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Abstract

Wave propagation in heterogeneous and nonlinear media has arisen growing interest in the last
years since corresponding materials can lead to unusual and interesting effects and therefore come
with a wide range of applications. An important example for such materials are Kerr-type media,
where the intensity of a wave directly influences the refractive index. In the time-harmonic regime,
this effect can be modeled with the nonlinear Helmholtz equation

−divA∇u− k2n(1 + ε1Dε
|u|2)u = f,

where Dε is the subdomain where the nonlinear Kerr-type medium is active, A, n, and ε are
material coefficients and k is the wave number. In this contribution, the coefficients A, n, ε may
vary on small spatial scales, such that the numerical approximation of corresponding solutions can
be a delicate task.

To deal with microscopic coefficients without the need for global fine-scale computations, mul-
tiscale methods can be applied. One such method is the Localized Orthogonal Decomposition
method (LOD), which works under minimal structural assumptions. The approach was proposed
in [MP14] and refined in [HP13] for an elliptic model problem and constructs appropriate coarse-
scale spaces that take into account problem-dependent information. In this talk, which is based
on [MV20], an iterative and adaptive construction of approximation spaces based on the LOD
is presented. The general idea is to combine ideas of [WZ18] on iterative finite element approx-
imations with the above-mentioned multiscale approach. That is, in each iteration step, a new
coarse-scale solution is constructed based on the solution of the previous step. To avoid costly
re-computations, an error indicator is used to locally decide in each step whether to update the
approximation space. For sufficiently small tolerance employed in this decision, an a priori error
estimate can be shown which is of optimal order in the mesh size – independent of the possible
low regularity of the exact solution. These results are also illustrated by numerical experiments.
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