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PART I:

FUNDAMENTALS

SUMMARY

This parl addresses some fundamental aspeets nbout the use of standard
constitutive equations to model strong discontinuities (¢racks, shear bands, slip
lines ete.) in solid mechanies analyzes. The so ealled strong discontinuity
analysis is introduced as a basic tool to derive a general framework, in which
different families of constitutive equations can be inseribed, then allowing
to extract relevant aspects for the intended analysis, In particular, a link
between eontinuim and diserete approaches to the strain localization phenomena
is obtained. Applications to standard contimiuim damage and elasto-plastic
constitutive equations are presented. Relevanl aspects to he considered m the
numerical simulation of the problem (tackled in Part H of the work) are also
prasented.

1. INTRODUCTION

Regular solid mochanics analyzes are generally conducted in the context of
the strict Continuum Mechanies where continuity of the displacement fiald is
postulated. However, in many engineering probloms consideration of jumps in
the displacement field is essential: cracks in recks or conerete, slip lines in soils
and shear bands in metals (when ohserved from a macroscapic point of view),
have necessarily to be regarded when the aim of the analysis s to approach himil
situations close Lo intensive damage or collapse. From now on we will nnderstand
by strong discontinuities these jumps in the displacement field appearing at a
certain time, in general unknown before the analysis, of the loiding history aid
developing across paths of the solid which are material (fixed) surfaces. They
have to be distingnished from weak discontinuities that corresponid to jumps in
the strain field (the displacement remaining continuous) which develop along

moving surfaces’ .



The presently available methodologies for the immerical simualation of strong
diseontinuities could be classified in two large fumilies: discrete and continuum
approaches.

Digerete approaches® @ are close to elassical non linear Fracture Mechanies

and consider specific traction vector vs.  jump constitntive equations to
characierize Lhe cohesive behaviour ab the discontinuity inlorfacs, whorens lor
the continuous part of the hody regular stress-strain constitutive squations are
used, In 1\.d:|il.;'|m, ul,liprt;[u'ihl.u crileria for Lhe determination of the initmtion aned
propagation of the discontinuity have to he considered

On the contrary, in continuwm approaches the complete solid is regarded
from a Continuum Mechanics environment: the concept of strain is defined not
:m]y in the eontinuous part of the Imrly, bt also at the discontinuous interfaee
and, therefore, standard stressestrain constitutive equations can he considered
everywhere.  Then, the discontinuity is modellod vie two basic ingredionts:
a) an implicil (sometimes not recognized) regularization of the discontinuous
displacement field which is approximated by means of high displacement
gradients (strain localization) in n band whose width is characterized by the
so called characteristic length which is taken as a wmaterial property' or as a
numerical parameter ?, and h) speeial eonstitutive equations whose particnlar
structure leads 1o the well posedness of the partial differential equations
governing the problem and allowing the strain loealization to appear. In the Lt
years, much effort has been devotad to develop different appraaches belonging to
this family: the smeared erack methods using (regularizad) local constitutive
equations exhibiting strain softening'"®, non local constitutive seiations!,
Cosserat continuum, gradient plasticity?, viseoplasticity ® (or in general visco-
regularized constitutive equations) could he mentioned as typieal examples.

In this work the concept of strong discontiaity analysia already introdieed
in previous works!821610 0 3 yeed to bridge from continunm o discrete
approaches.  The wim of the analysis is to identify, in a general framework
independent of the numerical method of simulation, the key qualitative features
that make the standard stress-sbrain constitutive egualions consistent with
ihe appenrance of strong discontinuities, In parbicular the analysis provides
a diserete (i, stress vs. displacement-jump) constititive equation at the
discontinmuity path which is consistent with the chosen vontinuum (stress-glrain)
constilutive equation. At this point it is possible to chose for medelling plirposes
bhelwoer! '

- a conbinuum framework: by regularizing the discontinuons displacement field
(in such a way that the strains are bounded everywhere) and then using
standard stress-sirain constitnlive equations.

- a diserete framework: by using the derived sel of diserete (stress
vi, displacement-jump) constitutive equations to describe the cohesive
behaviour ol the discontimuity path.

In order to state the generality of the analysis, it 15 driven lor two differant
families of consbitutive equabions:  continmmm t,l:mmgt: andd elasto-plasticity
models, Then, it ix shown that, in spite of the difforences hetwean thesa



constitutive cqualions, a comimon methadology of analysiz can be applied in
hoth cases which ean be easily extended to other constitutive equations,

On the other hand a sel of relevant pointy emerging from the strong
discontinuity analysis can he directly nsed in the design of specific finite elements
for capturing strong discontinuities, in such & way thal many unsuilable feantures
of classical approaches (mesh-size and mesh-alignment dependencies, intrinsic
limitations on the eloment size ete..) can be automatically removed, This Lopic
will be addressed in o second part, of this work,

2. KINEMATICS: DISCONTINUOUS DISPLACEMENT FIELDS

Let us consider the reference 1,'!'1]].”!5!”‘11‘.i(.'l" 0 ool w hm]y i.'xhihil.im,;, sbrony
discontinuities along o discontinnity path & which is a malerinl surfaee (ie
fixed at the reference configuration) with a unit normal vector n (see Fig. 1)

Figure 1. Definttion of the discontinuily puth,

Far practical purposes we ean assume that § splits the body into two parts |
04 and 7 in such a way that a Heavislde function Hs(x) (x being the material
coordinates of Lhe particlos, Hg(x) = | ¥x ¢ OF and He(x) =0 Vx € £17) ean
he defined on §2. The most general expression of a displacement field exhibiting
strong discontinuities in & can he writben as;

uix, 1) =0(x, t)+ Hgs (x)[u](=, 1) (2.1)

where 1 refers to time, @i(x, 1) is the regular part of the displacement field and
[uf(x, t) is a displacement jump function which is continuons everywhere in
the body 11 In Fig. 2 the displacement decomposition (2.3} is depicted for 1D
CiLBeR.

From eq.(2.1) a jump [u], of the field u appears in & as:

(%, Olxes = (v, (2.2)

1 strictly speaking & could be thongl as the diseontinmiy path (nol
necessarily splitting the hody) plus anyextension splitting the body and allowing
OF and 97 1o be delined.

{1 the discontinuity of the resulting iigplacement field in e (2.1) 18 then
achieved through the jump of the Heaviside funetion Hg across 5.
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Figure 2. Kmematic decompogition aof the dusplacement field

The ecorresponding strain field can be obiained by computing the symmetric part
of the gradient of the displacement field of eq.(2.1), this leading to

€= (Vu)® = ‘(‘Vﬂ)"'- + Hg (V]Iu]]]“‘_'t-i-ﬁ.s ([u] & n)®
7 (2.3)
=7+ 85 (ul @n)f
where superseript (-)5 means the symmetric part c:l’(-) and g is the Dirac's line
delta-function along &, satisfying:

f fs wq dfl = / o dI Vg € CF () (2.4)
1] & )

In eq.(2.3) the terms (,Vﬂ]s and H;(VHLI]])"" have been collected in the term
Z, that is, the regular part of the strain field exhibiting, at most, bounded



digeontinuities. The unbounded ¢haracter of the term dg([n] & u}'“" GHIETE 08
from the gradient of the Heaviside himction appearing in eq.(2.1)

3. STRONG DISCONTINUITY ANALYSIS

The concept of strong discontimity analysis applies to any standard
constitutive equation, The gonl of the analysis is Lo extract the key qualitative
features that make such a constitutive equation conststend with the appearance of
strongg discontinnities and |, thus, with the unhounded strain fields (3.3). For this
prtpose the following set of requeriments is imposed on the stress field provided
by the constitutive equation;

1) The stress field is bounded everywhere in the solid.
I[] The traction vector 18 conbinious dgeross S al any Lime ol the analysis

1) At any point I of the discontinuity surface § the nornial s provided by the
stress field at the initation time (the time where the discontinuity initiates
at the considered point P),

Tustification of condition 1) comes from the nonphysieal sense of unhounded
stresses (even at the discontinuity path &, where the strains are nnhounded
according Lo og.(2.0)). Condition I1) emerges front the equilibeivm conditions
acrass the discontinuity path or, more formally, from the halance laws (see
reference [16] for more details). Fiunally, condition I11) stublishes the mialerial
surface character of § thus precluding any evolution of n beyond the nutiation
time.

In the next sections two different constitutive equations, helonging to the
families of continuvm damage and plesticily maodels are analyzed [rom the
preceding point of view,

4, STRONG DISCONTINUITY ANALYSIS OF DAMAGE
MODELS

4.1. An isotropic continmum dansge model

Let us consider the family of constitutive equations defined iyt

Y= (L=-dyWy o= 3 e:C¢ (4.1.1)
A i f
g = g = (1-d)C:e (4.1.2

where W is the Helmholz's [ree energy, © the elastic constibutive tensor, g the
stress Lensor and d the scilar damage varinble (0 < < 1). The value of the
internal variable 4 is given by the eorresponding damage condition and evolution
laws, Alter somae Hpt,:ciﬂ,]];m('.ir,:n“ the damage varinble evolution enn he inl.vgrul.nd
in close form al Lime £ giving:

i, = (-;'l‘"r)
re = o max {re,Ti} (4.1.3)
ai{=00,t)
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Figure 3. Damage model; uniozial stress-sirain laow,

In eqs.(4.1.3) +* is an appropriate norm of the strains described below, rg is
an initial threshold value and G(-) 15 a nen-decreasing scalar function sueh that
G(ro) =0, G(oo) = 1 and G'(p) = 0V p € |rgi00). The variable ry describes,
ab time £, the size of the elastic domain in the strain space E¢ defined as :

E¢={e|1"<r) (4.1.4)

Under such conditions it iz straight forward to check that both o and » always
increase along time zo that:
d=0

win (4.1.5)

where d = 0 for unloading and elastic loading whereas d =0 corresponds to
inelastic loading.
Finally, from eqa.{‘l.l.l) and (4.1-‘2) the rli.‘iﬁipﬂtiml T can be ;:tim]lutnd AT

D=-V4+o:e=d¥y > 0 (4.1.6)

By specialization of the function G(-) and the norm 7* in eqs.(4.1.3) different
qualitative behaviours ean be modelled''. Some possible choices are given in
Appendix I, For the sake of simplicity we will consider in the following a linear
strain hardening-softening law with symmetric tension-compression hehaviour

defined by:
= e v Gle (4.1.7)

0 Fra o= n‘..f\/E
d_ G T 1 T l .
=GM=117R" 7)) m<r<rme=-gr (He0) (418)
l Tmax <r

In eqs.(4.1.8) H plays the role of hardening-sofiening parameter, o, is the
uniaxial peak stress and £ is the Young modulus. The corresponding uniaxial
stress-atrain law is depicted in Fig. 3.



Observe, (ront eqs.(4.1.2) and (4.1.7), that a new norm 7 m the siress
domain could have been defined as:

" =Ve:CViag=(l~d)Ve. Cie=(l-d)7 (4.1.9)

For the purposes of this analysis the norm 77 is more suitable than 7, so that
in the following the model will be deseribed in terms of 7 keeping in mind that
both norms are related through eqs, (4.1.9)

After some nlgebraic computations, the corresponding incremental stress-
strain law can be computed ag,

a- €k (4.1.10)
where €7 is the tangent constitutive operator comptited as:
d = 0 (unloading) : ¢ = (l ~d) €

/ - 1111
d£0 (loading): ad = (] - ;f)[c, - I i (¢ )

(14 H) (e 707

Finally, the dissipation can he rewritton in a suitable forin as:

: N | 5 l’f _Iff_ . y i
P = 307 m(t cz) 20 (4:1:12)

where the term '1-2:) can he expressed, under loading conditions, as:

{ | :
0 f_d R (4.1.13)
sy = 1 T—'(";] (4.1.14)

REMARK {.1.1.

Observe from cqs. (4. 1.9) and (§.1.14) that of the stresses are bounded (and
different from zero) so is g, Also observe thal negative values of the harderning-
softening purameter (M < 0 == stram softening) keep the stresses bounded for
any value (r_"ﬂé’” unbounded ) of the stram fielil {'m.t' Mg, 3 for 11} éases), Thest
facts will be conveniently eaploited in next sections.

4.2. Condition 1) : Stress bonndedness

The eonstitutive equation (4.1.2) can be eonveniently rephrased as:

d .
(14 > ”-,)a = C (4.2.1)
and, by substitulion of the strain field (2.3) into eq.(4.2.1), we arrive Lo

il

——_ ¢ =_ 0:2 45501 @ n)¥ 4.2.2
o b 5 €1 (lul, @ n) (12:2)
hoiinded beriimid el vt pridad



Inspection of ¢q,(4.2,2) reveals that if we impose the stress field to be bounded,
then the first term of the left-hand side is hounded and so is the first term af
the right hand side due to the hounded nature of € (see eq.(2.1)). Morgover, as
we are looking for discontinuous solutions of the problem, then [u], # 0 and,
thus, the last term of eq.(4.2.2) 15 unbounded. Finally, in order to the whole
T.'-l]“ﬂ-tiﬂ“ ll.ﬂ-\"‘ l,'”l\.l.hl‘.‘]l'lﬂti.i('-ill SOTISC, Ll:iﬁ I_[I]l}('h[]ntll‘.t’; Lt ‘Ilﬁ.ﬁ Lo l.ﬂ'f (‘.ﬂ.ﬂl’.'.f.‘lt{’!(l hy
some additional unbounded term in eq.(4.2.2) ineluding o delta-function (the
only available candidate is ifiﬂ)' Sinee inspection of the Lerin .'-'_‘-ﬂ} i eq.(4.1.13)
reveals that g is bounded § (see REMARK 4.1.1) the only feasible possibility is:

"o 5-!'"71;5 v (4.2.3)
L—_— L e
wrihonmdad segnilar

For the sake of simplicity we will resirict in the following to the particular ease
'HAT = 0 (the analysis could he continued for the genoral case but ne additional
insight in the problem is gained). So that:

. 1

,;:{ = bz 7-1 ('1.2.'4)
Fig.(4.2.4) states n erucial consequence of the stress houndeadness requirement,
that is: the distributional character of the softening parameter M whose INVerae
has the steieture of o delta-function with an intensity given by # The parameter
H will be termed from now on the intrinsic softening parameter.

By substitution of 1.'.(].(!1.2.!1) ko ml.(il. i .].::1) ane then in lﬂrl.{fl.:‘:.'.!] we alrive
to:

- 3 l
l - C ;Z] = be [G ; (|[t1][®u)“' - == if] a'] (4.2.5)
S —— - - H

= 0 i I\E a0k &

In order to eq:(4.2.6) have mathematical sense the underbraced terms of the
left and the right hand sides have to cancel at the conlinnous (2 &) and
discontinnons (5) parts of the hody, respectively, Thus, the corresponding stress
fields emerge from e, (4.2.5) as:

Tine = 3 (4.2.6)

& . "
g, = —— C ([u]. ©@n) (4.2,7
. H("-'.s) ([I “5 ) )

REMARK (4.2.1)

Bq.(4.2.6) states the elastic behaiour n the continous part af the body in
lerme of the regular part of the straing € A non lincar behaviour could have been
considered by using the whole eq,(4.2.3) wmstead of the simplified one of eq.(4.2.4).

REMARK ({.2.2

{ The case o = 0 alsa applies here since go can be shown to he hounded in
this case.



F;l’}”ﬂ 7) prowdes a discrete pon-linear sivess-junp constilutive equation al the
interface & (discontinuily path) which allows the determination of the complete
stress bensgor on 8 in terms of the jump [u] | and the normal n So, unlike what s
usual for constitutive equations al discontinuoug interfaces, not only the traction
veclor i involved, Moreover |, this discrete constilnlive equalion s consistent
(emerges naturally from the stress houndedness vequirement) with the original
continuous conslitutive equation described in sechion {1, In particular a subael
of eqa. (§.2.7 ) allows the determination of the jump in lerms of the stresses at the
interface, Choosing an appropriate orthogonal busis formed by the unil vectars
np.q (np=n-q=p-q=0}, the components of ﬁuL anid . on this besis
ave velated by (see Appendiz 11 for details):

H“ﬂn % l (LMIK_II:E {l 0 T
Huﬂp - }'_:‘( E; 0 I- S n ﬂa”n (42&)
H“‘ﬂq u . 0 ” : Y- ﬂ'rlq
1# ;
Tppy = Tany = 1 'r';'ﬂ'nnﬁ L 0 (4.2.9)

Observe that the appearance of the term g, = glag) m eq (4.2.8) procludes,
in general, a lincar dependence of the jump with respeet lo the traction vector
g, n= 1'g"mﬂr””a",‘]:‘ and invelves all the companents of the slress lensor
the resolved yjump]

REMARK (4.2.3)
Eq.(4.2.2) precludes the appearance of the jump in the initial elustic domain
(d=10). In fact: 1n this ease eq. (§.2.2) rends:

g = U:z + bg c (||u]‘£ @ uf' (4.2.10)
lisded Liesanidicad " Hfr-::-ﬂfh =

and the stress boundedness requirement farees the unbaunded term of'eg-(4:2:10)
to drop so thal l!"ll,; =1

REMARK (4.2.4)

Observe that the arguments employed 1o abtain cq. (4.2.7) ean be reversed m
the following sense: if «) the distribulional charactar of the hardening-softening
parameter, eq.(4.2.4), 1 enforced (consequently the elashe behuviowr defined by
eq.(4-2.6) is considered in (2 \ §) and b) strain-softening s consudered for the
constitutive behaviour for 8 (H < 0), then the stresses are bounded both in 1\ 8
(since € is bounded in eq.(4.2.6)) and in § (sce REMARK §.1. 1). Therefore,
eq.(4.2.7) awtomatically fulfills from the rmposiion aof the standard constilutive
equation (4.1.2) through consistency of eq.(4.2.5 ). This argument reveals cructal
to avoid the explicit imposition of eqs.({.2.7), which are specific { and somelimes
difficult to derive) of the considered constitutive equation, and it unll be eapleiled
for the numerical simulation of the problem

t for unloading processes (d = 0) then g, = 0 according lo eq.({.1.13) so, m
this case, r_'qn,(.{_ﬁ_,'?) are inerementally incar i the traclion vectar



4.3. Condition 11) : Traction vector continnity

Onece determined the stress field in terms of the displacement jump by
0s.(4.2.7), the next step is the detormination of the jump itscll. The necessary
set of equations is obtained by stating thal the traction veclor at the continuous
part of the body (1\S in the ueighhnrhm'u] 1ol & equals the traction vector ad
the discontinuity surface iea
Lon (1.3.1)

a‘u\a |x¢ﬂr e

and [rom eqs.(4.2.6) and (4.2,7):

i

n:'C:T= = e C :(“u]]#mu)-'* = :j e Cen-ful (4.8.2)
s ' s ¥
Finally, selving for the jump in eq.(4.3.2) one arrives Lo
R CA (R :
ﬂui5 = e Q' Qg (4.2.3)

QF = n:Cn
where Q° is the so ealled elastic acoustic temsar!”

REMARK {.3.1.

Eq.(4.2.3), w view of eq.({.2.7), provides the jump [u], m terms of the
reqular part of the strains &, and the normal n. Again, it is emphasized that
eifs. ( 4:8.8 ')i fhrp.r,‘:n.;ﬁg'ﬂ,i an the r;m;,'c:rh::‘f.'tl bype t.:f conslitiline L't}flfl-f.t‘-f-*l'l, need nil
lo be explicitly derived for simulation purposes.  The relevant fact is that the
traction vector continuity vequirement of eq.(4:3.1) promdes the set of equations
which determines the jump

4,4, Condition I11) : Tdentification of the normal

Let us cansider any material point P at the diseontinnity surface S and lel
lg< 1 be the time in which the disconfinuity imtintes at (_”lt‘! initiation t-ilII!E)
characterized hy:

ul(x,,00) = [u]! =0
l'r]]( I “J |[I]l|;:: ('1"111)
[alxpite) = [0l # 0
F:.:.l,(rl_z_?') can be rewritien as:
gea, = HC ([u] & n}’ (1.4.2)
and taking time derivatives in eq.(4.4.2) we gol:
40, + 05 = HC ([u], & n)” (4.4.3)

{1 no distinction ix made between the trackion vector al the positive (§11) or
negative (£27) neighborhoods of §, which are assumed to be the same from Lhe
balanee laws'®,



where the eharacter of material surface of & has been considered (n = 0),
Eq.(4.4.3) holds at any time and in particular at e initintion time fy, where
according to eq.(4.4,1) [u]]f; = 0, so thal from eq(4.4.2) _r;‘: = 0 and eq.(4.4.3)
leads to: '

5}gﬂ'2_ = HC (ﬂuﬂt & u.j""'f (1.4.4)

On the other hand at the initintion time [u]? = Oand 4% = 050 that ¢, = EE.
and d® = 0 (sew eqs.(2,8) and (4.1.13), respectively) and finally one can write:

cr(;_ = Qi ¥ (4.4.5)
Substituting eq.(4.4.5) into eq.(4.4.4) we arrive Lo
ved o o A - B o
Ci(lul,on) = 3o, = F C:1F, (4.4.6)
and premultiplying both gides of oo, (4,4,6) times €1
(]! @n)® = 3:‘ (i (4.4.7)

M

Bas.(4.4.7) provide a set of equations for the determination of hoth |l1lu:: andl
n. In particular the normal n can be determined by tacking advantage of the
structure of the right-hand-side of eq.(4.4.7). In fact, pre and post multiplying
both sides of the equation by any veetor t orthogonal to n, the left-hand-side of
ei.(4.4.7) eancels so;

]

i
(ol emF ot = 0 - 5’{ boe ot (4.4.8)
g0 that:
& b= Ve | t-n=0 (4.4.9)

REMARK (4.4.1)

Bq.(4.4-9) is sufficient for the determination of the normal w al any point of §
in terms of the vegulay (bounded) part of the strains € ai the wiwalion tone. In
particular, for 201 cases, siee the wormal and tungent veetors cun be defined by
an inelination angle 0 with vespecl Lo an orthogonal basiz e and &3 as:

n o= cosll ey + sinfl ey

y A A (4.4.10)
t = —sintl e, + cosl eg
substitution of cq.(4.4.10) wnle eq.({ 4.9) leads, after some straight forward
compulations, to the following closed form solution for 0

-0 ([0 3F — @ o
i o= | e E .\.'((E.l_?)._’_.LL'TH. (4.4.11)
i 5
providing two  different  possible  solutions  for the  narmal, Additional

r:r'rn,aifkw”.ﬁf_mg .f"”' 21 ppses are Qrisei IF) A'{:}m‘ﬂ.fﬁﬂ: i1



An alternative, and eompletely aquivalent, way to compute n emerges from
eq.(4.4,6). Multiplying both sides of eq.(4.4,6) by ¢ and taking into account
eq.(4.4.5) we get:

A
! . q
Ei :ﬂ-u-ﬂuﬂ:: =2 d*g -urﬂuﬂi = }_"E r::_ S (4.4.12)

and thus: i o 0
gg _ 9s:m (o], (4.4.13)
H gl 1 C-T:0Y

Now, premultiplying both sicdes of eq.(4.4.6) tunes n one gets:

A0
neQon il = ’;; na’ (4.4.14)
and substituting eq.(1.4.13) into (li.rl.LJI) we arrive Lo
¥ :r”
vl @ a .
n-O: u-ﬂu]];_ = a";:, :(‘_‘.' &” | ‘E 0 (4.4.15)
Eq.(4.4.lﬁ) Can we I'IP;UTI'I.I[E(HI ax [ollows [.‘Gt?i:" |:(|.(-‘|.l.9)):
Q! (w) - [uf! = 0 (4.4.16)
(1',:“(.11] = n -Cf‘*.ﬂ ‘n (4.4.17)
0 0 a? i
dU == 3 &2 @ . i E)_nﬁ
el = _ G"_f;" :.EE_._I N:ff.ﬂg = 8= {éT:n)n (4.4.18)

Inspection of q.(4.4.18) in comparison to eq.(4.0,11) reveals that cd in the
elasto-damage tangenl conatitutive tensor at the initintion time (when d= 0 and
o = 77) for a null value of the hardemng-softomng parameter M = 0 for 7 = 0).
Thus, Q:‘;u in eq.(4.4.17) is the elasto-damage aconstic tensor ab the initiation
time for null softening. The existence of salutions [[l':]](; # 0 For eq.(4.4.16) implies
the singularity of the acoustic tensor, thal s

et [Q':F“(n)} — 0 (4.4.19)
which con be solved for n.

REMARK (4.4.2

Observe the similavity of the previous proceduee for the dete rnmm!iun of wowith
the ones used tn fulure analysis bused on the acoustic fe hsar It s ¢ mphosized,
however, that in the presend strong discontinuity anulysis the rmr.'mh.mf ucoustic
tensor corresponds lo the indtintion time und 1o a zere value of the softening
parameter.



4.5. Dissipation: the Fracture Energy

From the principle of the expended power, and neglecting the kinetic energy.
the external enorgy supplied to the body along the time interval [ty tz] can be

expressed as;
e (5] L] -
_/ l/ﬂ':écﬂﬂ] dt = f [[tw 4 'm:m) .
| Y Jdy W
tz
- /‘[(W-; -y 4 / Y rﬂ] (1
In i

‘i

wdﬂ‘f

(4.6.1)

where ¥ and D stand for the Helmholz free energy and the dissipation,
respectively, which from eqs.(4.1.1) to (4.1.2) and eqs.(4.1.12) 1o (4.1.14) ean
he written as:

1
= -@a:e (4.5.2)
2
| - 0 o
D= —(t*V g = 1 = 8; =nTs 4.5.3
TR 7Y T .5:9)
Let us imagine the deformation process leading to the formation of the strong
discontinuity along & as follows; the process starts al time to = 0 with

(W, T&",dn) = (0,0,0), then the stresses increase elastically (with no disgipation)
until the initial threshold value ry is reached at time t; when (4,77, dy) =
(érg, 70,0}, Finally a monotonic loading process (d # 0) is driven up to the total
stress relaxation ab time 49 with (¥4, 75, da) = (0,0, 1), According Lo eqa.(4.5.1)
and (4.5.3) the extornal energy supplizd along the process can be eomputed as:

2 ty ] ”
= By — o) - / b il da = / / PR
0 /rl;[(*—f% "--}:"‘) & K i [ o Fars

f: U: ;—;Efg;n']m. = /ﬂi%u:'d,n ]{”‘

. vl
C (B[ = [ -
];:aﬁui‘-a JL]' A

={} Py

Wl‘::':‘t

(4.5.4)
Thus, the kernel of the last integral in eq.(4.5.4) corresponds (o the supplied
cnergy per unit surface of the discontinuity path &, which can be imumedintely
identified as the so called fracture energy Gy, thial is:
l'uz

Gy = =7z (4.5.5)

and considering eq.(4.1.8.a), eq.(4.5.5) can he solved for 7

- r* o ?
g, | . .1 1.5,
£ 2(.1'_[ 20’;.{@' { !ﬁ)

which states that the intrinsic softening parameter W w o material property
related Lo the fracture energy (7, Young modulus £ and uniaxial peak stress a,
through eq.(4.6.6). The negative value of M is also stated there:



5. STRONG DISCONTINUITY ANALYSIS FOR PLASTICITY
MODELS

5.1. A plasticity model with strain softening

We now consider the family of elasto-plasticity models. Tor the sake of
simplicity we will restrict to the classical associative rate-independent madel
definad by:

¢ = E—&) (5.1.1)
& = A gﬁ (5.1.2)
q = _AHEH; (5.1.3)
dlo,q) = dlo) +4q —u,, (5.1.4)
Az0 pleg)=0 Adle,qg) =10 (5.1.5)

where @, € and ¢ are the stress, strain and |:1u-¢lu‘ strain tensors, respectively,
C is the isotropic elastic constitutive tensor, ¢ ix the stresslike internal variable,
d(e) is an homogeneous (degree one) fmetion, o, = 0 s the flow stress and H
is the softening parameter assumed to be negative (K < 0). Eqgs.(5.1.5) are the
classical Kuhn-Tucker conditions allowing for the determination of the plastic
multiplier A which can he computed from the consistency condition ¢ = 0, in
terms of & or €, as:

2} . . -
A Wi e = Vih:ad = wq (5.1.6)
= V_JLG € (5.1.7)

H+Vd:C:Vp
Substitution of eqs.(5.0.6) and (5.1.7) into eq.(5.1.1) leads to the classical
elastoplastic tangent constitutive tensor € defined by:

g = 0V:g (5.1.8)
C:V9®Vh:C (5L8)
M+ Vep:C: Ve o

and, conversely, the elastoplastic compliance constitulive tensor ¢! can be
defined as:

e"? = G-

t = ' g (5.1.10)

et = oty ﬁ Vda@o Vﬁ‘r (B.1.11)
Finally, the digsipation T can be compnted as:

D =g;A = —)I{ ayf = 0 (5.1.12)



5.2, Condition I): Stress houndedness

Taking time derivatives of eq.(2.3) and considering the material surface
charaeter of the discontinuity surface & (n = 0) we arrive to:

¢ = i+ b5 ([u]®@n)® (h.2.1)

and substituting eq.(5.2.1) into eq.(5.1.10) and then into eq.(5.1,11):

. . . B i | . . s
¢ +és (], ® n)* = €& 4 57 Vo@avVo:a (6.2.2)
boviemadedd urbiosndid bowndod hasigraisd

If we require the stress field o (and also @) to he bounded, the unbounded
term of the left-hand-side of eq.(5.2.2) necds 1o be cancelad in order to |I"1]]3
be non zera. In view of eqs.(5.2.2) this cancelation can only be achieved if a
delba-function appears in the strueture of § so that:

L 3 | 1 5.2.3
GG (5.23)
As in section 4.2 we will consider the simplest case [:,;}:' = 0) 5o that:
| 1
H b % (6.2:4)

from which the distributional character of the softening parameter H emerges in
berins of the intrinsic saftening purameter 1,

Now, substituting eq.(5.2.4) into 0g.(5.2.2) and eancelling the bounded terms
in the continuons domain \S and the unhounded terms in the diseantinuity
surface § we arrive Lo

§=C'ig =& = C: (5.2.5)

P s 18%)

(], o) = 5 Vi, © 94, 4, (5.2.6)

Eq.(5.2.5) states the elastic stress-strain behaviour abt the continuois part
(§1\8) of the body, B (5.2.6) provides a diserete constitutive equation at the
discontinuity surface S consistent with the original elasto-plastic constitubive
equation given by sys.(5.1.1) ta (5. 1.6). 1t relates the displacement jump rate
[i1], the stresses o, and the stress rates e af the discontinnity nterface &

REMARK (5.2.1)

The same comments than an REMARK (4.2.4) arve applicable here. So, of )
eq.(5.2.4) (distributional churacter of the hardening pavimeter) and consequently
eq.(5.2.5) (elastic stress-strain behaviowr an \S) wre enforced, and b) the
siresses are bounded 10 S (by imposing a negalive value of H) (strain-softening)
then egs. (5.2.6) need nol to be explicitely imposed and they are umplicitely fulfilled
from the elasto-plastic constiutive equation (5.1.10) and eqs, (5.2.2),



REMARK (5.2.2)

A subset of eqs.(5.2.6) provides the resolved rate of the jump lul, in terms of
o, (see Appenduw IT for details). For the particular case of the Jy flow theory
and 2D cases, the results can be very simplified leading to:

'[‘Ilnﬂh' = u
. . 3 (5.2.7)
HI‘"')“_ = 7.1 = -j_'{ T’\ﬁ:

where [u], and uuﬂh = v, are the normal and the tangential componenls af the
displacement jump, respectively, and vy 18 the shear stress along the discontinuity
line 8. Therefore, eqs.(5.8.7) state that using the Jy flow theory only ship lines
([a], = 0), ruled by the simple diserete stress-displacement e (6.2, 7.0), can be
modelled.

6.3. Condition 11): Traction vector continuity

Traction veclor continnily across S reads

T s ‘-EE o= F;'n (6.3.1)

or, taking time derivatives in eq.(5.3.1) (and considering n = 0});
Fiivs les m = &5 om (5.3.2)

Unlike in damage models, eq. (5.2.6) can not he explicitely inverted, to
solve for ., due to the incomplete range of the fourth order lensor VJ".; @V-‘F?F-
The full determination of the stress fleelel has to be done in c:c'mjum:l.iml. with the
equations provided by the traction vector continuity requirement so that, finally,
eqs,(5.2.6) and (5.3.1) or (5.8.2) provide a well posed, in general nonlinear, system
of equations allowing for the determination of the jump [u], and the stress fiold
o, at the discontinuity surface.

5.4. Condition II1): Tdentification of the normal

According to eqs.(4.4.1) and (2.3) at the initiation time e = &9 ko that:

oy = ole]) (5.4.1)

and eqs.(5.2.6) ean be written at the initiation thme ty as

(]2 ® n)¥ = 1° Vd(el) = " V()

e L0 5.4.2)
o VB, ‘
H H

Observe that in eq.(5.4.2) V4" can be computed, through eqs.(5.4.1), in terms of
the bounded pact of the strain at the initiation time, €, Fq.(5.4.2) provides a set
of u.qun,l;imm gimilar to the ones olitained lor the d[numgr‘r muodel (El:‘.ﬂ Hll.(4.4.7])-



Thus, a similar procedure to the one explained in section 4.4 can be applied hore
for the obtention of n leading to:

tTE =0 Vi | tin=0 (5.4.3)

Az said in REMARK(4.4.1), for 2D eases the inclination angle ¢ of the normal
with respect to an orthogonal basis &, &; can be sxplicitely computed in terms
of the components of V-j‘:': as!

Vi, + \/(v‘i’?s}:_ Vi, Vi,
voran (5.4.4)
Vi,

i = atan [
¥
For the particular case of J2 low theory and 2D (plane-steain, plane-stross) casos
it ean be shown (see Appendix I11, section [11.2) that the inclination angle of the
normal with regpect to the munimum pﬂ'nﬂi]?ﬂ-f siresz gl = & :
An alternative procedure for the computation of i ean be obtained following
the same steps than in section 4.4, for the damage model: multiplying both sides
of eq.(5:4.2.8) times Vq‘:‘l (O e gel:

U C o ([l en)T = V"€

thus,
i o R
0 _ ?ﬂ;E_EL,E (5.4.5)
Vel 1 Vel
Now, multiplying eq.(5.4.2.a) times 1+ € we obtain:
n-C ([l ®n) = n-C n [ul} = n-C: vl +" (5.4.6)
and suhstitul;inﬁ m;,“n.d-ﬁ] mnto {Fl.fl.ﬁ') we arrive Lo,
C: VP eV C ,
nC-n-af’ - n. ——dl-*'—ﬁl QS” — o 1i |[|'|I|'f = 0 (5.4.7)
. V€V g
Fq.(65.4.7) can be rearranged as follows:
QF'(m)- 0], =0 (5.4.8)
QT(n) = n-CP"n (5.4.9)
C: VR eV C
c;ﬂﬂ e s V.f?f';_. @V, : C (6.4.10)

Vil : C: Ve
The existence of soliutions [[l'l]f’lt £ 0 in #q.(5.4.8) implies the singularity of the
elnstoplastic acoustie tensor Q:”‘n(n}, so Lhat:

et [ca;r*"(n)] -0 (5.4.11)

from which n can be computed, Observe in eqs.(5.4.9) and (5.4.10) that Q:E‘."'D

i i i épth ' ' i - s

is given in terms of (f; which i the elastoplastic tangont constitubive Lensor
at the initiation time with null herdening as can ho chocked by cotnparison with
eq.(5.1.9).



5.5. Dissipation: the Fracture Euergy

From eq.(5.1.12) and taking into account eq.(B.2.4) the dissipation can be
written as: | {
—,}—k i = —bs % @y, i (6.6.1)
where, during plastic loading, g can he computed from the consistency aquation
#(a,q) = 0 and, consequently, from e, (6.1.4):

D =

5

§ = oy~ o) (55.2)

Notice that ¢(0) = 0 due to the homogeneous character of the function ¢() On
the other hand the free energy can be expressed, considering eq.(5.2.4), as:

, a 1 :
La? L. o100t gl (5.6.3)

¢ = ~g:C ' e- = 3
d Ttowm T 2 5 "5

Like in section 4.5 let us consider the deforination process leading to the
formation of the strong discontinnity as follows: the process starts at time
ty = 0, with (¥4,90) = (0,0). Then the strains are elastically increased (with
no dissipation) up to the initiation of the plastic flow at time £y (the initiation
time), Beyond this point the strain-softening constitutive equation leads to the
full relaxation of the stresses at time i3 where rfn(c.rg) = rfa(lj) = 0 and thus gz = a,
from eq.(5.5.2), Consequently (¥z,q2) = (&65‘;&-,«“}. The externally supplied
energy can be then expressed from eq.(4.5.1) as:

: '3
f{(".[‘g - W) 4+ f D n"-“-] ifl
{1 i

1 o 2 g L o) g
o | sk = Mg di|df = gt M A |l
fr';&" 2 H f ! J [q[z W Sy M i dt]

i
! ”‘ﬁ a, [T o ' f | 0‘3 .
gy —— e | T = o =g
_/;[.3 H % S t‘fr{]! .o Hll
{(6.5.4)

Then the supplied energy per unit of discontinuity surface (the fracture encrgy
I EY | ¥ )
can be identified from eq.(5.5.4) as the kernel of the last integral, ie.:

2
WM mi
[i]

I

| o’ r
Yy = g S 5.5.5
('JJ 2 JH (. )

Notice again the similarity of eq.(4.6.5) (damnge model) with eq.(5.5.5)
(plasticity model). From eq,(5.6.6) the intrinsic softening parameter H can be

regarded as a material property related to the fracture energy Gy and the flow

stress ey, hy:

2
e 2o o A

- HMH

1 &

H =



|

6. CONCLUDING REMARKS

Along the preceding sections, the methodology of application of the strang
discontinuity analysis to standard (local, stress-sirain) constitutive equations
las been presented.  The analysis defines & common [ramework, in whichi
different families of constitutive equations can be mseribed. By imposing several
requeriments on the stress field, in order Lo make the constitutive equation
compalible with the appearénce of strong discontinuities, the analysis provides a
set of equations which allows to solve for the additional unknowns appearing in
the problem: the displacement jump, the stress field al the discontinuity path
and the normal. As main ingredients of the resulting framework, the following
should be mentionned:

- The distributional character of the safterang parameter.  On one side,
strain=softening has to be considoered for the constitutive equation at the
discontinuity path. The inverse of the softening parameter must have the
structure of a delta function according to eqs.(4.2.4) and (5.2.4) so that,
roughly speaking, a perfect-damage or perfect-plasticity behaviour has to
be approached from the softening part in the constitutive equation. The
intensity ot the softening parameter function can be defined in terms of an
nlrinsic saftentng puramier '7'_[: which can be pﬁ*umri te be a material properly
related to the fracture energyas shown in eqs.(4.5.6) and (5.5.6). On the other
hand an elastic (or, in the most general context, strain-hardening) behaviour
has to be considered for the constitutive eguation at the continuous part of
the body. Under these conditions a consistent discrete constitutive equation
emerges which relates the stress field at the discontinuity path with the
jump. Howewer, this discrete constitutive equation has not necessarly to be
explicitely computed for the different constitutive models,

- The traction vector combmuity condibion provides the necessary set of
additional equations to determine the jump and the stress field at the
discontimuty path, Although explicit expressions for both fields can be
sometimes derived, the relevant faet is the necessity of imposition of such
condition in the context of strong discontinuity problermns,

- The normal to the discontinuity path can be determined by tmposition of
the material surfnce character of the diseontinuily surface at the initiation
time ), this leading to very simple expressions, in terms of the regular strain
field, which, howewer, have ta be specifically determined for ench fanilly of
canstibibive equations.

This general framework plays a erucial role in the design of appropriate
numerical approaches to the strong discontinuity problems. This subjet will be
addressed in Part 11 of this work,
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APPENDIX |
SOME ALTERNATIVES FOR THE CONTINUUM DAMAGE MODEL

a) Non symmelric tonslon-compression bahaviouy

The strain vorm ¢ in edq.(4.1.7) con be rewritten in termu of Lho so colled effective atress

ir=Cl7e pas o
o= JHe (1,1}

The eorresponding damage model s symmetsic in the tension-compression damuing as can he
checked in Figs. 4s and 4b. A wmere realistic npproach for many geonmabesials, an which the
imaximiuim sempreaiive strength is much higher than the maximui tensile strength, con be
abinined by modifying eq.(1.1) as fallows' ' :

1
# o= >1¢:dr.:-r P (I:3)

e
I

where @, aud &, are the prineipal sivesa and sirain components, respectively and < « > 1s the Me
Auley brackel, Due Lo the isotropic charocter of the elasiic tensor €2, the principal diredtions
of hoth tensor coincide. The corresponding initial elagtic doinain, in the principal streas spage,
and the uninxial stress-strain law are depieted b Figs. de nud 4d, respectively, Observe that
this demunin is open in the pure conipreasion octunl which guaranties n lincar elnatic Lelinviou
in this demain,

b) Exponeniial saltening

Bq.(4.1.8)y define o linear sheain-softening law (see Fig. de). An aliernative exponential
softening lnw ean be defined ns''
do= G(y) =1 = =t (1.3)
where M plays the tole of softening paranieter (7 < 0), The corresponding uninxial strez-strain
law is depicted in Fig, 41,



Figure 4. Different alternatives for the continuum damage maidel,

APPENDIX 11
RESOLVED JUMPS

Let us conaider the equation:
(ul@n)® = A AT = A (11}

and the orthogonnl bosis constituted by n any two (mubnally orthogonal) umit vectors p and g
such that:
nep o= tieq = poyg = 0 [l = |p| = |Jgl =1 {I11.2)

Let:

-"'-lr]-r Amu Am’
Awy Ay Ay
be the matrix of components of A in the chosen bagiz, It ix steaight forward Lo cheek that the
following relations hold;

Ay = pAp =p([u]en)’ p =0

(11.3)

Auu Arul Al'.'}]



Ay = q-A-q = q([u]an)® q « 0 (11.4.1)
A = prAig = p-(uen) q =0

Apw = A n = n(fulen)n = [ulin o« [u],

Agp = n-A-p = i ([u)an)®p = %ﬂlui-p = %I[u]]’l (11.4.2)

Ayy = neArg =1 ([ul@n) 4 = _:lr[[n'ﬂ-uj = %[[ulh

where [u]], , Ei;']]l, el l[“n., are, respectively, Uhe components of the jomp [u] in w, pg. So, from
aip{11.4.1) we con write:
l“‘ﬂm - uu-]] = “1'"“

ﬂ-lalp = [u]:p = 24,, (11.5)
le], = [ul-n = 24,

111, Resolved jump fov Lhe isotropic damiage miodel
From ei.(4,2,7); benaor A b e (111} ean be iilentified na:
Py i " | i ir iy
A = _Fi} & '.'l'l'ﬁ = ';If [ E“ h'{'ﬂ"'} L ?-- tln] ‘f!.t'r]

whero tr(:) means the trace, | s the second order unit bensor and the expression of C7' (the
elastic compliance fourth order tensor) in ternm of the Poisson's ratio v and Young modulus £
hias been considered. From eq.(ILd.1) and eq.(I1L6):

|
Apy = p-A:p = ﬂgﬁ- P [{lr:rm.d1 = klowu, + ﬂ"""'.!}] = {}
iy 1
Ay = 4'hq = {;‘ B [(F"wﬂ = g o+ *"J'J*ﬂ}] = { (I1.7)
I 4
A = PrAg = f"’: _L‘._") Dy = 0

wo bhat eq.(11.7) leads to the following values for the stresses:

i
Tppy = l- . "l': Topit 5
Dy = _“L Fyim {I"'F}
a 1 =p O F
Oy, = 0

Then, from eqs (1142} and (1L8) one arrives Lo

|

Ayu n-A-n = "J;FG‘ E (ﬂ'm,l - Hfﬂ".;.” 5 "Wﬂ} =
ge 1 (1A0)Qd=-20)
H :"';'+ | = d (11.9)
. i Tk
Ay = wekop =8 Ll o,
14 #
Ay = ti-A-qg = %‘.: —-',—'— L
Finally, from eqs.(11.8) and ([L5) we ge:
ﬂo“llﬂ .3 iu'"ll_“T-w 0 i Tihine
H_I"I[,, - % F 1] (TN i} (LTS (ILH})
l[“]}” & ’ 0 4] 1 -f e Ty x



IL2, Resolved juimp for e plasticily miodel

From equ.(5.4.2.) lensor A of eq (111} can be identified s

A - v Vi,

= ;‘r "'ip :v'ﬂinq) = ‘L

x

=

{(11.11)

and eqgs.(I11.4.1), (114.2) and (IL5) hold in terms of [ . Thus, substituting eq(11.11) inte

eq,(11,4.1) one obiain;

(o)

Ay = prAp = 0 = p-VJudau = [} == b S
derpp
a
Ag = q A = 0 = t|-‘V§'-,-1| = i == ‘E};{'fﬂ} 0
i
: |

Apyp = prArg = 0 = |_:I-lelﬂdq = M} =% P‘Iﬁ(wu} = {

daryy
&
and subsbituting eq,(11.11) into eq.(11.4.2);
. D
Ay = A = 50 'Vé* iy = ¥ 7’%:{5)-
&
a iy = oy DEL)
A.”. = 1A iR L Yo Vm. v = o 3‘_"”'
&
Ayg = NrA g = '711-‘0'&:_' vy o= ‘:)—J'L‘r,
nlllj
&

(14.12)

(1113

Then, from eq.(11.13) the components of [ can e computed an (see alan equ(I15) and

(IL11.b)):
g " l'.l

[, = [I"!], I TR P 3]} ty ”%'(;n:'l)

Yy 1 i 2 s alj'

[il,, = Lol -» = 24 = o 4, E,,iﬂj}
PR T

[?-"}]"J'g =5 [l'l]]l‘an = FAay _'FE qbﬁ B;Si!

&

(Ira4)

where, from eq.(11.12), &:* gin he expressed only in ferma of the companents of the rate of the

i ; . LT o
traction veclor &, »n o= {ﬂm“ﬂ.uuﬂ‘u",)ﬂ. i

i d w . o
&_‘ = '"'??;SE) i iy } d -Ef_l'(::_,:' Tnpn 'l' 2 -E‘j:,(:‘l?
Ed & 4

Ty

(IT.18)

Eqs.(11.14) and (11.16) provide the resolved (rate of the) displacement Jump bn bermn of the

(riate of the) stresaes,



11,3, Applieation Lo the Jy (low Lheory

In the Jo flow theovy cose the yield function b defined by

3 : 3
oy = /5 lo o~ gutla)] = \/E s (11.16)

where || - " atands for the novim and 8 are the deviatorle siresses |
. i - )
§ = a3 (o)1 (17.17)

ho that te(8) = 0. From exn, (TL16) awed (I1L17) it 18 traiphitforward to cheek that!

1 15
Vo) = \/: F'ls—” {(11.1%)

Thus, taking in Lo accouut eq(IL18), for the Jy flow theory cose e, (11.12) siates that:
Gup = Sy = 8y = 0 and then pr(8) = S F Sy 4 8y = 0 = 8§y =00 that the
deviatoric stress lield 1@ redieed tio

4] T Ty
G, = |ag 0 0 (11.18)
Tay 0 0,

and, thos, from eq.(LL16):

3 3
\/E "B#H " \/E (“Ml'i + "rﬂ: + "’uvi + ‘-’rfr!i )é

be =
= Vi (ow) + a.,,s;% (11.20)
J‘l = _'v":i' t!é {ﬂup E’n; "'-"'llllul,':"l'I Q"} {11'21}

(ﬂ'ﬂrl '} T

Then, substitution of eq,(11L21) into eq.{11.14) taking inte necount eq.(ILI8) leads vo:

[["Ilnuﬂ = 0 (JLTI)
[‘Il]} .] : a'!n_ __‘l _ ,1'.."1 t""“p.ﬂ - Top ] 23
[“"]; A H '-Tﬂfl + ﬂ'nqr ﬂp”-ﬂ‘fn, iy q ] [r-riw (JI‘! )

Finally for 213 cases (planes stress-plane sbrain) where noand podefine the tdhm' ol analyaid and
Ty, ia nasumed to be sero eqr (1122) and (11.23) read:

la)., =
? s i = & (11.24)
lu']]“r 7 Sy = ¥, = %% 3
'1'5 s



APPENDIX 111
ANALYSIS OF THE DISCONTINUITY DIRECTION FOR 2D CASES

1111, Isotrople damage model

Denoting by n and t the unit vectors normal and tangent, reapectively, to the discontinnity
line 5, and considering the orthogonal basis é4,85 (&3 = n, &; = 1), the equation:

tg:t =2, =0 (111.1)

siatea that the regular part of the strain & hos & nul term & which, resorting to the Mohrd
Cirele coneepts, ia represented in Fig. Ba. From this, different possibilities for the formation
of o strong discontinuity emerge: If the principal steaing &, and €,; nee both pesitive or both
negative (aee Fig, 5b), eq.(I1L1) has no solution for t and localization is precluded st the
considered material point. On the conbrary, if €, -6, <0two possible planes of discontinuity
are provided (see Fig, 5e¢). Tt is worth noting that & unique selution for the discontinuity
direction exists only when one of the principnl strains is sero, as ean bo checkod from Fig, be,

a)

“-'“

£l
% H“

b) )
Ein Ein

U ’ ’ ’

Ey "Eyr : 0 Er "Egz 5 0

Figure 5. Computation of the disconfinuily dircetion resorling lo the
Mohr Cirele concepls.

1) Uniaxial airess for plane stress cases

The impozed uniform stresn field reads:

s [::; :::] =3 o (I11.2)



and from the kotropic elastie constitutive equalion (d.ﬂ.ﬂ} the regulnr atraln ficld can be
expressed in terns of the Young modulus £ and Poisson's ratie » ax:

oy ] _ 2 1 o
13 Gﬂ] T E [D — (111.3)
o that frem eq.(I11.3}:
i
it = -u;—,_‘ < 0 (I11.4)

Thus, twe directions exist which can be identified from eq,(4.4.11) as:

= g f-0 o s (1118

£l 11

b} Uniaxial stress for plane strain cases
The atreas field @a glven by eq.(111.2), The atealn field s then:

_ [t € IR [ G ]
= iz f:n] E a '—P{l-l-ll'}] (111.6)
and thua: "
6oty = =1 =140 35 <0 (111.7)
Finally,
ha/—E €ay (7] &
) @ —ee—n i = = e B
il 44 " 11 * {1=1¥) (408
¢} Uniaxial strain case
The imposed strain field i
_ [fn #n] [0
' = [fu !':u] = [U' 0 {11.8)
thus,
Ok, = 0
and:
tan (0) = + -:J-‘- =0 (111.10)
1

and only ene solution (¢ = 0) for the direciion of the discontindity exisbs.

I11.2, J2 Flow Thoory

For J2 flaw theory casce it can be shown (see Appendix I1, section 11.3) that the deviatarie
stress components in Lhe cartesian axes defined by n and L are given by:

B - [Si.-. ﬂ'u{'] 3

Ta S

o r
[z (11.41)

o that a pure shear devintoric stress state, appears ot the discontinuity line. From eq.(I11.11)
inmediately emerges that the inclinntion angle of n with reapeet to the mazimum principal
deyiatorie stress in glven by

b= :I:% (111.12)

Since the principal dircetions of the strens and the deviatorie stress tensors are tha same, eq.
(111.12) alse holds for the complete stress tensor,



PART 1I:

NUMERICAL SIMULATION

SUMMARY

On the basis of the strong discontinnity analysis of standard local stress-
strain constitulive equations, a finite element framework for the simulation
of strong discontinuities, which ean be inseribed in the family of assumed
enhanced strain methods, is presented. Taking the standard linear triangle as
underlying element, an additional incompatible mode leads to the formulation
of an enriched strain field which is shown to be able to apprapeiately eapture
strong discontinuities. The presented numerical simulations show that mesh size
and mesh alignment dependencies ean he completely removed.

1. INTRODUCTION

In Part [ of this work the so called strong discontinuily analysis (5.10.A) was
introduced, As shown there, the application of the 5. DA Lo any standard (loeal,
atress-vs-strain) constitutive equation provides a general framework in which the
analysis and simulation of the strong discontinuity problem could he insoribaed,
In particular some key conditions for these constitutive equations are derived
(the distributional character of the softening parameter is the maost relevant
one) which, together with some additional regquirements, provide a well posed
set of partial differential equations governing the strong discontinuity problem.

In this (second) part of the work, the finite element approximation Lo the
solition of the strong discontinuity problem is addressed. AL this point it should
he emphasized that the solution of the problem lies in the space of discontinuous
fji;q.ljla.cen':entﬂ ;-m{l. (,'i;nmr:qm:||l.l‘y, wnbounded strains, Rugmrling, the numerical
simulation of thi l:ruhlmn, this foel supgpests tliad standard ¢ finite element
approximations to the displacement fleld would have to find intrimsic difficulties
when applied 1o the strong discontinnity problem.



In fact, the well known mesh alignment dependencies appearing in classical
smeared or continuum approaches'®1% conld be regarded as consequence of these
difficulties. Therefore, derivation and use of finite element approaches including
discontinuous displacement fields, could be envisaged as a suitalile remedy for
the aforementioned problems™&2.11,18.18,

In this work a finite element formulation is presented, in which the
incorporation of the additional discontinuous displacement field to the standard
finite element approach is done in the framework of the assumed enhanced
struin (A.E.S) methods'” that is to say: an appropriate incompatible mode
containing an approximation to the displacement jump is added to the underlying
standard €% element. Previous attempts to resort to AE.§ methods in
finite element localization analysis can be found, for example, m references
[1,13,20]. The introduction of discontinuous displacement fields has the drawback
of dealing with strain fields containing Dirac delta-functions which, in this
work, are approximated by regularized (bounded) delta-sequences in terms of
a regularization parameter. This procedure allows to eseape from the inherent
difficulties of dealing with unhounded functions in the numerical approach. On
this basiz, a resulting formulation has been derived for 2D cases taking the
three noded linear triangle as underlying element. Its relinhility is checked hy
resorting to different basic tests and the simulation of several strong discontinuity
problems,

2. FIELD EQUATIONS

Let us consider the reference confipuration of the body {1 with bhoundary
aft. Let I'y € 8t and Iy © 60 (I, U T, = 80, [, NIy = @) be the boundaries
subjected to the nsual essential and natural conditions, respectively. Let finally
& be the discontinuity (material) surface splitting the body into two parts (17
and 17, m the unit vector normal to S (pointing to N1%) and » the outward
normal to the external boundary 80 (see Fig. 1).

\4

a0 = ],'Lul"o

Figure 1. Definition of the discontinuily path.

The field equations governing the boundary value problem ¢an be written
as:

Ve +f =0 i \s (2.1)



n o= u in Iy (2.2)

F-v = 1" in I (2.3)
gt v = 1 in S (2.4)
g, n =a n (- a n) n 5 (2.5)

Eq. (2.1), where & are the strosses and T corresponds 1o the body forees, 1=
the elassical equilibrium equation for the quasistatic problem, Eqs.(2.2) and (2.3)
state the essential an natural houndary conditions, respectively (u corresponds to
the displacement ficld and u™ and t7 are the prescribed displacement and traction
vectors, respectively), Eqs. (2.4) and (2.5) state the continnity of the traction
vector across the discontinuity surface &. In particular, eq.(2.4), where o' and
o~ stand for the stress felds in 0% and 17, respectively, involves the traction
vectors (et -n and @~ «n) at both sides of & whereas in eq,(2.5), where &, stands
for the stress field in &, the traction vector af the discontinuity surface (o, 'n)
is also involved. Eqs.(2.1) to (2.3) are field equations for elassical problems,
eq.(2.4) is included when considering weak discontinuities® whereas eo (2.5) is
specific for problems exhibiting strong discontinmitios,

The previons set of equations is complemented by the constitulive equalions,
defining the stresses in terms of the strains, and the knematic equations defining
the strains in terms of the displacement field.  Constitutive and kinematic
equations have been studied in depth in Part T of this work. As a consequence
of the so called strong discontinuity analysis, performed there on two differant
families of eonstitutive sgquations (isotropic continuum damage and elasto-
plasticity), the soltening paraneter must be reinterpreted in a distributional
sense: the inverse of the softening parameter A has the strncture of a delia-
funetion defined on S, .o '

k= o (2.6)

where H < 0 is the so ealled intrinsic softening parameter which can be
interpreted as a material property defined in terms of the fraclure energy (see
Part 1'%, sactions 4.5 and 6.6), and 6 is a delta-function along 8. Bq.(2.6) states
the elastic behaviour outside § [-b = 0 =+ M = oo == elastic behaviour)
and leads, for the different standard constitutive equations, to the derivation of
stress-jump relationships as their consistent diserete counterpart i & (see Part
I'?, sections 4.2 and 5.2). However there is no need, in the actual analysis,
to directly resorl Lo those diserete constitutive equations which are implicitly
fulfilled by imposing condition (2.6) in the standard constitutive equations. So,
standard non-linear stress-strain constitubive equations of the type:

a — ale) (2.7)

allowing for strain-softening mechanisims governad by eq.(2.6) can be considered
in the analysis.

Conecerning to the kinemabic equations, consideration of the appearance of
strong discontinuities leads to the definition of the strain field not only in terms
of the regular part of the displacement o1, but also in terms of the displacement
jump [I“]L: and the normal n (see Part Y2 seetion 2), so that:

€ . (u.||uJ]ﬁ.n) (2.8)



In ¢q.(2.8) [[uﬂﬂ__ and n are additional unknowns with respect to the standard
solid mechanics problem. The normal n, at any point of &, can be computed in
terms of the stress field at the initiation time (see Part 1'?| sections 4.5 and 5.4)
so that, finally, enly the jump |[u]‘5 remains as the additional unknown. Finally,
the traction vector continnity condition (2.5) provides the required additional
set of equations to solve for the jump,

In summary, the field equations (2.1) to (2.5) supplemented by the standard
constitutive equation (2.7) (with distributional softening) and the kinematic
equation (2.8) provide a sufficient and well posed set of equations to solve the
boundary value problem in terms of @, €, 0 and fu] .

3. REFORMULATION OF THE KINEMATICS: THE ESSENTIAL
BOUNDARY CONDITIONS

u*

(1 O \ W

o]

Figure 2. Kimmematies: A possible decomposition of the displacement

field.

For the sake of simplicity in Part | of this work the displacement field in



presence of strong discontinuities was written as (see Part 1'2, section 2):
u(x, t) =a(x, 1)+ H, (x)[nl(x, 1) (8.1)

where u(x, ) stands for the regular (continuons) displacement field, H, (x) is
the Heavigside functionon & (H =0on 27 and H =1 on 11) and [uf(x, ) is
a displacement jump function. In Fig. 2 an schematic illustration of eq.(3.1) for
1D cases is depicted.

Imposition of the essential boundary conditions (2.2) can not be done on
just one of the fields i1 or [u] as can be checked in Fig. 2. In order to avercome
this difficulty a different kinematic decomposition ean be devised as follows:

%)

=
7

Fi‘uru 3. f]eﬁr;fffuh df the domam H'.".

Let us consider nn additional subdomain 9" C 2 surrounding § (§ ¢ 0"
see Fig, 3), defined by two arbitrary boundaries ahead (S)') and behind (S, )
the discontinuity surface, and splitted by § into the subdomains §2) and ;. It
is assumed that the boundary I',, where the essential boundary conditions are
imposed, is outside Qb (ry, 1" = @), Then, we can define a continuous function
(p"(xj which 15 completely arbitrary except for the following two conditions;

(%) = 0 VxeN\Qf

3.2
ehix) = 1 vxeqh\q; {8:2)

Let us now consider the funetion M;(:n:] definied as;
Mi(x) = H,(x)- ¢"(x) (3.3)

It is straightforward to check that Mf;(x) takes the value zero everywhere
in {! except in {1 (the support of Mg, see Fig.4 for 1D cases). With these
definitions in mind we can now define the continuouns function u(x, t) as;

a(x, 1) = a(x,t) + "(x) [ul(x, 1) (3.4)
and substituting eq.(3.4) into eq.(3.1) we arrive, in view of eq.(3.3), to:
A, 4) + [H,(x) = ¢"(x)] Lul(x, 0
a(x, 1) + Mi(x) [u](x, 1)

u(x,t)

(3.5)
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Figure 4. Censiruchion of the unit jump funclion.

Henee, the kinematic description of the displacement field is made now, according
to eq.(3.5), in terms of the regular (continuous) part u(x,f) plus the term
MBE[u](x, t) which contains the jump and whose support is Sy, (see Fig. b),
Thus the essential boundnry eonditions can be applied ezclusively on the term
u(ax, r) This fact makes the kinematic deseription (3.5) suitahle for numerieal
computations as will be shown in section &,

REMARK (3.1)

The kinematic description of eq.(9.5) is completely general. The subdemain §2,
is arbitrary in shape and size. Funeclion lp" 18 completely arbitrary in 0, with
the only requirements of being continwous and the restrictions given in eq.(3.2)

REMARK (3.2)

The displacement fields given by eqs.(3.1) and (3.5) are completely equivalent,
One can pass from one deseription to the other by using eqs.(8.3) and (3.4).
Thus, the different qualitative conclusions emerqing from the strong discontinuity
analysis performed i Part | ave fully applicable when eqs.(3.5) arve used as the
kinematic deseription, as will be done in newt sections,

4. WEAK FORMULATION

Let us consider the virtual work principle stating:

/.,:v;,m=/r.;,dn+j t* 7 dl (4.1)
i i e

for all the admissible test functions § € ¥, where V is the space of the
kinematically admissible variations defined by:

Vo= {pec® q| =o} (4.2)

r‘!l
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Figure 5. Kinematics: Suitable decomposition of the displacement
field.

Integration by parts of eq.(4.1), taking into aceount eq.(4.2), leads to:

/ﬂ’:?igdﬂ:/ o Vndl
i1 Iy

= - Vcr-:‘;dﬂ+f v oo qdl (4.3)
TR L TRRT i

il

- Vo -7 d + f v a-igdl‘—fn-(ﬂ" - ) dl
s I'e &



Inserting eq.(4.3) into eq.(4.1) we arrive finally to:

-] (Va4 1) qdd
s

(4.4)
—/u-(cr"'—u")ﬁ;dl'-l— (veg~t") pdl' = 0
& e
Finally, from eqs.(4.4) standard arguments lead to:
Ve + f =0 in s
ew =t in T, (4.5)

' n =@ ‘n T &

REMARK ({.1)

Comparing eqs.(4.5) with the field equations (2,1) to (2.5) we realize thal from
the variational principle ({.1), eqs.(2.1), (2.3) and (2.{) are satisfied in weak
ferm, Therefore, besides the siandard essential boundary condilions (2.2) only
the traction vector conttnuity condition (2.5) has te be locally imposed on the

discontinuity surface 8.

5. FINITE ELEMENT APPROXIMATION

For the sake of simplicity we will restrict in the following to 2D cases,
although the extension to 3D cases follows quile naturally,

Figurn 8. Finite element npprazimatfuu to the sirong discontinuily

problem,

Let us consider a finite element discretization of {} based on linear triangular
elements as shown in Fig. 6.a. By the time being let us assume the position of
& known (its precise determination will be tackled in section ). Let us consider
the band of finite elements erossed by S defining the subdomain £2), and then the



lines S;f and &, which are constituted by the sides of the elements belonging to
1y and placed ahead of and behind of &, respectively. Let 7 denote the set of
numbers associnted with elements belonging to €2y, e

Fi={ee 2l | Q) (5.1)

Fach element ¢ & 7 has a side {S}';, defined by the nodes i, and j,, see Fig.
6b) belonging ta 5, (or to ;) and a node &, (from now on termed the solitary
node) belonging to 5,7 (or to §;7). Let 5. be the straight segment approaching &
inside the element and n, the normal to 8, (assumed Lo point to k). Definition
of &, and n, allows for the determination of subdomains 2} and §2; as indicated
in Fig. 6b.

5.1. Displacement and strain fields

Motivated by the kinematic deseription of eq.(3.5) we assume the following
approximation to the displacement field:

uwh(x,1) = N(x) a(t)+ > M" (x) ﬂﬂﬂ (5.1.1)
IR ul ()

Mi (%) = H, (%) - el(x) (5.1.2)

pr(x) = Ny (x) (5.1,3)

where N(x) is the standard shape function matrix*!, a(t) is the nodal
displacement vector, H, (x) is the Heaviside function restricted to the domain
{2, and Ny (x)is the standard linear shape function corresponding to the solitary
node k.. The function M‘::_(x) defined in eq.(5.1.2) is depicted in Fig. 7,

a) / M"

a

| ‘:‘:: ‘:'\-\.\
N
o
1
3
L'—’ Se
I
15y

Figure 7. Finite clemend appromimation fe the wnil jump function.



The definition of the displacement field (5.1.1) motivates the following
comments;

a) The terin N(x) a(t) in eq.(5.1.1) matches the regular (smooth) part u(x, 1)
of the displacement field of eq.(3.5). Thus, as it was stated in section 3,
the essential houndary conditions have to be imposed on the corresponding
nodal values (1) like in the standard finite element approximations,

b) If Mi:"(x) is defined only for the elements belonging to {3, as states
eq.(6.1.1), then the displacement field w(x,t) matches the kinematic
deseription (3.6): the jump function [u]"(x, () is considered picce-wise
constant (over the elements) and a,(¢) plays the role of the displacement
Jump corresponding to the element ¢,

¢) If M.{: (x) is defined for all the elements of £, then the displacement field
ul(x, 1) matches the kinematic description (8.5) provded the jump ac(t) is
zero for all the elemenis of QA" This approach is the one considered in the
reat of the analysis so that eq.(6.1.1) has Lo be dlightly modified as follows;

u'(x, 1) = N(::')(a(f){-:i:ﬁdf;(x) () (5.1.4)
ah(x)
() = 0 VegJd (5.1.5)

where 7. is the total number of elements of the finite element mesh.
From eq.(5.1.4) the strain field is computed as the local (at elemental level)
gradient of the displacement field:

&) = (Vﬁ")lﬂ -4-%(‘7/1;42*'@.:,)3 (5.1.6)

$=1

peg e a.h E
/=i enlianeed Ek

where ()7 means the symmetric part of (-). From egs.(5.1.2) and (5.1.3) we can
write:

(5.1.7)

i

th - { ﬁ.\-‘. i, VNA!,. VK [5 n,.

0 af hopwi e

where 6, is the Dirac's delta-function, placed along &, and restricted to the
domain {1,, satisfying:

/ & g fm.=/ eadl Yo € C () (5.1.8)
ﬂr 'i-"‘w

REMARK (5.1.1)



The displacement and strain fields defined in eqs, (5.1.4) and (5.1.6) inseribe the
propased approach in the so called method of the incompatible modes and, thus, in
the fumily of the ussumed enhanced strain (A.E.5) methods'™. The term M" o,
in eq.(5.1.4) tan be interpreted as the incomputible mode, '-:n':'f.'qprmrhru] tn the
element e, ,-n.i;npfq\m.rnhm; the smooth displacement field " (x,t). In eq.(5.1.6)
the term (VM“ @a,] cun be wnderstood as the enhanced stram €, ;mu-mur

defined on each e!mnrnf ¢, enriching the regular stran field € = (VHJ']

When dealing, as it is usual for engineering purposes, with the strain
(€ = {€omryy Yoy t) and the stress (o = {op, 7y, Tay b)) veetors | instead of the
symmetric gtrain and stress tensors, the strain field (5.1.6) can be reformulated
from eqs.(5.1.4), (5.1.6) and (5.1.7) in a cartesian (#,y) system of coordinates
as;

= Y@ (5.1.0)
=]
U (5.1.10)
i = G -a (5.1.11)
by ny Q!&, ]

0 by ny - ",f,}::'- ¥x € {1,

G.(x) = 4 . (5.1.12)
«() B My — nsil: | J T 5’-;{;{-‘"—
0 atherinise

where B is the standard deformation matrix® and n, and ny, are the components
of m, (ng = {ng,7,}).

5.2, Diseretized sot of equations

We now consider the finite element approximation to the weighting space V
of eq.(4.2) given by:

o=l | ot =Nea | =0} (5.2.1)

Substitution of eq.(5.2.1) into (4.1) leads, through standard arguments, to the
following set of equations:

/BT Lt d) = £ (5.2.2)
1l

fiui -fN‘-"-rcu':-J,/ NT . ar (5.2.3)
%] g

{ this notation will be used from now on,



where superseript (1) means transposition of (1),

REMARK (5.2.1)

Bqs. (5.2.2) ave the discrete counterpart of the weak form eq({.1). Due lo the
bounded nature of both the stress field @" and the deformation matrie B, and
ginee 8 has zeve measure, the domam of inlegration §) of eqs. (5.2.2) could be, 1f
convenient, restricted to Q\S and, therefore, eq (5.2.2) can be rewritten as:

/ B:{‘ '#hdn - BT‘ 4 ﬂ'hdn = I‘E;I""‘ (5‘2'4)
0 s

As stated in section 4 (remark 4.1), the set of equations (5.2.4) has to
he complemented hy the loeal enforcement of the traction vector continnity
condition. Then, eq.(2.6) can be rewritten in terms of the stress vectors as:

o, N =o' N(=a N)=90o,., N S (5.2.5)
where
L 0
N =10 ny (5.2.6)
ny, N

and @, , stands for the stresses af {\S,
In the contexi of the finite element approximation deseribed above, let us
consider the following set of equations;

GTighdfy, =0 e=1l.ny (5.2.7)
71,

!
b, ~ )N x€
(b~ g

therwise
0 Ob/8E

where [, ig the length of &, (see Fig. 6.h). Subatitution of eq.(6.2.8) mto
aq.(5.2.7), considering eq.(5.1.8), leads to:

/ o Nl f o N dfl, = 0 (5.2.9)
/s, . Joas,
which can be rewniblen as!
1 h 1 2 ;
e g N dl' = == a' N i, (5.2.10)
I Js. 5 o, '
i I."ﬂ'ﬂf;:-ﬁ!l & Ui :-u A&

Inspection of eq.(5.2,10) shows that they enforee, in average, eq.(5.2.0).
Therefore eq.(5.2.7) enforces, with mesh refinement, the lrachon veclor
continuity condition,



In summary, the discretized set of equations:

fBT vl A = £
0 (5.2.11)
f GTighdi, =0 e=1.ny
Il

where a”(€") comes from the chosen nonlinear constitutive équation with
distributional strain softening, and €' is given by eqs.(6.1.9) to (5.1.11) in terms
of the nodal displacement vector o and the elemental jumps a,, provide i
sufficient set of equations for the determination of the set of unknowns a, a,.
It is expected that, at a given time of the analysis, the jump a, is different from
zero only in those elements belonging to £1y,, thus defining the path of elements
crossed by & at this time (see. Fig, Ga).

For the considered case of linear triangular elements the strain field
ig piecewise constant in both 2,\8, and & and, consequently, so are the
corresponding stress fields coming from the constitutive equation,  Since the
mensures of S, and §2, \Sr are I, and £, rr.-:t[)t-r.‘tivt-.ly, ut|,(ﬁ.2. | U) can wie rewritten

as:
" N - " N (5.2.12)

& RS

and, thus, eq.(6,2.6) is pieccewise fulfilled on the elements belonging to £y,

REMARK (5.2.2)

Eq.(5.2.12) iz oblained independenily of the value of I, mn.uufrmf e egs. (6.2.9),
whenever the same value for I, 15 laken n the factor ﬁ" and ax the length
(measure) of §,. From this, und from the considerations done in remark 52,1,
we conclude that [, plays no speeific vole tn the formulation and that any 1rfi.hu.'
for L. can be considered.

REMARK (5.2.3)
Observe that the matric G appearing in eqs. (5.2.8) and (5.2.11)) Fulfills the
following condtiion!

[ GId2 = 0 (5.2.13)
41,

as ean be easily checked taking into account eq.(5.1.8). It 1& also possible to check,
from eqs.(5.1.10) 1o (5.1.12), thai the spaces generated by the regular sirains &

h = h ;
and the enhanced strains &, denoted by V' and V' respectively, ave such that:

Vooy = (5.2.14)

Clonditions (5.2.13) and (5.2, 1]) are sufficient to guaraniee the consisieney and
stability requirements for the proposed assumed stramn approzimation’”,

The tangent matrix corresponding to the discretized set of equations (5.2.11)
can be easily derived by resorting to the constitutive tangent operator €7 defined
through:

o =0 @ (5.2.15)



In view of eqs.(5.1.9) to (5.1.11), standard arguments lead to the elamental
contribution to the tangent malrix as;
"Br.¢w.p, Bl.¢¥.G,
K, = [ : " df2, (b.2.16)
e @ gn, GG
where B, stands for the deformation matrix restricled to the element &, Obsgerve,
from eqs.(5.1.12) and (5.2.8) that, except for very particular cases] G, # GI.
Therefore, even for the frequent case of symmetrie ', the prosent formulation
i#g ungymmetric, This could be expected since the traction vector confinuily
condition (5.2.5) 15 not nnposed via a vanational franework.

REMARK (5.2.4)

Th.{_,' prfrc{:rﬂng fru':rn'u.frr.l'fm: 'r"u.ﬂqrd b'_q ”h! tfté-'t‘r't:l.h:t‘ff sg;.-zf.u-m t.l_f c:;u-”.-:.rm.x r .‘;..'2. if )
enjoye all the advantages of the A E.S methods, in particular the ones related Lo
the eaginess of implementation. For practical purposges the implementation i a
atandard finate element code reguires only the consideration, for cach element,
of an additional (internal) node with two degrees of freedom (the displacement
Jumps), which does not contributes lo the external forces wector fouy (see eq,
5.2.11), Then, for strain compulation purposes the standard deformation matriz,
B, has to be eaxtended o one fouwrth node considering the matre G, (see
€qs. (S}.':J_) to (6,1.12)). For the purposes of computution of the residual forces
vector, B, has te be extonded to the fourth node considering the matriz G of
eq.(5.2.8). Moreover, computational samngs can be oblwmed by condensing, al
elemental level, the contributions of the fourth nade (o the tangend malreir and lo
the residual forces veclor’

5.3. Regularization via delta-sequences, Regulavized  softening
parameter, Integration rule.

In the present approach we have to get round the obstacle of dealing with
delbn-functions, as the ones appearing in eqs.(2.6), (5.1.12) and (5.2.8). In order
to cireumvent the difficulties inherent to perforin computations involving Dirae’s
delta-functions in standard computers, we proceed to regularize the formulation
hy defining a delta-sequence, by means of o regularization parameter k, which
converges to a delta-function when & tends to zero (in practice & can be as small
as permitted by the machine precision). Therefore, the delta funetion 8, iy
replaced by a regularized delta-sequence 5’;'..

The simplest way to construct 5: 15 by considering 4 finite band ﬂf (from
now on termed the elemental discontinuity band) of width k (see Fig, 8.a) around
the elemental discontinuity line &,, and defining (see Fig 8h):

: Ve
(x) = ¢ (5.3.1)

0 ol herwiae

{ It can be shown that i 8, is parallel to one side of the triangle, then G, = G
and the formulation becomes synunetric,



Figurﬂ 8, ﬁt:yu.furi.z&rf dﬂfin-sﬂquﬂmﬂ,

In view of eq.(5.3.1) the softening parameter H of eq.(2.6) can be now replaced
in the constitutive equation by the regularized softening purameter H* defined
As:

kH vxenk
HY(x) = (5.3.2)

s otherwise (elastic behaviour)

Figure B. Numerical inilegration rule and regularized hardening
saftening parameter,



REMARK (5.3.1)

To some extent the regularization purameter b plays, m the present formulation,
the role of the so culled characleristic length® in some confinuwm models for
capturing localization phenomena, which has a direct dependence on the mesh
size. In both cases this parameter affects the slope of the softenang branch of
the constitutive equation but here k does nol depends on the mesh size ol all,
Fq.(5.3.2)) shows that, when k tends to zero, the imil case of perfect plasticity
or perfect damage (H = 0) s approached.

Consideration of the regularized elemental discontinuity band ) suggests
an specific numerical integration rule for the deseribed element. Tnepection of the
resulting formmulation in sections 5.1 and 5.2, in view of eqs.(5.3.1) and (5.3.2).
reveals that the straing (and consequently the stresses) are piecewize constant in
both the domains QF and ©,\0% (see Fig. 9). Thus, after examining the sat of
aquations to solve (5.2.11) we conclude that only one integration point is needed
in each of those domains, whose weight 15 the corresponding aren according (o
the following table;

Poinl Domain Weight
1 0.\ meas|§2,.| - ki,
2 Qb ki,

where meas|(l, | stands for the area of 2,. No specific localion [or the integration
points, at the corresponding domain, needs to be specified.

6. ADDITIONAL COMPUTATIONAL ASPECTS: THE
DISCONTINUITY PATH

Along section & the logation of the discontinuity line & over the hady {1 has
been assumed known, I 0, the rest of the formulation ean be precisely defined
ns described there, rl‘hm'ufurt;, in this section the attention 15 focused on the
determination of the following aspeets:

I) If a given element ¢ is crossed by & and, thus, helongs to £, (see Fig. 6.a).
IT) If so, what sides of the element are crossed by S and, then, which is the
solitary node k, (see Fig. 6.h), From this, the shape funetion N, ean be

determined in eq.(5.1.12),

II) The norinal n, (see Fig. 6.b), Then, G, (eq.(5.1.12) and G; (eqs.(5.2.6)
and (5.2.8)) can be completely determined.

Concerning Lo these aspects in the proposed methodology distinetion is made
hetween:



= Active elements: Those elements which, at a certain considered time t,
capture the discontinuity. In the context of a quasistatic analysis the active
elements determine the domain 1), surrounding the discontinuity line &,
which advances along time, as long as the external actions are increased (see
Fig, 6a). Those elements are characterized by both having 4 non-zero jump
(e # 0) and a softening hehaviour at the integration point 2. Once signaled
by the algorithm deseribead in the next section they remain active for the rest
of the analysis,

« Unactive elements: those elements that, at a given time, are not active.

For unactive elements, determination of &, and n, iz not relevant. Both
are arbitrarily stated at the beginning of the analysis with the only requirement
that eq.(5.2.13) is satisfied, These values remain unchanged unless the element
becomes active.

6.1. Determination of the discontinuity path across the element: a
tracking algorithm.

Figure 10. Discontinuity path tracing ulgorithm.

Conecerning to the aspects I) and II) described above, a recursive
digeontinuity path tracing algorithm, based on the identification of the
discontinuity front, that is, the end 7} of the current discontinuity line at time
t;, (see Fig. 10) has been devised as follows:

1) At time f; the position of point T}, asstimed to be placed on an element side,
is known and identified by the relative distance of 7} to the corresponding
nodes A; and B; (see Fig. 10).



2) During the iterative resolution at time step 2,41, the infegration point 2 of
the neighbor unactive element (sharing the point 7} with the current frond
element) is continuously reexamined. As soon ns the constitutive hehaviour
at this point becomes inelastic the normal n, 15 computed as indieated in
section 6.2 below. From the eurrent discontinuity front T; and the value
of n., very simple geometric computations allow to determine the next
discontinuily front Ty q and the corresponding solitary node k, (ke = B,
in Fig. 10). In subsequent iterations the discontinuity line iz allowed to
atdvance {rom 17, to reach neighbor elements,

3) Once convergence is achieved al time ¢, the discontinuity path is updated:
the new affected elements are declared active and the corresponding values
for the normal and the selitary node are kept fixed for next time steps,

6.2, Determination of the normal

In Part I of this work'® (sections 4.4 and 5.4) a procedure for the
determination of the normal 1o the discontinuity line has been presented. In
particular, for 2D ¢ases closed [orm formulas, for the determination of the
inclination angle @ with respect to an orthonormal basis, have heen given, Those
formulas allow the computation of # in terms of the bounded part of the strain in
& at the initiation time . In other words: in terms of the strain at the integration
point 2 defined in section 0.3 (see also Fig. 9). For instance, considering the
isatrople damage model described in Part T and denoting by € = {2 | o
the gtmin vector, in a cartesian coordinale syslem (m,y)' wlhiere 5\1perscril}h (-)”’
refers to the initiation time fy and subseript (-)2 refers to the ntegration poinl
2, the inelination angle reads;

) ; i i
"uﬂj.r S '\/(“;")2 I"::ll.':r “'f:y
#. = atan i,

E
W i

(6.2,]

As soon as the element iz detected as candidate to be the front element by
the algorithm deacribed in section 6.1, the corresponding inclination angle 8, is
computed and, then, the normal n, = {n,,n,} as:

iy = o8, ny = &inf, (6.2.2)

REMARK (6.2.1)

Eq.(6.2.1) prowdes, in general, two different values for Oy and, thus, two different
possible inclinations of the discontinuity lime at the clement ¢, Therefore, two
dilﬁ‘ﬂi‘&ﬂt i-nca-rrq-.:mﬂbhr mailes per element would hove o be considered in seclion
&. In fact, only for the very particular case of having two discontinuity lines
crogging the same element, both modes would be simultaneowsly active. For the
sake of stmplicily, wn the examples presented below only the mode corresponiding
ta the largest value of 8, (sign + in eq.(6.2.1)) has been considered. '

{ fora given point, the time of the analysis at which the discontinuity initiates,




7. NUMERICAL EXPERIMENTS

To illustrate the preceding methodology some numerical simulations,
considering different constitutive models and several types of strong
discontinuities, are presented in next sections,

7.1. Uniaxial tension test using a continnum damage model.

In Fig. 11 the considered geometry, loading and boundary conditions are

7 =

Figure 11, Unianal {ension lest uming a continuum damage model:
definition of the problem.

I[n a first step the continuum damage model described in section 4 of Part
[ is considered and the problem is analyzed under plain stress conditions. For
this case the analytical solution can be obtained; perturbation of the peak stress
gy at a certain material point leads to the formation of a strong discontinuity,
along a straight line passing through the perturbed point. The inclination angle
¢ of the diseontinuity line with respect to the = axis is given by (see Part I'?
eq.(111.6)):

L]

0= /i (7.1.1)

where » stands for the Poisson's ratio.

The analytical solution also exhibits an uniaxial and smooth stress field given
by: oy =@, o, =0, 7, =0 InFig. 12 numerical simulations for v = 0.4
are presented. Thus, from eq.(7.1.1), a value of # = 32.31" is expected for the
inclination angle. In a first stage a finite element mesh with a structured band
of elements defined by two parallel lines with this inclination is considered (see
Fig. 12.1). The peak stress of the upper element of this band is slightly reduced
(1%) in order to trigger the discontinuity. Fig. 12.2 shows the deformed mesh
(amplified 100 times) { exhibiting an almost rigid body motion of the frontal

{ For all the results presented here, postprocessing is based on the nodal values
corresponding ta the regular displacement field w"(x,1) (see eq.(5.1.1)). Thus,
the enriching incompatible modes are not considered for postprocessing purposes.
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Figure 12, Uniazial lension lest vsing o continuum damage model;
resulls with the stractured mesh,

part of the specimen which corresponds to n mixed (Mode -Mode II) mode
of fracture. Observe that the jump is perlectly captured by the inclined band
as is stated in Fig, 12.3 by the eontours of the total displacement field, which
uniformly group inside this band. Fig, 12.4 shows the principal stress field which
is uninxial and peefectly smooth,

Results in Fig.13 are force-displacement (f — 4 in Fig. 11) curves at the
right-hand side end of the specimen for different values of the width of the
structured band (h=1.0 and A=0.01) and the regularization parameter (k=1.0c-
03 and k=1.0e-09), In all the cases the differences are indistinguishable in the
plots, so complete msensitivity with respect to the size of the [inite clements
capturing the jump (n'msh sizge objectivity) and with respect to the valie of the
reqularization parameter, assumed to be small enough with respeet to the size of
the element, & shown. In a second stage the snme prablem is analyzed with an
unstructured finite element mesh (see Fig, 14.1), Again the computed deformad
mesh (Fig. 14.2), contours of the total displacement (Fig, 14.3) and the principal
stress field (Fig, 14.4) are presented. The results are exactly the same than in
the previous case. The only differance is that, now, the discontinuity is capturaid
by n band of elements which zig-zagges through the mesh which contains the
discontinuity line whose inclination angle is, as expected, § = 32.31".

In Fig. 15 the forco-displacement eurves at the end of the specimen are
compared for both the structured and the unstructured meshes, Both curves
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Figure 13, Unienial lenston lest wsing a conbinuum domage model:
Senatlivily analysie with respoct to the finite element size,
h, and the regulavization parameter, k.

are indistinguishable in the plot, thas, complete insensitivity with vespect to the
mesh alignment s exhibited,

7.2. Simulation of a zlip line using a J2 plasticity model,

Next analysis considers a J2 plasticity model under plane strain conditions
in a specimen uniaxially compressed as shown in Fig. 16.1. Theoretical resnlts
(see Part I'? section b and appendix II and I11) predict the formation of a slip
line inclined 45 with regpect to the vertical axis (the direction of the maxinmm
principal stress). The corresponding numerical results, for the unstrueturad finito
alement mesh shown in Fig. 16.2, are presented in Figs, 16.3 and 16.4. After a
small perturbation of the yield stress in a certain element of the top of the mesh,
the deformed mesh (amplified 100 times) shown in Fig. 16.3 is obtained. The
discontinuity is eaptured by the band of elements highlighted by means of the
total displacement contours in Fig, 16.4, which contains the slip line (not shown
in the plot) exactly inclined 15"

7.3. Mode I feactare simulation

This test corresponds Lo the mode | fracture simulation of 4 notehed
specimén  using a conlinuum tl,amnge madel with nonsymmetric tension-
compresion behaviour and exponantial softening (ﬁee Part I'*, Appendix [). In
Fig. 17 the geametry and the considered finite element mesh are depicted. The
mesh is completely unstruetured, unsymmetric and slightly refined in the gone
where the discontinnily is expected Lo appear,

Fig. 18 shows the progression of the discontinuity along increasing times
of the analysis. The discontinuity path is identified by the contours of
sgual horizontal digplacement which group along the elements capturing the
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Figure 14, Uniozial lension Leal wimg o continunm damoege madel;
i\qsuﬂs with the wnstructured mesh,

discontinuity (in black color in the figure). Though this path of elements zig-
zaggos vertically along the mesh, the captured discontinuity line (not plotted)
is, as expected, a vertical straight line starting at the noteh tip and crossing all
the elements of the band.

Fig. 19.a shows the deformed mesh (amplified 300 times) at the end of
the analysis where the localization of the regular strain feld along the band of
slements capturing the discantinuily ¢an be observed. Figo 190 correspands
to the projection of the total displacement on the third dimension showing the
linear variation of the jump along the discontinuity line.

8. CONCLUSIONS

In this wark a possible approach to the numerical simulation of strong
discontinuities in solids has been presented. Making use of the resulls provided by
the atrong discontinuity analysis of standard constitutive equations? 11121810 4
finite element methodology of simulation has been derived. Taking as underlying
elernent Lhe simple 3-noded linear triangle the addition of a suitable incompatible
mode and one integraiion point allows for the appropriate caplure of the
displacement jumps as shown in the numerical simulations. In opiien of the
author several advantages of the proposed methodology, with respect to some
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Figurve 16, niaziel lension test weing a conlinuwm damage model;
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existing alternatives, should be highlighted:

- Standard (local, stress-strain) constitutive equabions can be considerad
without having to resort to specific (rate<dependent”, non loeal'®, gradient-
dependent?, Cosserat-type? ete,)  constitutive equations.  The anly
rmlu':rd:ult_enl i the inclugion o the constitutive t.:t:liln!.im‘:, after the elastie
regime, of a softening branch responsible for the formation of the strong
discontinuity and for the local dissipation aleng the discontinnity path,
which, in the most general case, could be preceded by a non-linear hardening
braneh responsible for the non-linear behavior outside the discontinuity
path and for the volume dissipation. Therefore, the same constitutive
aguation would model the standard non linear behaviour appearing hafore
the formation of the strong discontinuity and the strong discontinnity itself,
thus providing a continuous transition between both regimes, In principle
it does not appear any resirigtion on the type of constitutive equation to
he constdersd, Therefare thoese families of constitutive equations which have
shown suitable for modelling the non-linear (hardening) behaviour of the
different types of solids (conerete, metals, soils ete.) could be considered,
just by the addition of a softening branch, for the simulation of strong
discontinuities in the same type of solids.

- Numerieal diffieulties, t(ypieal of continnum  approaches Lo strong
discontinuities, as finite element size and mesh alignment dependencies'®
can be removed, I the stress Reld ean be exactly captured by the underlying
alament (us 15 Lhe ease of the uniaxial tengion tests shown above whera (he
triangular element is able to capture exactly the constant stress field solution

of the problem) the provided solution of the strong discontinnity problem s
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ezact and complelely independent of the shape and size of the finite clement
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Figure 18, Mode I fracture simulation: from 1) ta 1) progression of
the discontinuity path for increasing times of the analysia,

mesh. In other words: mesh refinement could be envisaged not as an specific
way to capture the discontinuity ' 2 hut, as in standard problems, a tool
to improve the averall approximation of the numerical solution.

As said above (section 5) the presented finite element approach, based on
the use of regularized delta-functions and the weak imposition of the traction
vector continuity condition, ean be inseribed in the [umily of the assumed
enhanced strain methods (A.E.§). Although several different alternatives
could be imagined, resorting to A.K.8 method has the erucial advantage of
the ensiness of implementation in any existing non-linear finite element code,

In fact, the strietire of the code remains the same and only an additional
internal node has to be considered for cach element. In consequence, the
code has only ta be modified at the low (elemental) level and the rest of iis
strueture and faeilities remain unehanged.

Theoretically, no special difficulties are envisaged to extend the presented
formulation to other type of fnite clements (higher order iriangles and
guadrilaterals) and other non-linear constitutive oquations.  Bven the
extengion to the general 3D case seems Lo follow naturally, Anyway, this
wotld have to he proved by the corresponding implementations.



Fignre 19. Made | fracture sumulation: u) deformed mesh (amplified
J00 times) and b) 3D vepresentation of the jump [(the
total displucement values ave plotted along the (hird
dimenatan ),

On the other hand, from the experience obtained in the numerieal
simulations carried out in this work, some me.qk pents of the approach emerge:

- Although the tracking algorithm presented in section 6.1 has shown able to
provide the right discontinuity path in the simulations, it is a global algorithm
which requires, for each element, information from the neighbor elements,
This fact could be a drawback for finite element codes based on elemental
data-basis. In this sense, a local algorithm would be preferable,

+ Determination of the right discontinuity path has shown to play a erucial
role for the appropriate solution of the strong discontinuity problem and for
the convergence of the non-linear solution scheme. This determination lies
erucially on the acurate computation of the normal to the discontinuity path
which, in turn, depends on the goodness of the captured regular strain field
at the initiation time (ses Part (L eqs.(4.4.8) and (5.4.3)). For low order
elements, as the linear trinngle used in the examples presented above, this
fact could, by itsell| increase very much the required number of elements in
the mesh.

- In connection with the preceding considerations, convergence of the standard
Newton-Raphson schemes for the solution of the non-linear problem was
found to require very simall time steps in the initial stages of the analysis
(even if consistent tangent operators were used). Once most part of the
discontinuily path was traced the rest of the analysis could be conducted
under much larger time steps.  In this sense approprinted algorithms to
inerease the robustness of the non<linear analysis seem Lo be neadad,
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