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ABSTRACT: 

 

In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking 

instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other 

hand, cycling and walking offer health benefits by increasing people’s physical activity. Earlier studies on investigating spatial 

patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data.  In recent years, with the 

development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or 

smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and 

pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media 

thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated 

cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of 

Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated 

data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding 

cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for 

exploring cycling or walking patterns at a large scale. 

 

 

1. INTRODUCTION 

By means of enhancing physical activity, active travel (cycling 

or walking) produces health benefit (Forsyth et al., 2015; Oja et 

al., 1998; Oja et al., 2001; Pucher et al., 2010; Wen and Rissel, 

2008). In earlier studies that use traditional data collection 

methods, research on the role of cycling for health through 

physical activity has been limited by the lack of information on 

where bicyclists ride (Griffin and Jiao, 2015). Specifically, 

travel survey data tends to have a low spatial granularity as 

geography level of travel survey data is usually census tract; 

whilst traffic counts data have a high spatial granularity but a 

low spatial coverage as traffic counts points are usually located 

in major roads other than minor roads. In recent years, GPS-

enabled mobile devices, such as smartphones and smartwatches, 

allow individuals to track their cycling GPS traces with fine 

spatial granularity (Jesticoa et al., 2016; Broach et al., 2012; 

Casello and Usyukov, 2014; Hood et al., 2011).  In the era of 

Big Data, a large volume of cycling traces generated by 

individuals are becoming potential data for studies of travel and 

health (Prins et al., 2014; Duncan et al., 2009; Dill, 2009; 

Griffin and Jiao, 2015; Sun and Mobasheri, 2017).   

Recently, as a popular platform dedicated to tracking users’ 

cycling, walking, running and hiking activities, Strava is 

gaining attention from both researchers and planners after it 

launched a data service called Strava Metro. There are millions 

of users uploading their rides, walks, runs and hikes to Strava 

each week (Strava Metro, 2016). To protect user privacy, Strava 

Metro anonymized and aggregated users’ traces to streets of 

each city. Strava Metro data is of high potential in a wide range 

of applications, including mapping cycling activities over cities 

(Jesticoa et al., 2016), assessing effects of environmental factors 

on cycling behavior (Griffin and Jiao, 2015; Heesch et al., 

2016) and assessing air pollution during cycling (Sun and 

Mobasheri, 2017). Moreover, by comparing cyclist counts 

between Strava data and manual count data in count stations, 

some studies have revealed that Strava Metro data is a good 

representation of cycling population (Jesticoa et al., 2016; 

Herrero, 2016). As a result, due to a high level of spatial 

granularity and a large spatial coverage Strava Metro provides 

an opportunity to depicting cycling behaviour. This study aims 

to demonstrate usefulness of Strava Metro data in depicting 

cycling behaviour over a city by taking account of cycling 

activities and daytime population. Moreover, this study could 

offer implications for policies to help policymakers to consider 

investment priority in bicycle infrastructure of the areas where 

cyclists are likely to go.  

 

2. MATERIALS AND METHODS 

In this section, research data and methods are presented. 

Specifically, sub section 2.1 introduces the research data, and 

sub section 2.2 introduces the approach to investigating spatial 

patterns of cycling behaviour. 

 

2.1 Research Data 

The Strava Metro dataset (Urban Big Data Centre, 2016) has 

287, 833 cycling activities within the Glasgow Clyde Valley 

Planning area (including Glasgow City and seven contiguous 

council areas) in 2015. This dataset contains three sub sets with 

three different formats: Streets, Origin-Destination, Nodes 

(Strava Metro, 2015). This study uses the Nodes sets. The 

Nodes set was created based on a street network which is 

extracted from OpenStreetMap. Specifically, the Node set 

contains all nodes of the street network, and each node 

represents an intersection of streets (see Figure 1). Table 1 lists 

attributes of nodes, including count of cycling activities 

(regardless of unique riders) at the node (street intersection) at a 

specific time. Note that the temporal granularity is the minute 

level (Strava Metro, 2015). 
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Field Description 

node_id Unique Node ID number for delivery 

Numerical year format (yyyy) 

Numerical day format (1–365) 

Numerical hour format (0–24) 

Numerical minute format (0–59) 

year 

day 

hour 

minute 

num_ride Number of cycling activities 

Table 1. Fields in the Nodes file (Strava Metro, 2015) 

 

Additionally, the dataset contains a file that offers 

demographics of the cycling trips (see Table 2), including 

average trip distance, average trip time, and user base structure 

by sex and age. There are over 280 thousand cycling trips 

contributed by over 10 thousand of cyclists. It is noted that, 

although this data set has a large user sample set, average 

annual cycling frequency of Strava users seems to be much 

smaller than the real frequencies. Specifically, on average, each 

cyclist has 21 cycling trips in 2015. Unsurprisingly, male 

cyclists outnumber female cyclists. Specifically, number of 

male cyclists is 5 times of number of female cyclists. The 

largest age group of male cyclists is 35-44 whilst the largest age 

group of female cyclists is 25-34. Generally, almost half of 

cycling trips were contributed by users aged 25-44 (25-34 and 

35-44). Additionally, a large portion of trips are recreational 

trips (Strava Metro, 2015). Therefore, the majority of the Strava 

users are likely to be young and sporty cyclists. 

 

 

Cycling 

Athlete ID count (User count) 13,684 

287,833 

24 km 

81 minute 

Activity count (Trip count) 

Average distance of trips 

Average time of trips 

 

Age Male Female 

Under 25 718 

2,176 

2,957 

2,028 

448 

141 

417 

346 

217 

44 

25-34 

35-44 

45-54 

55-64 

Over 64 73 2 

No Birth date 2,812 531 

Total 11,212 1,698 

Table 2. Demographics of cycles of Strava users in 2015. 

 

 

In this study, daytime population is used as background 

population. The daytime population data is downloaded from 

Scotland's Census (2016). The geography level of daytime 

population data is census output area. Daytime population is 

estimated based on the 2011 census data. Specifically, the 

daytime population is an estimate of the population of an area 

during the working day. It includes everybody who works or 

studies in the area, wherever they usually live, and all 

respondents who live in the area but do not work or study. 

People who work or study mainly at or from home, or who do 

not have a fixed place of work or study, are included in the area 

containing their home address. The daytime population will 

include shift and night workers such as hospital staff and 

security guards. Figure 3 maps density of daytime population at 

the census output area level. Areas with high-density daytime 

population are not particularly situated around the city centre. 

 

 

 

Figure 1. Nodes and edges of Strava Metro data (Basemap: 

OpenStreetMap, licensed under the Open Database License). 

 

 
Figure 2. Census output areas in Glasgow. 

 

 
Figure 3. Density of daytime population in Glasgow (Basemap: 

OpenStreetMap, licensed under the Open Database License). 
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2.2 Investigation of spatial patterns 

This study explores spatial patterns of cycling behaviour over a 

city by identifying spatial clusters of cycling activities. By 

considering background population this study uses the ratio of 

cycling activities to daytime population to identify clusters of 

high density cycling activities. Specifically, an improved 

AMOEBA (A Multidirectional Optimum Ecotope-Based) 

algorithm developed by Duque et al. (2011) is used to identify 

clusters of high ratio of cycling activities to daytime population. 

Then this study associates clusters with locally environmental 

characteristics such as land use type. As the population data is 

available at the census area level, this study calculates the ratio 

of cycling activities to daytime population at the census area 

level.   

Firstly, this study defines the ratio of cycling activities to 

daytime population (RCADTP) within an area (census output 

area). Suppose i is an area, RCADTP of i is computed as 

 

𝑟𝑎𝑡𝑖𝑜_𝑟𝑖𝑑𝑒_𝑝𝑜𝑝(𝑖)  =
𝑛𝑢𝑚_𝑟𝑖𝑑𝑒𝐴𝑟𝑒𝑎(𝑖)

𝐷𝑇_𝑝𝑜𝑝𝐴𝑟𝑒𝑎(𝑖)
          (1) 

 

𝑛𝑢𝑚_𝑟𝑖𝑑𝑒𝐴𝑟𝑒𝑎(𝑖)  = ∑  𝑗∈𝑁𝑖
𝑛𝑢𝑚_𝑟𝑖𝑑𝑒𝑁𝑜𝑑𝑒(𝑗)    (2) 

 

where 𝑛𝑢𝑚_𝑟𝑖𝑑𝑒𝐴𝑟𝑒𝑎(𝑖) is the number of cycling activities in 

the area i, and 𝐷𝑇_𝑝𝑜𝑝𝐴𝑟𝑒𝑎(𝑖) is the daytime population in the 

area i. Ni is the set of nodes that are located within the area i, 

and 𝑛𝑢𝑚_𝑟𝑖𝑑𝑒𝑁𝑜𝑑𝑒(𝑗) is the number of cycling activities in the 

node j. 

In this paper, the improved AMOEBA (A Multidirectional 

Optimum Ecotope-Based) algorithm developed by Duque et al. 

(2011) is used to identify clusters of high RCADTP. This 

algorithms suits for the task in this study as it is applicable to 

classification of a large number of areas and identification of 

irregularly shaped clusters. This study briefly introduces the 

improved AMOEBA algorithm based on Duque et al. (2011). 

Essentially, a region or ecotope is a spatially linked group of 

areas. A region can thus be defined as a spatially contiguous set 

of areas. The value of the 𝐺𝑖
∗ statistic is used to measure the 

level of clustering of an attribute x around an area. Suppose we 

run AMOEBA on a study region with N areas and an attribute x 

with elements xi, indicating the value of x at area i. Let us 

denote this set of areas as M, and �̅� and S as the mean and the 

standard deviation of the attribute x and let R be a sub region of 

M with n areas. Duque et al. (2011) rewrite the formulation of 

𝐺𝑖
∗ as follows: 

 

𝐺𝑅
∗ =

∑ 𝑥𝑖−𝑛�̅�𝑖∈𝑅

𝑆√𝑁𝑛−𝑛2

𝑁−1

                                    (3) 

 

Basically, 𝐺𝑅
∗  depends on the areas that are in the region R and 

the parameters N, �̅� and S that are obtained from the areas in M. 

Accordingly, a positive (negative) and statistically significant 

value of 𝐺𝑖
∗ statistic indicates the presence of a cluster of high 

(low) values of attribute x around area i. Thus, AMOEBA 

identifies high-valued, or low-valued, ecotopes (regions) by 

looking for subsets of spatially connected areas with a high 

absolute value of the 𝐺𝑖
∗ statistic. There is only one parameter, 

i.e., the significance level threshold, that is required to run the 

AMOEBA algorithm. The significance level threshold was set 

to 0.01, meaning only clusters with a p-value less than 0.01 are 

statistically significant. 

 

 

 

3. RESULTS AND DISCUSSION 

This section demonstrates the empirical results in the study area 

and makes discussions about the results. 

3.1 Spatial patterns of cycling behaviour  

First of all, annual total cycling activities at each node is 

calculated after aggregating number of cycling activities at 

different times throughout the year 2015. Second, Nodes and 

census output area boundaries are overlapped. Then total 

number of cycling activities and RCADTP of each census 

output area are calculated according to Equations (1)-(2). Figure 

4 maps number of cycling activities in census output areas. 

Areas with high-density cycling activities are situated around 

the city centre.  

 

 
Figure 4. Number of cycling activities in census output areas. 

 

 

In the AMOEBA algorithm, an observation is the RCADTP of 

an area (census output areas). In this paper, running AMOEBA 

is conducted using ClusterPy (RiSE group). The AMOEBA 

algorithm identifies statistically significant clusters of high 

value and clusters of low value. Figure 5 maps the cluster of 

high RCADTP. In the top map, clusters of high value and low 

value represent cluster of high RCADTP and low RCADTP 

respectively. This study then associates clusters of high 

RCADTP with locally environmental characteristics such as 

main land use types by overlapping the clusters and basemap 

such as GoogleMap and OpenStreetMap. As a consequence, 

clusters of high RCADTP mainly surround green spaces such as 

parks and gardens, as well as the river crossing the city (see the 

bottom map in Figure 5). Strava cyclists are likely to go to 

green spaces and the riverside. This implies that large portion of 

Strava cycling trips tend to be recreational cycling trips.  
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3.2 Discussion 

Moreover, this study could offer an implication for policies that 

improvement on bicycle infrastructure in clusters of high 

RCADTP to increase road safety for cyclists and attract more 

recreational cyclists. Nevertheless, there are still some 

limitations in this paper. First, there is representativeness bias in 

cycling trips. The population structure (gender, age and other 

socio-economically personal characteristics) between Strava 

cyclists and regular cyclists is likely to be different. As young 

people are more active in social media, old cyclists and 

pedestrians are likely to be under-represented by Strava users. 

Some users like to upload a large proportion of their cycling or 

pedestrian trips; whilst other users might upload a small 

proportion of their trips. As they upload a small proportion of 

their trips, their realistic trips are under-represented by trips of 

Strava. Second, although Strava has the original GPS traces of 

cycles and walks, it only offers aggregated data to researchers 

due to a risk of privacy issues. The original GPS trace data has a 

larger potential than the aggregated data. Ideally, this study 

would select GPS traces of cycles created by a number of Strava 

users who compose a cohort. This would enable a cohort study 

of cyclists in a city. 

 

 

Figure 5. Clusters of high RCADTP (Basemap: OpenStreetMap, 

licensed under the Open Database License). 

 

4. CONCLUSIONS 

This study demonstrates usefulness of Strava Metro data in 

depicting cycling behaviour over a city. The representativeness 

of Strava cyclists are potentially biased in age and probably 

income or education. In the future, we will take account of some 

aspects to enhance this study. First, the effect of potential biased 

issues on the fitness of use for Strava Metro data needs to be 

investigated. Second, as it is expensive and time-consuming to 

conduct a travel survey every year, Strava Metro data offers a 

good opportunity to explore the annual variations of cycles and 

walks, which could be used to roughly evaluate the realistic 

effects of policies or interventions on modal shift from inactive 

travel (motorized vehicles) to active travel (cycles or walks). 

Third, although Strava only offer aggregated data to researchers 

due to privacy issue, it is still possible to publicize original GPS 

traces of some Strava users. As some Strava users probably are 

glad to make their traces publicly and be used for research, 

Strava might send requests to users and ask whether they are 

glad to publicize their original GPS traces. Once some original 

GPS traces were available, Strava data would have a larger 

potential in studies of active travel and health.    
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