a) Experimental length of failure (b) Numerical length of failure B= Bnum= 0.76m.
Bexp = 0.32m.

Figure 5.45: Case B21. 2D comparison between experimental and numerical length of
failure.
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(a) Experimental length of failure (b) Numerical length of failure B= Bnum= 0.90m.
Bexp = 0.68m.

Figure 5.46: Case B22. 2D comparison between experimental and numerical length of
failure.

e A VWY

22 ]
BEF
I‘h

B

Ir‘I

Memnn
HE¥oa

(W

(a) Experimental length of failure (b) Numerical length of failure B= Bnum= 1.02m.
Bexp = 1.00m.

Figure 5.47: Case B23. 2D comparison between experimental and numerical length of
failure.
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Q [l/s] Bewp Bnum Error
Case B21 19.36 0.32 0.76 137%
Case B22 30.45 0.68 0.90 32%
Case B23 39.56 1.00 1.02 2%

Table 5.8: Case B2. Comparison between experimental (B.;,) and numerical (Byyum)

length of failure for ¢ = 41°.
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Figure 5.49: Case B22. Bottom pressure distribution at stationary regime for @)
30.450/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.
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Figure 5.50: Case B23. Bottom pressure distribution at stationary regime for @) =
39.561/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.

5.5 CASE C. Impervious face dam

The simulation of a dam with an impervious screen is the most challenging case from a
fluid dynamic point of view. The inlet of water is set in the upper left part, according
to what already done in case B. It implies that a falling jet should also be simulated.

The impemeabilization of the experimental dam is obtained making use of a plastic
deformable material used to cover the upstream slope. Special care is observed on
the perimeter, where the plastic is connected with the side walls and the bottom of
the channel. In fact, there is a high possibility of leakage that could invalidate the
experiment. Figure 5.51 shows a view of the experimental setting, unfortunately no

photos are available of the upstream slope with the plastic coverage.

Figure 5.51: Case Cl. Experimental setting.
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5.5.1 Case C. Impervious face dam. Experimental setting and

geometry

The details of the geometry of the experimental setting can be seen in Figure 5.52, where
the pressure sensors distribution is also shown. The red rectangles indicate the three

lines of sensors activated. They are respectively at Y = 0.3m Y = 0.5m and Y = 0.7m.
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Figure 5.52: Case C1. Impervious face dam. Geometry of the experimental setting and
map of the sensors distribution.
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5.5.2 Case C1l. Impervious face dam. Uncoupled model and

results

In order to optimize the computational domain, the upstream reservoir is not simulated
and the entrance of water is directly set in the upper left part, at the crest level, as shown
in Figure 5.53. The upstream screen is therefore considered perfectly impermeable and

it is simulated as a rigid wall with a slip condition.

SCREEN

SLIP BOUNDARY CONDITION

Figure 5.53: Impervious face dam. Qualitative model geometry and boundary condi-
tions.

The rest of the boundary conditions are similar to those of the previous models and
they are schematically presented in Figure 5.53. A qualitative geometry is also shown
in the image.

It has been experimentally observed that no deformation of the downstream slope occurs

up to a discharge of 5.711/s.

Mesh A Mesh B Mesh C Mesh D

Dimension |[m] 0.03 0.02 0.015 0.01
n. elem 4700 8500 13000 20000
n. nodes 2900 4200 6 800 10 000

Table 5.9: Case C1. Meshes used in the analysis.

Different mesh are used in order to identify the minimum element size that yields a
correct conservation of the fluid volume. Their characteristics are summarized in Table
5.9 and they are shown in Figure 5.54. The first mesh taken into consideration is mesh

A shown in Figure 5.54 where the average dimension of the elements is set to 0.03m.
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This condition is not sufficient for the flow to be simulated correctly and the mass loss
compromises the results. The final level of water obtained is in fact much lower than in
the other cases, as shown in Figure 5.55.

(a) Mesh A (b) Mesh B

(c) Mesh C (d) Mesh D

Figure 5.54: Case C1. Meshes used in the analysis of mesh sensitivity. Detailed charac-
teristics of the meshes can be found in Table 5.9.

This problem is solved just refining the area where the jet falls and the bottom of
the channel as for mesh B, C and D. It is interesting to observe how the mesh size
requirements are stricter than in case Bla.

The comparison between bottom pressure distribution of the analyzed cases shows that
for a mesh finer than 0.015m the results converge to the same solution. In the same
graph the wrong behavior of the model with the coarsest mesh is clearly reflected in

term of pressure head.

(a) Mesh A (b) Mesh D

Figure 5.55: Case C1. Steady state configuration in C1 case with mesh A anc D respec-
tively. The blue line represents the free surface.
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Figure 5.56: Case C. Bottom pressure distribution at stationary regime for ) = 5.17/s.
Porosity n = 0.4, Dsq = 35mm. Numerical and experimental comparison for the differ-
ent meshes analyzed.

5.5.3 Case C2. Impervious face dam. Coupled model and re-

sults

The construction of the models for the coupled analysis is done as explained for cases
A2 and B2 and is shown in Figure 5.57. The mesh used in the fluid model is mesh D
used for the C'1 case (Figure 5.54) whereas the mesh of the dam is shown in Figure 5.58.
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Figure 5.57: Case C2. Fluid and dam qualitative models and boundary conditions for
the coupled analysis.
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Looking at Figure 5.59 it can be observed that the coupled model overestimates the
length of failure in case C'21. The results improve for higher discharges, as explained
in the following sections. The overestimation of the length of failure when B,,, << By
has already been discussed in Section 5.4.7.

-

i
Figure 5.58: Case C2. 2D mesh of the dam model. 9.400 linear triangular elements.

The pressure head distribution (see Figure 5.62) according to what has been explained
in the previous cases is underestimated by the model. On the other hand, the variation
in the pressure head at the deformed toe of the dam can be, also in this case, the
consequence of a too fast settlement of the fluidified material. This issue is expected to

be corrected by including of the possibility of dragging the superficial particles.
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Figure 5.59: Case C21. 2D comparison between experimental and numerical length of
failure.

In case C22 the numerical length of failure is B,,,, = 0.61m, as shown in Figure 5.60,
which is close to the experimental value of B.,, = 0.59m. Nevertheless, the numerical
pressure heads are lower than the experimental ones (Figure 5.63).

In the last example failure achieves the crest of the dam both in the numerical (B, =
1.40m) and in the experimental (B.,, = 1.44m) models (Figure 5.61) as expected.

Finally a good accordance can be found in the pressure head distribution, as shown in
Figure 5.64.
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Figure 5.61: Case C23. 2D comparison between experimental and numerical length of
failure.

Q [l/s] Bexp Bnum EI"I"OI'

Case C21 15.36  0.24 0.58  142%
Case C22 25.05 0.59 061 32%
Case C23 30.27  1.44 140  2.7%

Table 5.10: Case C2. Comparison between experimental (B.,,) and numerical (Byum)
length of failure.
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Figure 5.62: Case C21. Bottom pressure distribution at stationary regime for @) =

39.561/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.
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Figure 5.63: Case C22. Bottom pressure distribution at stationary regime for @) =

39.561/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.
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Figure 5.64: Case C23. Bottom pressure distribution at stationary regime for @) =

39.561/s. Porosity n = 0.4, D5y = 35mm. Numerical and experimental comparison.
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5.6 Conclusions and future work

In this work a novel approach for the simulation of the onset of failure of downstream
slopes in rockfill dams is presented. The dynamic evolution of seepage and the free
surface flow both upstream and downstream the dam are simultaneously analyzed. This
is done using the edge-based code presented in Chapter 2. The structural response is
evaluated with a visco-rigid constitutive model. As a failure criterion, Mohr Coulomb
has been adopted. The rockfill is treated as a highly viscous non-Newtonian fluid (the
reason for this choice is explained in Chapter 4). The viscosity drastically decreases
when, due to the hydrodynamic forces, the yield stress is exceeded. When this happens
failure occurs and the material starts to flow. The fluid-structure coupling is performed
using a fully staggered scheme and a projection tool between non-matching meshes. In
what follows the conclusions and the future work concerning the validation presented in

this chapter are detailed
e The fluid module.

1. There is a good agreement between experimental and numerical pressure
heads for the undeformed cases (Al, B1, C1) both in 2D and 3D. Never-
theless the numerical results always slightly underestimate the experimental
values. Additional numerical experiments carried out in the framework of
XPRES and EDAMS projects can confirm that the pressure line is always
lower than the experimental one, especially when increasing the porosity val-
ues. This aspect, together with the comparison with theoretical Ergun curves
shown in Section 5.4.3, lead to the conclusion that the Ergun coefficients un-
derestimate the pressure drop in the seepage problem. In the near future, we
plan to generalize the quadratic law of the Darcy non linear term ( cu + fu?)

and let to the user the choice of the suitable o and 3 coefficients.

2. The overestimation of the pressure head at the toe of the deformed dam
(cases A2, B2, C2), might be the consequence of a smaller deformation of
the failed material. Whereas the length of failure is correctly reproduced, the
failed material settles faster than in the real case and accumulates close to the
original toe. In the experiments the path run by the failed rockfill material
is much larger (see the conclusion about the coupled model for additional

comments on this issue).
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3.

The code has a good performance also in the challenging cases of a falling
jet of water. The only requirement is a refinement of the mesh in the falling

part of the domain.

Another challenging aspect of cases Al, B1, C1 is that the discharges are
very low. This might represent a problem at the beginning of the simulation
when a very thin layer of water starts filling the dam. This issue can be easily

corrected by refining the mesh close to the bottom.

. It might be interesting to test the model with different materials and eventu-

ally with several different porosities in the same dam. In this context some
preliminary results (not shown in the work) have been obtained using the
fluid code. This aspect is interesting because it will allow a more realistic
representation of the rockfill slope. The construction process in fact is usually
done layer by layer and a mechanical compaction is performed with a roller
before passing to the next level. This compaction causes a crumbling of the
superficial material. A thin layer is obtained on the surface. It is formed
by particles with average diameter much smaller than the rest of the rockfill

leading to a different porosity.

The scale effect is another aspect that must be taken into account in the
future. CEDEX is now building a channel that will allow setting up dams of
up to 2 meters high (the maximum height of prototype dams built up to now

was 1m).

e The coupled module.

1.

The code represents the incremental failure of the dam when increasing the
overspilling discharge. It is also able to represent correctly the cases for which
failure achieves the crest of the dam. On the contrary for lower discharges
B is overestimated. This aspect is also reflected at experimental level. In
fact when repeating the same experiment, the beginning of formation of the
breaching suffers of a certain data scatter. Conversely, the discharge for which

the failure reaches the crest is always the same.

. As already observed in the conclusions regarding the fluid module, the failed

material settles faster than in the real case. This can be a consequence of the
visco-rigid constitutive model chosen. In fact when the shear stress decreases

under the yield stress threshold, the viscosity dramatically increases causing



212

Failure analysis of scale models of rockfill dams under seepage conditions

a sudden stop of the element. The insertion of an erosion tool might solve

the problem dragging away the deposed material.

. In the experiments presented the high downstream slope (1.5H : 1V) can

lead to the conclusion that the principal failure mechanism is mass sliding.
Nevertheless in the most general case erosion, i.e. superficial dragging of
particles, plays a relevant role, acting in combined or alternate way. The
possibility of including a procedure to evaluate erosion is essential in order

to fully describe the phenomenon.

. The 3D coupled model has given encouraging results. Nevertheless the pos-

sibility of inserting a conditional remeshing should be taken into account in
order to control the deformation avoiding excessive viscous effects that lead

to an excessive fluency of the downstream slope.

. The coupled code was conceived to analyze the consequence of transitory

incoming discharges, allowing inserting flood hydrograms as an input. This
capability is not exploited in the presented examples. Just a preliminary
example is shown in Section 5.3.8. Experiments are currently carried out at
UPM considering hydrograms and not incremental steps of discharge. In a

near future it may be possible a validation of this important aspect.

. In the present chapter it was pointed out the low reliability of the B param-

eter used to quantify the length of failure. In the future, the possibility of
comparison between the 3D digital model and 3D numerical results should

be investigated in more detail.
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Chapter
Conclusions

In this chapter the conclusions of the work are presented and an overview of the future

lines of research is made.

6.1 Summary and achievements

The aim of this work was to development a numerical tool for the simulation of the
overtopping in rockfill dams. For that purpose three are the main points developed in

the present work (reflected in Chapters 2, 3 and 4 respectively):

1. The development of a fluid code able to simulate the free surface flow over and
throughout the rockfill. The classical Navier-Stokes equations have been modified
to automatically account for a change in porosity values. The non linear seepage
is evaluated using a quadratic form of the resistance law. Ergun’s coefficients
have been chosen. The possibility of including variable incoming discharges is
an essential requirement for the objectives of the work. A fixed mesh approach
has been used and a level set technique has been implemented for tracking the
evolution of the free surface both outside and inside the rockfill. Of the two
approaches presented in Chapter 2, the edge-based one has been chosen for its

better performances in terms of computer time.

2. The implementation of a code to simulate the behaviour of a granular non-cohesive
material. A non- Newtonian modified Bingham law is proposed. This approach

gives the possibility of considering a pressure sensitive resistance criteria. This is
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obtained by inserting a Mohr Coulomb failure criteria in the Bingham relation.
Since the rockfill is expected to undergo severe deformation during the failure
process, a Lagrangian approach is preferred to a fixed mesh one. PFEM was the

adopted technique.

3. The implementation of a strategy to couple the models mentioned in Points 1
and 2. This tool needs to include an algorithm for the data mapping between
non matching meshes being the structural and the fluid models in two different

kinematic frameworks (the Lagrangian and the Eulerian one).

Finally in chapter 5 an extensive validation of the code is done, simulating the experi-
ments performed by UPM and CEDEX in the XPRES and E-DAMS projects. Several
different experimental settings have been taken into account. For each of them a sensi-
tivity analysis of the main parameters has been carried out in order to understand the
capabilities and limitations of the code.

The results are encouraging considering that this work represents a first step for the

solution of a complex problem.

6.2 Future lines of research

To conclude some ideas of possible applications and future lines of research deriving
from this work are provided in this section.

The fluid-seepage code has been used in this work for a very specific application. Never-
theless once the possibility of defining a custom resistance law is inserted in the code, it
becomes a general tool to treat a wide range of problems. For instance all the problems
dominated by Darcy incompressible flows can be simulated setting to zero the non-linear
term. Several problems in harbor engineering need to evaluate the dissipation suffered
by incoming waves when smashing over tetrapods, or general protections of dikes and
levees, that behaves like rockfill. Another application can be, for instance, turbine sim-
ulation. In fact the pressure drop induced by this type of machines is often simulated
with an equivalent porous medium in order to study the effects in the surrounding fluid
environment.

The fluid code itself has been already applied to a number of free surface flow problems
without the presence of any porous material. Some of them have been shown in Chapter

2 (the flip bucket example or the water column collapse). This code has been successfully
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used for the calculation of the discharge on a spillway as detailed in [112], or for the
simulation of mould filling processes as shown in [108].

The modified Bingham model coupled with the fluid code can also be used for the
simulation of the effect of a landslide into a reservoir. In fact the code naturally simulates
the interaction between the solid falling into the water and the resulting wave.
Concerning the problem of overtopping in rockfill dams, it should be remarked that
the whole work was conceived to easily change the structural model maintaining the
coupling strategy and the fluid-seepage module. As a complement of the FEM-PFEM
continuous approach presented in this work, the possibility of a FEM-DEM model is

currently being explored by other researchers of the same working team.
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Kratos Multiphysics

A.1 Kratos

All the algorithms presented in this thesis are developed inside Kratos Multiphysic |3, 48|.
Kratos is a framework for building multi-disciplinary finite element codes as well as a
common platform for natural interaction of these modules in different ways. It is written
in C'+ + language.

It provides several tools for easy implementation of finite element codes and a common
platform for their natural interaction in different ways.

It is addressed to a variety of people ranging from developers (finite element experts or
application programmers) to engineers or designers who stop at the user level without

getting involved in the programming features.

A.1.1 Object-oriented approach

The main goal of an object-oriented structure is to split the whole problem into several
objects and to define their interfaces. With regard to the simulation of multi-disciplinary
problems using FEM, the objects defined in Kratos are based on a general finite element
methodology. Figure A.1 illustrates the main classes.

Vector, Matrix and Quadrature come from basic concepts of numerical analysis. Node,
Element, Condition, Mesh and Dof are taken directly from finite element concepts.
Model, Properties, ModelPart and SpatialContainer are conceived for a better or-

ganization of all necessary data. I0, LinearSolver, Process and Strategy are basilar
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Kratos Multiphysics

Objects

Library interfaces FE Methodology Numerlcal solutions
Kernel Node Geometry
FE Modeling
Application Model Properties LinearSolver
Data
10 MadelPart
Element Container
Mesh Condition Vector
FEH Algorithms
Spatial
Process Container Formulation Matrix
Strategy Dof Quadrature

Figure A.1: List of the principal object in Kratos. Image taken from [47].

different tools of finite element programs. Finally, Kernel and Application handle the

library management and define Kratos interface.

A.1.2 Multi- layer design

Kratos uses a multi-layer approach in its design. This imply that each object only inter-
faces with objects in the same layer or in lower ones. Layering reduces the dependency
inside the program. It helps in the maintenance of the code and also helps developers
to understand the code and clarifies their tasks.

The layers structure has been designed to be addressed to different category of users. It
was conceived to lead the user to work with the minimum number of layers as possible.
This was done in order to reduce conflicts between users and especially to reduce as
much as possible the part of the code touched by each developer.

Following the design mentioned above, Kratos is organized as follow:

Basic Tools Layer. It holds all the basic tools used in Kratos. This layer using
advance C+-+ techniques is essential in order to maximize the performance. It is

designed to be implemented by an expert programmer not necessarily FEM expert.
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Figure A.2: Graphical summary of the multi.layer design. Image taken from [47].

This layer may also provides interfaces with other libraries.

Base Finite Element Layer. It holds the objects that are necessary to implement
a finite element formulation. It also defines the structure to be extended for
new formulations. This layer hides to the finite element developers the difficult

implementations of nodal and data structure and other common features .

Finite Element Layer. The layer for finite element developers. It only uses basic
and average features of C-++ and uses the previous described layers in order to

optimize the performance without entering into optimization details.

Data Structures Layer. It contains all objects organizing the data structure. This
layer has no implementation restrictions. Advanced language features are used to

maximize the flexibility of the data structure.

Base Algorithms Layer. Generic algorithms are implemented here to be available

for users in different fields.

User’s Algorithms Layer. This layer is to be used by high level finite element
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programmers. It contains all classes implementing the different algorithms in

Kratos.

Applications’ Interface Layer. It holds all the objects that manage Kratos and their
relation with other applications. The components of this layer are implemented

using high level programming techniques in order to provide the required flexibility.
Applications Layer. It contains the interface of certain applications with Kratos.

Scripts Layer. Holds a set of 1O scripts which can be used to implement different
algorithms from outside Kratos. Package users can use modules in this layer or
create their own extension without having knowledge of C++ programming or of
the internal structure of Kratos. Via this layer they can activate and deactivate
certain functionalities or implement a new global algorithm without entering into

Kratos structure details.

A graphical representation of the structure can be seen in fig. A.2

A.1.3 Python interface

Kratos uses the facilities of Python language for 10 data transmission [4]. This flexible
interpreter with its object-oriented high level language can be used to implement and
execute new algorithms using Kratos. Python allows an high level of flexibility, without

the need of recompiling the code when debugging or testing new algorithms.

A.2 GiD problem types and interfaces

The pre and post- processing is done using the in-house commercial sofware GiD [2].
Different problem types have been developed in TCL to customize GiD insert the data
and print the results of the different applications presented in this work. They are all

available in the kratos website [3].
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