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SUMMARY

A new plate triangle based on Reissner-Mindlin plate theory is proposed.
The element has a standard linear deflection field and an incompatible linear
rotation field expressed in terms of the mid-side rotations. Locking is avoided
by introducing an assumed linear shear strain field based on the tangential
shear strains at the mid-sides. The element is free of spurious modes,
satisfies the patch test and behaves correctly for thick and thin plate and
shell situations. The element degenerates in an explicit manner to a simple

DK form.
INTRODUCTION

Considerably effort has been put in recent years in the development of C,
continuous plate and shell elements valid for both thick and thin situations.
A survey of recent work in this direction can be found in [1-3,9]. Despite
of all these efforts there are not many elements that satisfy all the following
“optimum” requirements:

a) Proper rank (no spurious modes for one element)

b) No shear locking

c) Satisfaction of constant curvature patch tests

d) Low sensitivity to distorsions

e) Good accuracy in displacements and stresses for thin and thick
situations



f) Non dependence of artificial numerical factors
g) Simplicity of the formulation and of the programming

This paper presents a new triangular element which satisfies most (if not
all) of above requirements. The displacement field is described by a standard
C, linear interpolation of the deflection in terms of the three corner values
and a linear interpolation of the rotations in terms of the mid-side rotations.
This introduces an incompatibility of the normal rotation along the sides of
adjacent elements which however does not preclude satisfaction of the patch
test. Shear locking is avoided by means of an assumed linear shear strain field
in terms of the (constant) tangential shear values at the element mid-sides.
This ensures fullfilment of the necessary compatibility conditions between
the deflection, rotation and shear fields to guarantee the absence of locking
in the thin limit [1-6].

The layout of the paper is the following. The basic equations of
Reissner-Mindlin plate theory are briefly presented first. The finite element
interpolation used is described next together with details of the derivation of
the curvature and shear strain matrices. Examples of the good performance
of the element proposed are presented for a range of plate and shell
problems.The degeneration of the element to a simpler DK form involving 3
corner deflection values and 3 mid-side normal rotations is also briefly shown.

BASIC EQUATIONS OF REISSNER-MINDLIN PLATE THEORY

Figure 1 shows the geometry of a plate with the sign convention for the
deflection w and the two independent rotations 6z, 6y.
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Figure 1 Sign convenion for displacement and rotations in a plate

Table I shows the basic equations of Reissner-Mindlin plate theory [1,2]
defining the curvature and shear strain fields, the constitutive relationships

and the equilibrium equation for a distributed loading ¢ expressed by the
Principle of Virtual Work (PVW).



Displacement field

u = [w, 77

Curvature field

T
X = [Xzr Xy> Xey] = [—

Shear strain field

ow
Y= [%c,’)’y]T = [—6_:; — Oz,

Constitutive relationships

m = [mm,my,mmy]T =Dyx
5= [QmQy]T =Dsy

Et3
Dy=———
b7 121 — 1?) [

Principle of virtual work

(=
o~ R
o o

,  0=1[05,6,]T

0z’ Oy’ (3y+3:z:)]
aw T
=8
ay y]

] 9 Ds:aGt[

1 0
0 1

/ /A (6xTm + 647s]dA = / /A SwqdA

] , a=5/6

Table T Basic equations of Reissner-Mindlin plate theory.

FINITE ELEMENT INTERPOLATION

Figure 2 shows the geometry of the triangular element proposed. The
deflection field is linearly interpolated in terms of the three corner deflection

values as

3
W= Z L;,w;
=1

where L1 =1 —¢ —1n, Ly = € and L3 = n are the shape functions of the

standard linear triangle [1,2].

The rotation field is linearly interpolated in terms of the rotations at the

element mid-sides as




Figure 2 TLLL plate element. Geometric description and nodal variables
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where
Ny=1-29
N5=2§+2'I7—1 (3)
Ng=1-2¢

are the linear shape functions of nodes 4, 5 and 6.

Eqs (2) and (3) define an incompatible rotation field with side continuity
enforced at the mid-side nodes only. The good performance of the element
is ensured via satisfaction of the patch test as shown in the next section.

Curvature matrix

Substituting (2) into the curvature-rotation relationship of Table 1 leads
to

x = Bsa (4)
with the nodal displacement vector defined as
a = [w1, wy, w3, 024, ys, 025, ys, 06, Oyg)” (5)

and the curvature matrix is given by

Lo
oz ON:

By =[0,By,,By;,By] ; By, =| 0 —Fif (6)
3 _ON; _9N;
dy oz

Note that By, is constant for straight sided triangles.



Shear strain matrix

The assumed shear strain field is expressed in terms of the three
tangential shear strains at the element mid-side points. After some algebra
we can write in the natural coordinate system [6]

()=l R e o

&3

where V& V& Vi, aTe the tangential shear strains along sides 1-2, 2-3 and

1-3 respectively. The signs of the elements of A matrix in (7) correspond to
the directions of side coordinates &1, €3 and £3 as shown in Figure 2 [6,10].

This shear strain interpolation coincides precisely with that used for the
linear/quadratic plate triangles in refs. [5] and [6]. It can be easily checked
that the chosen displacement and shear fields satisfy the necessary conditions
for avoidance of locking defined as ny +ng > ny and ny > nqy where nqy, ng
and n, are the number of available deflection, rotation and shear strain
variables (after discounting the prescribed values). Further details on the
variational justification of these inequalities can be found in [1,2,4-6,9].

The shear strain-displacement relationship is obtained by imposing along
each side the condition 75_((2')_?_95) = 0 to be satisfied in a weighted integral

form as
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The choice of a constant interpolation of the tangential shear strain
along each side and a Galerkin weighting (W = 1) leads after appropiate
substitution of (1) and (2) into (8) to

[
76_ = 76_2 =
Vs
-1 1 0 2, v, O 0 0 0
1 1 x 23
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where z;; = z; — zj, Yij = Y; — Yj-
Combining (9) and (8) gives finally
{7$}=J“1{7§}=J_1A0a=]§3a (10)
Ty T



where J is the Jacobian matrix and
B, =J'AC (11)
is the substitute shear strain matrix [2,6].

Stiffness matrix and equivalent nodal force vector

Substitution of (5) and (11) in the PVW expression of Table I leads to

the standard form of the element stiffness matrix as
K@ = k{9 + k) (12)

where the bending and shear contributions are given by

T
K\ = //A(e) B D,B,dA (13)
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The expression of the equivalent nodal force vector for a distributed
loading of intensity ¢ is given by

£le) — / /A oNTgdd  with N =

3x9

Ly Ly L3 O
[ o] s
Following the notation proposed in [6] the thick plate element presented
here will be termed TLLL (for Triangle with Linear interpolation for the
deflection, rotations and shear strain fields).
Remark 1. The exact integration of Kl()e) and ng) for straight side triangles
and homogeneous material requires 1 and 3 integration points, respectively.

Remark 2. Special case must be taken to handle the different number of
degrees of freedom per node at equation solution and pre and postprocessing
levels. Also the “a posteriori” computation of the rotation at corner nodes
from the mid-side values for postprocessing purposes requires an adequate
smoothing due to the incompatibility of the rotation field. Excellent results
have been obtained in all cases by the authors using a simple nodal averaging
procedure.



EXAMPLES

The performance of the TLLL plate element will be tested next for a
number of plate problems.

1 Study of the element rank

An eigenvalue analysis shows that the element stiffness matrix, when
exactly integrated, has only three zero eigenvalues for the whole range of
thick and thin situations. The correctness of the element rank with respect
to spureous mechanisms is therefore ensured.

The use of a reduced single point quadrature for the shear stiffness
matrix introduces an extra zero eigenvalue. This invalidates, in principle,
the use of this attractive simple quadrature for practical purposes.
Preliminary numerical experiments show that this zero energy mode does not
propagate in a a mesh, leading to accurate and very economical solutions.
This encouraging result should be further validated before any definitive
conclussion can be drawn. Exact integration is therefore used in all examples
presented next.

2 Study of locking behaviour

Figure 3 shows the convergence of the central deflection value (normalized
versus the Kirchhoft’s solution) for a simple supported square plate (a x a)
under uniform loading. The same convergence curve is obtained for a range
of thicknesses from thick to very thin situations. Similar results have been
obtained for different plate problems (i.e., rectangular, circular, skew, etc.)
with different boundary conditions, thus ensuring the absence of locking
defects, as expected.

3 Patch tests

The following patch tests have been analyzed:
a) Constant bending moment test (Figure 4a)

A constant bending moment field (M; = My = Mgy = 1) is obtained in
all elements for this relatively thin case as expected.

b) Cantilever plate under constant bending moment (Figure 4b)

The element patch shown in Figure 4b with adequate boundary
conditions was analized. The correct constant bending moment field and
central deflection value was obtained (see Figure 4b).
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Figure 3 Simply supported square plate under uniform loading. Convergence of
normalized central deflection value for thick and thin situations

¢) Twisting of a square plate (Figure 4c)

We consider a thin square plate supported at three corners and subjected
to a concentrated load at the fourth corner. Excellent agreement with the
exact solution were obtained for all meshes analyzed (see Figure 4c).

d) Constant shear patch test (Figure 4d)

The geometry and boundary conditions for this patch test are shown
in Figure 4d. A constant moment and shear field is obtained in the whole
domain as expected.

Further details on the patch tests for the TLLL element can be found in
[10].

4 Simply supported and clamped square plates under uniform
loading

Table II shows the convergence of the central deflection and central

bending moment My, for thick (¢/a = 0.1) and thin (¢/a = 0.01) situations for

a square plate with hard simple support conditions (w = 6; = 0). Numerical
results are given for the two mesh orientations A and B shown in Figure 5.
The same type of results are shown in Table III for the soft support (w = 0)
case.

Table IV shows the convergence of the central deflection and central

bending moment for the clamped case. Good results for thick and thin
situations are obtained.



a) Constant bending moment test

Expected result

a=20  b=10 (for thin situations)

E=1000 v = 0.3 Mx = My = Mxy =1.0
= 1.0 in all points

w =0 at nodes 1,3,11

b) Cantilever under constant bending moment

2

\\§
\
§
E=10.92 § M Expected result (for thin situations)
vi=0.3 .
L=10 § Mx =1.0
M=10 N . My =0.3
§ "X Mxy=0.0
\ in all points.
\
R Center deflection :wEt>/ M1 > = 5.46
—4— 0.6L _I_ 0.4L 44—
c) Square plate supported at three corners under point load
$>
E= 10000 Expected result
t =01 (for thin situations)
v =03
Mx =0.0
] 8 ! My =0.0
| +—62 —+ Mxy =2.5
in all points.
T ‘[‘ T w= 0.0039 xy
58 6.2 i
+—48—+32—+ +—s5s—+

Figure 4 Patch tests for TLLL element a) Constant bending moment test;
b) Cantilever plate under constant bending moment; ¢) Square
plate supported at three corners under point load
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d) Constant shear patch test

|
T

1 Pz=10

a=20
E=1000 v = 0.3
t = 1.0

l Pz=10

Expected result

Qxz =-1.0 in all points
Mx=My=Mxy=Qyz=0.0

w = (.0 at nodes 1,11

0y =

0 y =0.0 in all nodes

Figure 4 Patch tests for TLLL element d) Constant shear patch test

SIMPLE SUPPORTED SQUARE PLATE (HARD )
UNDER UNIFORM LOADING
NORMALIZED CENTRAL DEFLECTION

t/a=0.1 (wx 10) t/a=0.01 (wx 1049

MESH DOF A B A B
2x2 7 5,1414 9,2607 . 5,0235 9,0212
4x4 28 4,7722 5,3477 4,5984 5,1294
8 x8 112 4,4241 4,5252 4,2269 4,3184
16 x 16 448 4,3123 4,3302 4,1073 4,1271
32 x 32 1792 4,2826 4,2819 4,0753 4,0800

Analytic sol. [17] 4,2728 4,0623
CENTRAL BENDING MOMENT
t/a=0.1 t/a=0.01

MESH DOF A B A B
2x2 7 1,3542 3,2689 1,3542 3,2827
4x4 28 3,7573 4,4632 3,7723 4,4583
8x8 112 4,5081 4,7149 4,5115 4,7119
16 x 16 448 4,7261 4,7636 4,7136 4,7739
32.x 32 1792 4,7901 4,7661 4,7688 4,7860

Analytic sol. [17] 4.79 4.79

Table II Simply supported (hard: w = 6, = 0) square plate. Convergence of

central deflection and central bending moment for thick (t/a = 0.1) and
thin (t/a = 0.01) situations. Results given for mesh orientations A and
B shown in Figure 5

5 Simply supported and clamped circular plates under uniform
loading

Table V shows the convergence of the central deflection and central
bending moment for circular plates with simply supported (soft: w = 0)
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SIMPLE SUPPORTED SQUARE PLATE (SOFT)
UNDER UNIFORM LOADING
NORMALIZED CENTRAL DEFLECTION
t/a=0.1 (wx10) a=001 (wx104%
MESH DOF A B A B
2x2 9 5,1557 9,3045 5,0237 9,0216
4x4 32 4,8427 5,4643 4,5592 5,1306
8x8 120 4,6088 4,7719 4,2292 4,3212
16 x 16 462 4,6350 4,7268 4,1125 4,1330
32x32 1824 4,6928 4,7723 4,0864 4,0918
Reference sol. [17] 4,0623
CENTRAL BENDING MOMENT
t/a=0.1 t/a=0.01
MESH DOF A B A B
2%2 9 1,3690 3,2844 1,3543 3,2828
4x4 32 3,8279 4,5563 3,7731 4,4592
8x8 120 4,6825 49312 4,5136 4,7144
16 x 16 462 5,0275 5,1077 4,7183 4,7791
32x32 1824 5,1725 5,1907 4,7787 4,7964
Reference sol. [17] 4.79

Table IIT Simply supported (soft: w = 0) square plate. Convergence of central
deflection and central bending moment for thick (t/a = 0.1) and thin
(t/a = 0.01) situations. Results given for mesh orientations A and B
shown in Figure 5

and clamped edges. Good convergence to existing analytical solutions [7] is
obtained for thick and thin situations.

6 Cantilever skew plates under uniform loading

Table VI shows the convergence of the central deflections at the two free
corners (Figure 5) for different cantilever skew plates under uniform loading.
Good convergence to the numerical solutions obtained with alternative
triangular elements [12,13] is obtained in all cases. Note however that the
element shows a slightly stiffer behaviour than the elements presented in
these references (in particular for high skew angles). This is compensated by
the bigger simplicity of the element here proposed.

EXTENSION TO SHELL ANALYSIS

The TLLL plate element presented in previous sections has been
successfully combined with the simple linear plane stress triangle [1, 2] for
linear and non linear shell analysis. The linear shell formulation is based in
the standard facet shell approach. Two rotational degrees of freedom at the
mid-nodes are kept which makes the formulation applicable to smooth shells
only. The extension for kinked shell situations requires the introduction of a

third drilling rotation at the non-coplanar nodes in the standard manner |1,
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a/2=5.0

4 x 4 mesh type A 4 x 4 mesh type B

—_ —'—a:lOO—l—

A RNy
16 elements mesh 4 x 4 skew cantilever

Figure 5 Description of meshes used for the analysis of square, circular and skew
plates in Examples 4-6

2]. The non linear shell formulation is based in Simo’s shell theory [15,16].

Figure 6 shows an example of the good performance of the TLLL element
for non linear shell analysis. The example corresponds to a pinned shallow
cilyndrical panel subjected to a central load. The geometry of the panel
and the material properties are shown in Figure 6a. Increasing values of
the applied load lead, eventually, to snap-through of the panel and reversal
of its curvature. This problem is analyzed using different meshes on one
quadrant using symmetry conditions for two different thickness: R/t = 200
and R/t = 400. The load deflection paths for these cases are shown in Figures
6a and 6b. Arc length control was necessary in the second case due to the
complexity of the different solution paths. Numerical results agree well in all
cases with those reported in [16].

Further evidence of the good performance of the TLLL element for shell
analysis can be found in [10,11].
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CLAMPED SQUARE PLATE
UNDER UNIFORM LOADING
NORMALIZED CENTRAL DEFLECTION
t/a=0.1 (wx10) t/a=0.01 (w x104)

MESH DOF A B ~ A B

2x2 7 4,6284 7,7073 4,5106 7,4432

4x4 24 2,8125 3,1095 2,6264 2,8566

8x8 104 1,8861 1,9508 1,6656 1,6985
16 x 16 432 1,6076 1,6424 1,3727 1,3811
32 x 32 1760 1,5344 1,5634 1,2946 1,2970
Analytic sol. [17] 1,4990 1,2653

CENTRAL BENDING MOMENT
t/a=0.1 t/a=0.01

MESH DOF A B A B

2x2 7 0,8207 2,0592 0,8207 2,0831

4x4 24 1,9297 2,4246 1,9562 2,4211

8x8 104 2,1796 2,3841 ©2,2097 2,3457
16 x 16 432 2,2476 2,3619 2,2670 2,3120
32 x 32 1760 2,2728 2,3506 2,2835 2,2980
Analytic sol. [17] 2.31 2.31

Table IV Clamped square plate. Convergence of central deflection and central
bending moment for thick (t/a = 0.1) and thin (¢/a = 0.01) situations.
Results given for mesh orientations A and B shown in Figure 5

Derivation of a 6 DOF Discrete-Kirchhoff triangle

A simple Discrete Kirchhoff (DK) triangle can be derived from the TLLL
plate element presented in previous section simply by constraining the mid-
side shear strains to a zero value. This provides the following relationship
between the tangential rotation along a side i and the two nodal deflection
values corresponding to the side as

o =~ (16)
ij

The resulting DK triangle termed DKTLL (for Discrete Kirchhoff
Triangle with Linear deflection and Linear rotation fields) has only 6 DOF
(three corner deflection and three normal rotation at the element mid-sides).
The element stiffness matrix involves now the flexural contribution only (eq.
(13)). The explicit form of the modified curvature matrix is shown in Table

VII. Note that a single point quadrature suffices for exact evaluation of ng)
over straight side triangles with homogeneous material properties.
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CLAMPED CIRCULAR PLATE
UNDER UNIFORM LOADING
NORMALIZED CENTRAL DEFLECTION AND
BENDING MOMENT

R =0.1 t/R = 0.01

ELEM DOF Wcx 102 (Mx)c Wcx 103 (Mx)c
4 12 3,7668 6,9599 3,6950 6,9606

16 54 2,2352 7,7235 2,1657 7,7431

64 220 1,7882 17,9751 1,7186 8,0146
144 498 1,7023 8,0243 1,6326 8,0726
225 780 1,6774 8,0391 1,6077 8,0904
Reference sol.[7,17] 1,6339 8,1250 1,5625 8,1250

SIMPLED SUPPORTED CIRCULAR PLATE (SOFT)

NORMALIZED CENTRAL DEFLECTION AND
BENDING MOMENT

t/R =0.1 t/R = 0.01

ELEM DOF We x 102 (Mx)c x 10 Wcx 107 (Mx)c x 10
4 17 7,2815 1,6400 7,2096 1,6402
16 62 6,7248 1,9427 6,6553 1,9449
64 236 6,5191 2,0279 6,4495 2,0319
144 522 6,4763 2,0437 6,4066 2,0487
225 810 6,4637 2,0484 6,3939 2,0536
Reference sol.[7,17] 6,4416 2,0625 6,3702 2.0625

Table V Clamped and Simply supported (soft: w = 0) circular plates.

Convergence of central deflection and central bending moment for thick
and thin situations

CANTILEVER SKEW PLATE
UNDER UNIFORM LOADING
NORMALIZED DEFLECTION AT CORNER NODES wx (Ef/qa*)
200 400 600

MESH DOF W1 W2 Wi N W1 2
2x2 14 3,0093 2,6744 2,5112 1 13772 2,1821 0,4959
4x4 41 1,9701 1,7478 1,7478 0,8321 1,3882 0,2940
8x8 137 1,6032 1,1611 1,3950 0,6349 1,0800 0,2111
16 x 16 497 1,4802 1,0741 1,2610 0,5724 0,9521 0,1781
32 x 32 1889 1,4442 1,0517 1,2159 0,5554 0,9030 0,1672
DRM [12] 416 DOF| 11,4269 1,0436 1,1789 0,5456 0,8435 0,1553
EL1[12,131472DOF|  1,4237 1,0421 1,1722 0,5441 0,8314 0,1538

Table VI Cantilever rectangular skew plates. Convergence of the central deflection
at the two free corners for different skew angles

Remark 3. The stiffness matrix of the DKTLL element coincides with that
the well known Morley’s thin triangular plate element [8] and also with that
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Figure 6 a) Problem definition of the snap through of a shallow hinged

cylindrical panel; b) Load deflection path for the R/t = 200 case.

Displacement control using 30 step levels are used

15
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Figure 6 c) Load-deflection path for the R/t = 400 case. Arc-length control was
necessary in this case. 20 step levels were used

of the HSM6 triangle proposed by Batoz and Dhatt (see pages 375 and 390
of Vols I and II of [9], respectively). However, the derivation presented here
follows a completely different and simpler procedure. Also, note that the
equivalent nodal load vector is different for each of these cases. The acuracy
of the DKTLL element is identical to that shown for the TLLL element for
thin plate situations in previous examples.

Remark 4. An extension of the DKTLL element to account for transverse
shear deformation effects has been recently proposed by Van Keulen [7]. The
approach is based on the introduction of three tangential shear strains at
the element mid-side points wich remain as additional variables.The final
discretized system of equations is derived via a mixed-hybrid approach.
Futher details can be found in [7].
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(a12 —a13) (a3 —a1z) (@13 —ag3) c1o €23  —c13
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Table VII Curvature matrix of DKTLL triangle.

CONCLUDING REMARKS

A simple 9 DOF triangular plate element with linear displacement
and rotation fields has been presented. The element seems to satisfy all
requirements defining an “optimum?” plate element valid for thick and thin
situation. The drawback of having a different number of degrees of freedom
per node as well as that of its slightly over-stiff behaviour are compensated
by the simplicity of the element formulation. Preliminary results obtained
show that the element is also very adequate for shell analysis.

Current research work aims to enhance the convergence behaviour of the
element so that it can favourably compete with other low order triangles
recently proposed for plate and shell analysis [3-7,12,14].
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