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92852 Rueil-Malmaison, France

2 Aix Marseille Univ,
CNRS, Centrale Marseille, M2P2 UMR 7340,

13451 Marseille, France

∗ corresponding author : mathis.pasquier@IFPEN.fr

Key words: Lattice-Boltzmann, pollutant dispersion, turbulent atmospheric flows, traffic emis-
sions

Abstract. The developing field of urban physics includes computational fluid dynamics (CFD)
as a tool to model wind comfort, heat management and pollutant dispersion in cities. In par-
ticular, road traffic emissions significantly contribute to air pollution and should be considered
in atmospheric dispersion simulations. To this end, the lattice-Boltzmann method (LBM) of-
fers a promising alternative to traditional finite-volume CFD solvers in terms of computational
cost and accuracy. At IFP Energies Nouvelles (IFPEN), a recent emission model relying on
real-life driving data recorded with a mobile application was used to construct urban emission
maps. However, it has not been coupled yet with a precise unsteady CFD solver, which could
provide local unsteady and accurate information about local concentration fields. We propose
to combine the LBM open-source code OpenLB with the emission model designed at IFPEN to
simulate traffic-induced pollutant dispersion in an urban-like environment. The LBM code is
used to solve the Navier-Stokes equations as well as the passive scalar transport with a double
distribution function (DDF) approach. The solver is successfully validated on the well-known
CODASC test case and a first evaluation of the impact of a representative urban setting on
pollutant dispersion with non-uniform sources is proposed.

1 INTRODUCTION

The Lattice-Boltzmann Method (LBM) [1] has gathered increasing interest in the CFD com-
munity for about a decade now and stands as a credible alternative to traditional finite-volume
LES-based CFD tools. One can cite a few of the main advantages of the standard LBM: first, its
ability to simulate incompressible isothermal flows with second-order space-time accuracy. Sec-
ond, the fact that – contrary to traditional finite-volume methods – there is no need to solve an
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intermediary Poisson equation, which considerably alleviates the computational burden. Third,
it is based on a local stencil – ignoring boundary conditions –, using only direct neighbours at
each time step, which makes it particularly prone to parallelization.

Thus, an increasing number of studies examines atmospheric flows using the LBM : for
instance Merlier et al. [2, 3] simulate the transport of neutral and dense gas in realistic urban
geometries using the commercial code ProLB, and Buffa et al. [4] compute pressure loads on
high-rise buildings. Lenz et al. [5] simulate wind flow in a local urban neighbourhood with
real-time performance on GPUs using a rather coarse mesh (with minimal grid size of the
order of one meter) and Wellman [6] further analyses passive pollutant transport. Ahmad et
al. [7] carried out aerodynamic simulations in complex urban environments for wind comfort
purposes, Inagaki et al. [8] analyse the atmospheric boundary layer dynamics and Onodera et al.
[9] study pollutant transport with a mesoscopic meteorological model, also achieving real-time
performances on GPUs with one-meter mesh size. This review highlights the fact that the LBM
appears to be promising in terms of performance and accuracy for atmospheric computations
on rather coarse meshes, in particular when GPUs are employed.

Accounting for transport-related air pollution in CFD simulations requires to adequately
represent the emissions sources in the computational setup. Most of the CFD studies addressing
road emissions employ uniform and stationary line sources to represent road segments and
vehicular exhausts. Emissions rates can be estimated from dynamical emissions models or
emissions factors. The accuracy of these models turns out to be very limited for urban traffic
applications, where driving style and built infrastructures significantly influence the emissions
and the dispersion. Advanced modelling approaches are found in the literature, for example using
source terms in transport equations to account for particle drag [10] or traffic-induced turbulence
[11]. The vehicles can also be represented by moving solids [12] or a viscous additional fluid
[13]. The best option to accurately represent the vehicles’ dynamics is to couple a microscopic
traffic simulator with the CFD solver [14, 6, 15]. Such traffic models account for the complex
non-linear interactions among the fleet and output realistic information about the positions and
speeds of the vehicles, which can be used with emissions models to better represent the spatial
and temporal variability of the road emissions. However, the speed profiles obtained with traffic
models are not always representative of real behaviours, and alternative options such as GPS-
based measurements can improve the accuracy of the subsequent emissions estimations [16].

This work aims at constructing a functional (but not necessarily optimally accurate) modeling
chain to simulate traffic-induced pollution at the local urban scale. The thermal stratification
of the atmosphere and the chemistry are ignored and an open-source LBM solver is adapted
to simulate incompressible isothermal highly turbulent flows with passive scalar transport. The
sources modeling is improved in comparison with uniform and stationary sources, by exploiting a
GPS-based emissions simulator developed at IFPEN and coupling it for the first time with a CFD
solver. Section 2 describes the LBM methodology for the simulation of turbulent dispersion,
section 3 provides detail about the emissions modeling strategy and section 4 presents some
validation results for the LBM solver before coupling it to the emissions model on a realistic
geometry.
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2 DDF LBM-LES MODEL

2.1 Software presentation

In this work we use the open-source Lattice-Boltzmann code OpenLB designed at the Karl-
sruhe Institute of Technology [17]. This code is written in C++ and is constructed in the most
generic fashion to facilitate the implementation of new models. Among the options already
available, one can simulate incompressible laminar and turbulent flows, reactive flows, flows in
porous media, particulate flows and thermal flows. The code is parallelized using the MPI and
OpenMP libraries for CPUs, and a recently released version is adapted to GPU architectures.
The code is available for academic and industrial applications under the license GNU GPL2.

In this work we address highly turbulent flows with passive scalar transport and the initial
version of OpenLB that was used in the first place (version 1.4) had two major limitations that
made the code highly unsuitable for such purposes : first, the absence of mesh refinement and
second, the absence of stable models for high-Reynolds number flows. The former limitation was
not addressed here even though it would be very useful to have local mesh refinement to limit the
computational expanses for urban flows. The latter issue was solved by implementing additional
ingredients in the code. This functional numerical method is presented in the subsequent sections
for highly turbulent incompressible isothermal flows and passive scalar transport using the LBM.

2.2 High-Re incompressible isothermal flows

The LBM originates from the Boltzmann equation, which describes the evolution of a prob-
ability density function f that characterizes the state of a system composed of many colliding
particles in the phase space (defined by positions x and microscopic velocities v of the particles).
The original equation is simplified using the BGK approximation for the collision operator, and
is discretized in the velocity space using Gauss-Hermite quadrature rules. f is discretized into
populations fi’s associated to a set of q discrete velocities vi which compose the D3Q27 (q = 27)
and D3Q19 (q = 19) lattices commonly used in 3D. The density and momentum of the fluid
moving with macroscopic velocity u are related to the populations as:

ρ =
∑
i

fi and ρu =
∑
i

vifi

Space-time and velocity discretization lead to the Lattice-Boltzmann equation (LBE)

fi(x+∆tvi, t+∆t)− fi(x, t) = −ω̄∆t (fi(x, t)− f eq
i (x, t)) with

1

ω̄
=

1

ω
+

∆t

2
(1)

where ω is the relaxation rate of the fi’s to the equilibrium distributions defined by

f eq
i = wiρ

[
1 +

u · vi

c2s
+

(u · vi)
2

2c4s
− u · u

2c2s

]
. (2)

with the quadrature weights wi. The LBE translates into the collision-propagation algorithm at
the heart of the LBM :

1. Collision step: compute intermediate populations as f coll
i = fi − ω̄∆t (fi − f eq

i )
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2. Propagation step: move the intermediate populations to direct neighbours along discrete
velocities: fi(x+∆tvi, t+∆t) = f coll

i (x, t)

The propagation step imposes the necessity of a uniform cartesian mesh for the LBM. A
Chapman-Enskog perturbative analysis shows that the hydrodynamic limit of the LBE yields
the following mass and momentum conservation laws (Navier-Stokes equations, NSE):

∂tρ+∇ · (ρu) = 0 (3a)

∂t(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · (2µS) +O(Ma3) (3b)

with the dynamic viscosity µ = ρc2s
(
1
ω̄ − ∆t

2

)
, the barotropic equation of state p = c2sρ (where

cs =
√
rT0 is the newtonian sound speed) and S the rate-of-strain tensor. The momentum

additional Ma3-like error term originates from the limited quadrature in the velocity space and
justifies the adequacy of the aforementioned standard LBM to isothermal weakly-compressible
flows.

The standard LBM is known to suffer from severe stability issues as the Reynolds number
grows (which numerically translates into the zero-viscosity limit with ω̄∆t → 2). One option
to overcome these issues is to use a modified collision kernel with enhanced stability properties.
OpenLB offers only multiple relaxation times (MRT/TRT), entropic (ELBM) and projected
regularized (PR) [18] models, which are unstable in our case. In the literature the state-of-the
art options are the cumulant [19] and hybrid-recursive regularized (HRR) [20] models, which
considerably increase the ability of the LBM to address high Reynolds numbers flows. Yet, none
of them is available in OpenLB and both methods require an increased computational effort
to work properly. Thus, in order to limit the implementation difficulties and the additional
computational overhead, we chose to implement the recursive-regularized (RR) model which
was designed by Malaspinas [21] to improve the stability of the D3Q27 LBM. In our case we
use the D3Q19 lattice for performance purposes, for which the RR kernel is not stable enough.
Thus we use a subgrid-scale model to further filter out the spurious oscillations occurring in
the macroscopic fields. Here the Shear-Improved Smagorinsky model (SISM) [22] was chosen
for its near-wall improved accuracy. Furthermore, spurious pressure oscillations are generated
at the initialization of any simulation, which eventually lead to divergence over long simulation
times. To cure this issue we implemented sponge zones adapted to the LBM [23] close to the
boundaries of the computational domain to damp spurious pressure waves.

All these ingredients added to each other contribute to make the code OpenLB functional
for high-Reynolds flows without mesh refinement. The computational overhead induced by
our implementation of the RR kernel, the SISM model and the sponge zones is not significant
compared to plain BGK with D3Q19.

2.3 Passive scalar transport

The transport of a passive scalar in the wind is described by a simple advection-diffusion
equation (ADE) of the form:

∂tχ+ u · ∇χ = κ∇2χ (4)

where χ is the molecular concentration of pollutant (in ppm) and κ is the molecular diffusivity.
In order to solve equation (4), two options are available : either solve NSE with LBM and ADE
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with finite differences (hybrid approach) [9] or solve both NSE and ADE with LBM (double
distribution function approach, DDF) [24]. In OpenLB the second option is readily available,
which is why we choose a DDF approach. The idea is to introduce an additional family of
populations gi such that ∑

i

gi = χ (5)

The gi’s are governed by the following LBE equation:

gi(x+∆tvi, t+∆t)− gi(x, t) = −ω̄g∆t (gi(x, t)− geqi (x, t)) with
1

ω̄g
=

1

ωg
+

∆t

2
. (6)

where ωg is the relaxation rate of the gi’s toward their equilibria defined similarly to (2) with χ
instead of ρ. A Chapman-Enskog analysis shows that the corresponding hydrodynamic limit of
(6) is

∂tχ+ u · ∇χ = κ∇2χ− κ

c2s
∇
(
χ

ρ
∇p

)
(7)

which is a regular ADE with an error term that can be shown to scale like the square of the
Mach number compared to the diffusive term. It is thus negligible for low-Mach flows. The

molecular diffusivity reads κ = c2s

(
1
ω̄g

− ∆t
2

)
. For the ADE, only the first moment of the gi’s is

conserved, which means that a D3Q7 lattice is sufficient in 3D and first-order truncated discrete
equilibria (2) can be used. Yet, for stability purposes, it is better to use a D3Q19 lattice since the
D3Q7 is shown to be equivalent to a centred finite-difference scheme [25] which is known to be
unstable at high Péclet numbers. Additionally, we use a subgrid-scale model as for the fi’s with
a turbulent scalar diffusivity coupled to the turbulent kinematic viscosity through the turbulent
Schmidt number chosen here as Sct = 0.7. Finally, we also apply the recursive regularization
procedure to the gi’s, which was never done in the literature so far, in order to improve the
stability and avoid spurious oscillations in the scalar field.

2.4 Note on the boundary conditions

The boundary conditions used here should be robust enough at high Reynolds numbers. The
bounce-back scheme is used for no-slip Dirichlet velocity conditions and for zero-flux Neumann
scalar conditions [26]. At the inlet, we impose a velocity profile using a projected regularization
of the populations and at the outlet we impose constant pressure using a finite-difference velocity
gradient estimation to reconstruct the populations (BC3 and BC4 from Latt et al. [27] respec-
tively). For oblique no-slip velocity boundaries we use the interpolated bounce-back scheme
designed by Bouzidi et al. [28] and Dirichlet conditions are imposed for the scalar sources using
BC3 from Latt et al.

The inlet turbulence is generated using the synthetic eddy method in its original formula-
tion proposed by Jarrin et al. [29]. This method was chosen for its ease of implementation
and because the generated turbulence sustains itself rather satisfactorily in the computational
domain.
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3 TRAFFIC EMISSIONS MODELLING STRATEGY

We consider a generic road network R composed of several road segments and compute
non-uniform stationary traffic-related emission rates in g/s/km on each of these segments. The
method used here is a simplification of the procedure designed by De Nunzio et al. [30] and is
used to construct a complete modeling workflow when coupled to the LBM CFD model described
above. The method is decomposed into three main parts:

• prior estimation of macroscopic traffic data on the network. De Nunzio et al.
recover information about road infrastructure, topology and average traffic speed from a
Geographic Information System (GIS) in order to compute the emissions on real road net-
works. In our study, we want to exhibit control parameters that encapsulate traffic-related
uncertainty for future uncertainty quantification studies. Thus we use a microscopic traffic
simulator (the SUMO library available in Python3) that outputs segment-wise (space and
time-) average vehicular density ⟨ϱ⟩ and vehicle speed ⟨v⟩ from a specified road network
R and a given value for the overall traffic flow q (which is considered as an aleatory vari-
able). The traffic flow is assumed here to be the same on every possible route taken by
the vehicles.

• prediction of driving data. Driving data consists in realistic speed profiles. A sta-
tistical model was trained by Laraki et al. [31] on real-life GPS data recorded in Paris
and Lyon (France) and is able to generate realistic driving data for an arbitrary network
just from GIS data. The driving data is clustered into several categories depending on
macroscopic features such as the level of congestion, the presence of a traffic light, an
intersection with priority, a stop and yield sign, or the level of curvature of the road. Due
to the remaining statistical dispersion of speed profiles amongst the categories, they are
further grouped into several clusters for each category depending on the dynamical drivers’
behaviours (presence/absence of stopping point and congestion level). The driving data
are generated by the machine learning model from the value of the average traffic speed
⟨v⟩ using markovian processes, the probability distribution of which is different for each
cluster of each category. For more detail about the generation of the driving data, see
[31]. Ultimately, each segment is associated to a category and the value of the velocity vk
for the cluster k of this category at a given location x depends on the road network, the
length L of the segment and the underlying imposed traffic flow.

• computation of the emissions. The NOx and CO2 emission rates are computed with a
physical engine model designed by Thibault et al. [16]. The model is able to deal with 1Hz
GPS-sampled real-life driving data and was successfully validated against experimental
data by Thibault et al. It computes emissions data from vehicle specifications (engine
type, etc.), the topography of the road segment and the driving behaviour (a velocity
profile). The emissions profile obtained from a velocity profile vk is denoted ek and is
associated to a type of driving behaviour (a cluster) among those composing the category
of the considered road segment. Since the fleet is composed of several drivers with different
behaviours and of several types of vehicles (we consider petrol and diesel engines in this
study) we can aggregate the emissions to obtain the total emissions associated to a given
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segment:

e =

Nc∑
k=1

αi

(
βegask + (1− β) edieselk

)
(8)

where β is the proportion of petrol engines vehicles and αi are weights depending on the
time of the day and the congestion level (which is assumed here to be determined by
⟨v⟩). Since the vk’s are stochastic profiles, the emissions profiles are also stochastic. Their
statistical variability can be reduced by averaging the emissions over several profiles before
using it as such in CFD simulations. The emissions computed so far are emissions rates
per vehicle, so the final emissions rates are obtained by multiplying the vehicular emission
rate e with the average traffic density :

E = ⟨ϱ⟩e.

Although the underlying method to generate driving and emissions data is that of De Nunzio
et al., a major difference with their work is that here we keep track of the spatial variability of
the emissions. De Nunzio et al. aggregated emissions amongst clusters but also averaged them
over each segment, thus losing information about possible emission peaks before traffic lights
for instance. The main interest to keep track of the non-uniformity is that here we consider
an urban neighbourhood instead of a whole city, so the spatial resolution is higher. Yet, the
spatial variability is not fully considered, since the traffic density is averaged out. Moreover, the
temporal variability of the emissions is ignored, which makes it debatable to use them in unsteady
CFD simulations. This temporal variability seems to be directly determined by the value of ϱ.
Thus, these traffic density-related simplifying assumptions leave room for improvement and shall
be addressed in future studies.

4 VALIDATION RESULTS

In order to validate the ability of OpenLB to handle passive scalar transport with a DDF
approach in highly turbulent flows, we consider a test case of traffic-induced pollution in a
canyon-like geometry, namely the CODASC wind tunnel experiment [32]. This consists in a
constant and uniform release of SF6 between two long buildings and was originally designed to
evaluate the influence of tree-planting on pollutant dispersion The geometry and our results are
presented on figure 1. We use a numerical setup similar to that of Merlier et al. [2], without trees.
The inlet velocity is set using a power-law velocity profile with synthetic turbulence characterized
from the experimental velocity statistics (mean streamwise velocity and turbulent intensities),
and 1000 synthetic eddies are injected. 25 nodes are used over the separation distance between
the two obstacles, and a total of about 4.3 × 107 grid nodes are used in total. The simulated
time is set to 400 seconds with a time step equal given by the acoustic scaling ∆t = ∆x/20,
which leads to an effective computation time of about 34 hours on 360 CPUs. The Reynolds
number is set to 4.6 × 104 and the molecular Schmidt number based on the diffusivity of SF6

is set to 0.68. The figure 1 highlights the presence of a strong canyon vortex at the center of
the canyon, which seems to be accurately captured by OpenLB. It is driven by shear forces
induced by the detachment of the flow on the first obstacle and its reattachment before the
edge. The vortex enhances air exchange between the interior of the canyon and the exterior, by
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bringing the pollutant against the upstream wall (wall A), thus lowering the pollution level on
the downstream wall (wall B). The pollutant is then evacuated outside of the canyon, which can
be observed on figure 1. The ability of the code to predict dispersion is assessed by comparing
experimental and numerical data on both of the interior walls of the canyon. This is done in the
table given in table 1, where statistical metrics described by Chang and Hanna [33] are evaluated
gathering wall A and wall B on one hand and separating them on the other hand. We can see
that the accuracy of the results is very acceptable on wall A whereas wall B concentration levels
show slight discrepancies. Further decomposition of the data on several height levels along the
building (not shown here) reveal that the concentration levels are particularly overestimated on
wall B close to the ground close to the extremities of the canyon. The values at this location
underestimate the reference data by more than factor of two, which damages the geometric
mean bias (MG) indicator, which are based on a logarithmic scale. Also, negative values of the
fractional bias (FB) indicate a systematic over-estimation of the reference data on both walls,
particularly on wall B, which damages MG. This might be due to the fact that the concentration
levels on the downstream wall close to the ground are harder to capture with a coarse mesh. It
is not uncommon in the literature to struggle more to capture the concentration levels on wall
B, so the results obtained with OpenLB are considered to be valid for passive scalar transport.

Figure 1: Computational domain (left), streamlines (center), canyon vortex + instantaneous concentra-
tion (right)

FAC2 FB RNMSE MG VG R

validity range > 0.5 ]− 0.3; 0.3[ < 1.2 ]0.7; 1.3[ < 4 > 0.8
A + B 0.802 ✓ −0.22 ✓ 0.404 ✓ 0.713 ✓ 1.28 ✓ 0.911 ✓

A only 0.788 ✓ −0.2 ✓ 0.354 ✓ 0.765 ✓ 1.24 ✓ 0.82 ✓

B only 0.816 ✓ −0.289 ✓ 0.38 ✓ 0.664 ✗ 1.31 ✓ 0.934 ✓

Table 1: Statistical indicators reviewed by Chang and Hanna [33] for scalar transport validation purposes,
and their value obtained for the simulation results with OpenLB gathering or separating wall A and wall
B data.
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Figure 2: Location map (top left), extruded geometry from map (right), microscopic traffic simulation
setup (bottom left), non-uniform stationary emissions on the road network (bottom right)

5 APPLICATION TO A REALISTIC CASE

The realistic application presented here couples the LBM solver with the emissions modeling
strategy detailed in section 3, with the microscopic traffic simulator (SUMO), the machine-
learning driving data generator and the physical engine emissions model. The geometry of the
test case is extracted from an urban neighbourhood of southern Parisian suburbs as depicted on
figure 2. The buildings are built by extrusion from the map, with arbitrary heights set between
5 and 10 meters, and the geometry scale is kept to 1:1. Then, the road network is built using
the editor NETEDIT available with SUMO, (bottom left on figure 2) using field information
such as traffic lights locations, road signs and intersections priorities. The traffic flow q is set
to 200 vehicles per hour on each route taken by the vehicles, which are defined as admissible
sequences of network links joining two extreme nodes. The microscopic traffic simulation is run
for 800 physical seconds, which is enough for the average speeds and densities on each segment
to be converged. The average speed values are used to determine the macroscopic congestion
level on each segment and to generate speed profiles. Then the emissions are computed on the
network using the driving data and the average traffic densities (bottom right on figure 2).

The emissions are then used as an input in OpenLB to impose Dirichlet conditions for the
concentration at the road level. Dirichlet conditions for the upward velocity are also imposed
on the sources to effectively impose the correct emission rates. The physical simulated time is
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set to 600 seconds and the Reynolds number is chosen equal to 106. The mesh size is set equal
to 1 meter, which is comparable to what was done by Lenz et al. [5] and Ondera et al. [9].
Using the same acoustic scaling as for the CODASC test case, the effective computation time on
360 CPUs is thus about 8.5 hours. The instantaneous concentration field at pedestrian height
is presented on figure 3, and we can see that the non-uniformity of the emissions significantly
impacts the spatial distribution of the concentration levels in the neighbourhood of the road axes.
For instance, one can note the particularly high pollution level at the bottom-right intersection
which is due to the fact that the corresponding avenue is a double lane with a traffic light at its
end. Thus, the vehicles produce higher emission rates locally, and such an information would be
lost by spatially averaging the emission rates over the road segments. Note that the LBM solver
for passive scalar transport appears to be stable enough although negative concentration values
locally occur. This is due to the fact that the numerical scheme does not guarantee positivity,
which can be bypassed by cropping local negative values. This occurs in particular close to the
line sources, where concentration and velocity discontinuities are caused by the rather coarse
mesh size. This could be cured by using local mesh refinement, which is not yet available in
OpenLB.

Figure 3: Floor level (z = 1 m) instantaneous pollutant concentration level (log scale)

6 CONCLUSION

We successfully demonstrated that the emissions model developed at IFPEN can be coupled
with a CFD solver to perform sufficiently accurate and efficient pollutant dispersion in urban
areas at the local scale. It is important to keep in mind that the aim was to build a complete
modeling chain, the bricks of which could be replaced by more efficient elements in future studies
(for instance, use a LBM solver with mesh refinement).
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Further improvement is to be carried out as to how to keep track of the spatial and temporal
variability of the traffic density on the road, which would lead to a more accurate representa-
tion of the emissions dynamics in unsteady simulations. The concentration level at particular
locations will be chosen as a quantity of interest to evaluate the impact of aleatory uncertainties
associated to the inlet wind intensity and orientation and to traffic-related parameters such as
the fleet composition β or the global traffic flow q.
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