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Understanding and modelling route choice behaviour is central to predicting the formation and propaga-
tion of urban road congestion. Yet within conventional literature disagreements persist around the nat-
ure of route choice behaviour, and how it should be modelled. In this paper, both the shortest path and
anchor-based perspectives on route choice behaviour are explored through an empirical analysis of
nearly 700,000 minicab routes across London, United Kingdom. In the first set of analyses, the degree
of similarity between observed routes and possible shortest paths is established. Shortest paths demon-
strate poor performance in predicting both observed route choice and characteristics. The second stage of
analysis explores the influence of specific urban features, named anchors, in route choice. These analyses
show that certain features attract more route choices than would be expected were individuals choosing
route based on cost minimisation alone. Instead, the results indicate that major urban features form the
basis of route choice planning - being selected disproportionately more often, and causing asymmetry in
route choice volumes by direction of travel. At a finer scale, decisions made at minor road features are
furthermore demonstrated to influence routing patterns. The results indicate a need to revisit the basis
of how routes are modelled, shifting from the shortest path perspective to a mechanism structured
around urban features. In concluding, the main trends are synthesised within an initial framework for
route choice modelling, and presents potential extensions of this research.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction similar objectives, the methods applied and dominant theories
across each discipline differ considerably.

In transportation studies research into route choice, greatest
attention has been applied towards establishing models reflective

of how traffic distributes around the road network. Within this

It is well established that the route choice decisions taken by
individuals contribute directly to the formation of collective pat-
terns of behaviour observed in the city. Capturing the nature of this

choice process is, as such, important for the accuracy of many
urban modelling applications. Yet despite this clear purpose,
uncertainty persists within the literature around how route choice
is understood and how it should be modelled.

Conventional literature on route choice may be divided into two
broadly distinct fields. One set of approaches comes from transpor-
tation studies, with a general perspective of capturing the relation-
ship between drivers and roadway engineering. The other has
arisen within spatial cognition and behavioural geography
research, establishing the behavioural and cognitive constructs
behind route choice mainly within the pedestrian context. Despite
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field, one particularly important approach has been that of traffic
assignment modelling. Developed in the 1950s (Wardrop, 1952),
later incarnations of this approach (Daganzo and Sheffi, 1977;
Merchant and Nemhauser, 1978) continue to dominate many of
the traffic models most widely used today. This approach considers
traffic from a macroscopic perspective, iteratively adding traffic
flow onto the road network so that travel times increase due to
congestion. Intrinsic within this methodology is the assumption
that individuals optimise their travel time between origin and des-
tination, irrespective of varying perception, preference or aware-
ness. This simple assumption, although intuitive in some
respects, has been criticised for not fully reflecting the complexity
of route choice behaviour (Garling et al., 1998; Golledge and
Garling, 2001).

More sophisticated approaches to route choice modelling have
emerged following a more individual-centric approach. An
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important stream of this research incorporates the discrete choice
methodology. Discrete choice modelling involves establishing the
relative influence of a combination of attributes reflective of
observed choices, captured in recorded route data. The attributes
included within these models vary widely, from relatively conven-
tional aspects concerning travel time, distance, scenery and con-
gestion (Ben-Akiva et al., 1984) to others incorporating socio-
economic characteristics (Ramming, 2002), route perception
(Cascetta et al., 2002), traffic information (Mahmassani and Liu,
1999), and uncertainty around congestion (de Palma et al., 2008),
among others.

More recently, there has been a move to better integrate mech-
anisms of human cognition, psychology and behaviour within
route choice models. The introduction of Prospect Theory
(Kahneman and Tversky, 1979) into route choice modelling aims
to better capture how people respond to travel time uncertainties
(Avineri and Bovy, 2008; Gao et al., 2010). Prospect Theory has
been extended through integration with reinforced learning
approaches, demonstrating how decisions relating to travel time
uncertainty change as individuals extend their experience of the
environment or are provided with real-time information (Ben-
Elia and Shiftan, 2010). Others have explored how route knowledge
influences choices and attitudes to risk, finding that experienced
individuals are more sensitive to travel time variability (Ben-Elia
et al., 2013). Similarly, Chorus and colleagues introduced the
notion of regret minimisation, reflecting how individuals aim to
minimise their exposure to negative emotions, rather than primar-
ily aiming to maximise utility during route choice (Chorus et al.,
2008). Another development has involved the incorporation of
latent variables within choice models, aiming to capture the less
tangible factors involved in route choice decision-making. Latent
variables have been used for modelling the influence of habit
(Kaplan and Prato, 2012), spatial ability (Prato et al., 2012), attitude
to risk (Sun et al., 2012) and journey context (Feng et al., 2013).
Finally, process-oriented and strategy-based approaches introduce
how different approaches can be used in forming route decisions,
based on recent experience, habit or memory (Senk, 2010). Like
latent variables, these approaches aim to wrap route choice within
a wider context, reflecting the dynamic nature of the choice. All of
the advances outlined here demonstrate increasing appreciation
for the importance of considering psychology and cognition within
route choice modelling.

One important dimension of the discrete choice approach is
that a strong understanding of all available options must be estab-
lished. These options enable the identification of the attributes
favoured by a decision-maker, relative to the attributes of rejected
alternatives, as well as representing possibilities in the prediction
of future choices. However, the derivation of this choice set in
respect of route choice is problematic, where any combination of
roads could feasibly be considered a rejected alternative. The
modelling of choice sets has generally followed conventional trans-
portation research, specifying choices through optimal or near-
optimal routing between an origin and destination (Bekhor et al.,
2006). However, important reviews have found these approaches
to be ‘unsatisfactory’ (Bovy, 2009), being found to lack the behav-
ioural criteria by which travellers choose routes. Despite more
recent advances — such as the implementation of semi non-com-
pensatory spatiotemporal constraints on choice set definition
(Kaplan and Prato, 2012) - the definition of choice sets lags behind
advances in the behavioural realism of the choice models. As such,
simplistic assumptions persist around the bases on which route
choices are represented.

Research findings emerging from spatial cognition and behav-
ioural geography research streams deviate from these assumptions
of intended optimality. Within this sector, strong emphasis has
been placed on examining the relationship between human

cognition and urban space. Particularly important, it has been
found that this relationship is highly subjective, based on experi-
ence, and skewed by particular features within urban space. Rather
than individuals having complete knowledge of road network
arrangement, various researchers identified that memory of cities
is shaped around anchors, particularly salient features in urban
space, around which subjective knowledge is built and recalled
(Lynch, 1960; Siegel and White, 1975; Passini, 1984; Golledge
and Spector, 1978; Golledge et al., 1985; Couclelis et al., 1987).
These reference points have been shown to be different for drivers
and pedestrians - the former favouring route-based structures
such as bridges, major routes and junctions, the latter using prom-
inent buildings and signposts (Carr and Schissler, 1969). These
findings have anatomical foundations too, with the role of salient
features being linked to brain activity within the hippocampus
during the course of navigation (O’Keefe and Nadel, 1978).

The construction and utilisation of individual knowledge of
space has furthermore been identified as hierarchically organised.
Under this configuration, the memory of space is formed around a
relative few core locations - be they anchors, regions (Kuipers,
1978; Hirtle and Jonides, 1985) or roads (Tomko et al., 2007;
Péruch et al., 1989) - beneath which other locations are recalled.
There is evidence too that this hierarchical configuration of space
is utilised during the route planning process, with indications that
routes are chosen on a coarse regional basis in the first instance,
prior to an increasing specialisation on a road-by-road level during
the execution of the plan (Wiener and Mallot, 2003; Wiener et al.,
2009).

The view of many of the best-supported findings within spatial
cognition literature indicates that individuals are unlikely and
unable to select an optimal route between origin and destination.
However, despite the strength of these findings, only a few models
have been developed based on these trends (Gopal et al., 1989;
Chown et al., 1995; Kuipers and Levitt, 1988), and have not been
implemented within real-world contexts, nor linked to geographic
nor transportation features. In addition, the findings of many of
these studies have typically been established through sampling
of only very few individuals, usually with a focus only on pedes-
trian behaviours. Importantly, few of these studies have been
undertaken in real-world environments, instead often taking place
within simplified virtual reality simulations.

The purpose of this paper is to more firmly establish the behav-
ioural nature of route choice in urban areas, from the two domi-
nant perspectives currently held within the literature. Using a
large dataset of observed route choice behaviours, a range of anal-
ysis approaches will be applied to explore how widely shortest path
and anchor-based route choice behaviours are followed across the
large scale.

In undertaking these objectives, the paper will be structured as
follows. The next section will describe the context and datasets
involved in the study, highlighting the nature of the case and the
limitations to be heeded during later discussions. Following this,
a methodology section will outline the structure and design of
the analysis, before the two sections of analysis are presented.
The first analysis section examines how strongly observed behav-
iours align with a range of shortest paths (defined in different
ways). The second stage of analysis explores whether the anchor-
based routing can be observed within the dataset. The paper con-
cludes in discussing the findings, and outlining potential future
avenues for the outcomes of this research.

2. Context and datasets

This section outlines the context within which the study will
take place, and describes the nature of the datasets to be used.
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2.1. Regional context

The study is undertaken in London, United Kingdom. For the
purposes of guidance throughout this paper, Fig. 1 presents a refer-
ence map for central London.

Like many European cities, the London road network developed
through a largely organic process, unlike many of the planned grid-
like developments of North America. Nevertheless, later develop-
ments have sought to improve traffic flow. The Inner Ring Road,
which circumnavigates the central congestion charge zone, is a col-
lection of routes widened and optimised for traffic flow. The North
and South Circular roads, two routes further from central London,
were introduced during the 1960s to improve traffic flow in subur-
ban areas. The Westway Flyover, constructed during the same per-
iod, represents the legacy of the abandoned plans for a wider urban
motorway system.

The centre of London, where the majority of commercial and
leisure activity takes place, is split by the River Thames. There
are eight bridges within the central area linking the north and
south banks of London.

This paper will make use of the postal regionalisation of Lon-
don, which divides the city into areas based on their bearing from
the centre. Within each postal area (denoted N for north, E for east,
etc.) are a hierarchy of subdivisions, called postal districts and
postcodes. These latter regions will be used during the test-
ing phases of this paper, the postal area definitions are shown in
Fig. 1.

2.2. Minicab route data

The dataset to be utilised during this study tracks the routes
chosen by 2970 minicab drivers in London, United Kingdom. The
minicab company provided Global Positioning System (GPS) point
logs for each of their vehicles across a 3-month period covering
December 2010 to February 2011, equating to around 300 million
records. Supporting datasets in the form of job (the origin and des-
tination of each journey) and driver activity data were also
provided.

Prior to starting the route analyses, an initial data extraction
phase was undertaken, extracting road segment-based routes from
the observed point-based dataset. Given the large number of
records involved, a batch-processing algorithm was developed,
capable of handling the poor spatial accuracy and recording rate
offered by the GPS-derived data. The result of this processing stage
was the extraction of 677,411 routes, referencing intended origin
and destination locations as stated within the job records.

There are a number of important points that must be high-
lighted with respect to the drivers involved in the generation of
this dataset, points which ultimately impact on the resulting anal-
yses. Firstly, drivers for Addison Lee are not required to have prior
driving experience or to have passed ‘The Knowledge’ test - a qual-
ification for London’s Black Cab drivers that requires a detailed
knowledge of the layout and connectivity of large parts of London.
Drivers do, however, undergo comprehensive training and are
required to pass a map test prior to starting work. As such, the

Fig. 1. Map showing the central London region including postal areas, parks, routes and landmarks.
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drivers may be expected to hold a more detailed knowledge of the
road network than regular drivers and commuters.

Second, the nature of the minicab business ensures a geo-
graphic concentration in the distribution of routes. In the case of
Addison Lee and London, the majority - 71.4% - of journeys origi-
nate or end inside central London, with an additional 23.3% of jour-
neys starting or ending within the inner London region. The nature
of this bias means that resulting findings will be most applicable to
condense urban centres, with irregular, organic road structures.

Third, the Addison Lee drivers are provided with a satellite nav-
igation device within their vehicle, adding uncertainty around the
method by which routes are planned. However, the devices
installed in the Addison Lee vehicles lack real-time traffic informa-
tion and were not integrated within the job allocation process at
the time of the study (e.g. routes were not automatically provided
to the drivers), potentially reducing their utility. Nevertheless,
efforts should be undertaken to establish how widely these devices
were used. Without any primary data regarding the extent of the
use of satellite navigation, however, only proxy indicators can be
used. This proxy indicator is provided by measuring the degree
of similarity in route distribution between specific pairs of
locations.

Routes are extracted for all journeys travelling between ten
pairs of postcodes. The UK postcode region is representative of a
single large property or small collections of buildings, thus provid-
ing high spatial precision around the origin and destination loca-
tion of trips. The ten most frequently travelled pairs of postcodes
were chosen for this analysis, yielding reasonably sized samples
with variability in journey length and location. For each pair, every
route is compared to every other route between origin and destina-
tion, and the number of matching road segments between each
pair of routes extracted. The results from this analysis are shown
in Table 1.

The results indicate low route similarities across most cases of
repeated routes. This is indicative of the absence in the widespread
use of a single navigation device. Considerable variation in similar-
ity measures can be observed across cases. While increasing dis-
tance does appear to reduce similarity, it can be seen that the
urban environment appears to have an impact too. Journeys in case
4 exhibit very high similarity across a low distance, yet in case 1, at
a similar distance, but positioned within central London, there is
considerable apparent variation in choice. The degree of variability
and its association with urban form contributes to indications of
the absence of device-generated routing.

2.3. Supporting datasets
Road data is provided in the form of the Ordnance Survey

Integrated Transport Network (ITN) dataset. This GIS data-
set details every road segment in the United Kingdom, on a

Table 1
Mean proportionate matches between all routes between 10 origins and destinations.

junction-to-junction basis. Integrated with the spatial representa-
tion are metadata sets detailing routing restrictions and speed lim-
its. These factors are incorporated in the implementation of a
network model, used during data processing and the generation
of modelled routes.

3. Methodology

The intention of this paper is to examine the basis of route
choice in urban areas. Where transportation research broadly
assumes that route choice is made at once, behavioural geography
stresses the importance of locations within the decision-making
process. The methodology used here will aim to examine both
approaches.

In undertaking an analysis of the one-shot approach from trans-
portation research, the degree of similarity between comparable
observed and modelled route choices was calculated. For each
observed route, a range of modelled alternatives between the same
origin and destination were generated. Modelled routes are gener-
ated through the calculation of a shortest path between origin and
destination (using the Dijkstra (1959) shortest path algorithm),
minimising a specified road traversal cost function.

The evaluation of the accuracy of the modelled route is carried
out on a road segment basis. A measure of the proportion of the
observed route that is matched by the modelled alternative is
calculated. Road segments are selected as the basis for comparison
rather than matched distance or travel time, as segments repre-
sent all potential points of variation, where deviations between
routes occur. The modelled routes chosen for comparison will
be described in more detail during this stage of the analysis in
Section 3.

This stage of analysis will be undertaken mainly through an
analysis of all routes, but further differentiation will be made.
Route similarity will be broken down by length and by time of
day to explore potential variation enforced by space or time.

The second stage of analysis explores the potential role of
anchors in route choice, examining theories put forward in behav-
ioural geography and neuroscience research. Unlike the shortest
paths, no established routing methodology is available for compar-
ison. In exploring the viability of this route choice process then, a
number of spatial and statistical analytical methods are used,
establishing whether particular road network features are chosen
disproportionately more than valid alternatives. A number of rep-
resentative case studies are used, allowing a targeted examination
of the role of urban features in route choice.

Three main stages of analysis are undertaken here. In the first
stage, spatial deviations between shortest path route models and
observed route behaviours are established, identifying locations
in the city where route models systematically under- or over-pre-
dict choice. The nature and strength of these deviations will pro-

Case Origin Destination Trip count Euclidean distance (miles) Mean proportion match
1 WIT 3QN WC2R 2PG 97 1.05 0.28
2 W1G 6BW NW1 7TN 84 1.03 0.63
3 EC4A 4TR W2 1HB 60 3.1 0.21
4 E14 4DA E14 3QE 57 1.29 0.85
5 EC1A THQ SW8 2NP 54 3.19 0.36
6 W1W 7JE SW15 6DS 53 5.34 0.37
7 NW1 3ER WC1X 9JX 48 0.99 0.62
8 NW1 7TL NW8 OLH 46 1.17 0.63
9 SW13 9QF SW3 1ER 42 3.95 0.58

10 NW1 7BY W2 1HB 42 2.03 0.38
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vide initial indications of the presence of anchor-based routing. In
the second stage, statistical and spatial distributions in the use of
major and minor features on the road network are established. This
will identify the extent of variation in the use of different features
during route selection. In the third phase, the process through which
anchors are used is explored, identifying the extent of spatial devia-
tions in direction of travel. This will provide further indications of
the method and order in which anchors are chosen for traversal.

This third section utilises a range of methods in examining both
spatial and statistical variation in route choice. Spatial variation is
explored by mapping differences in routing behaviour between
datasets on a road segment basis. The mapping of differences cap-
tures effectively the section of the road network favoured by one
route set relative to an alternative distribution. Where one is inter-
ested in the regional spatial trends in deviation between route sets
(e.g. beyond deviations along single road segments), spatial clus-
tering methods are utilised. The Local Indicator of Spatial Autocor-
relation (LISA) method is utilised in this case (Anselin, 1995).
Unlike global measures of autocorrelation (such as Moran’s I), LISA
identifies local clusters of spatial features exhibiting similar char-
acteristics. LISA is calculated through an assessment of each road
segment, measuring similarity with neighbouring road segments.
For the purposes of this study, neighbouring segments are consid-
ered as those within 1500 m of a tested road segment,' and are
weighted in the calculation of local autocorrelation by the inverse
of their Euclidean distance from that road segment. The analysis of
the entire road network (to the extents of the London region) will
yield spatial clusters of road segments with significantly higher or
lower route selection relative to an alternative route set.

For this stage of the analysis, a number of case studies, pertain-
ing to route sets between specific origins and destinations, are
used. The case study approach is adopted to limit sources of behav-
ioural variation, enabling a focus on routing activity associated
with only a subset of the entire road network. This approach is
made possible, unlike in other studies, by the large size of the data-
set available. Case study regions were chosen on a basis of balanc-
ing two factors; sample size and distance between origin and
destination. The former factor is intended to reduce the uncer-
tainty in findings (important, given the nature of the study), and
latter to ensure ample opportunity for selection or non-selection
of intervening subgoals. In balancing these elements, larger regions
than the postcode areas used earlier during testing were adopted.

The case studies to be used, and accompanying rationale, are
detailed below:

e Spatial Deviation from Shortest Paths: This section requires case
studies that enable examination of large number of routes to
establish comprehensive spatial trends.

- West to East Postal Districts: Large sample size (9850 routes)
enables wide scale comparison against optimal alternatives.
Large origin and destination regions allow potential identifi-
cation of deviation points across wide spatial area. Interac-
tion with east-west routes through central London.

- North to South-East Postal Districts: Rationale as above
(3210 in this case). Involves interaction with central London
via north-south perspective.

e Role of Anchors: This section will incorporate both global (all
route) and local (case study based) analyses. Case studies
should enable exploration of route choice deviations between
highly specific origins and destinations.

- Globally Significant Features: Assessed across all routes.

- Locally Significant Features:

! The 1500-m limit was established through testing within the central London area,
yielding a distance that captures localised regions while limiting fragmentation.

- NWS3 to EC4 Postal Zones: Long distance and interaction
with central London ensures numerous choice points.
Small origin and target region but maintains good sample
size of 310 routes.

- E14 to NW1 Postal Zones: Rationale as above, but interac-
tion with east of central London ensures consideration
of alternative urban form. Sample size of 393 routes is
adequate.

o Directional Influences on Route Choice: This section requires case
studies which offer reasonable route samples in opposite direc-
tions between specific locations.

- NWI1 to SW11 Postal Zones: Long distance and interaction
with central London. River crossing requires selection of a
crossing point, potentially revealing of process. Despite dis-
tance, good sample sizes in both directions.

- SW1 to N1 Postal Zones: Placement of origin and destination
within central London enforces decision around traversal of
region. High sample sizes in both directions.

4. Shortest path routing analysis

The primary stage of investigation requires establishing how
closely route models that minimise particular attributes align
with observed patterns of behaviour. In this section, the meth-
odology by which these assessments are made is described,
and the performance of these models across a range of scenarios
outlined.

For the assessment, nineteen measures were selected for com-
parison against the observed choices. Many of these models com-
monly feature within urban and transportation modelling
literature, as central to many transportation models or reflecting
a choice set of alternatives considered, selected and rejected in
models of route choice (Ben-Akiva et al., 1984; Bekhor et al,,
2006). In order to increase the coverage and sophistication of the
comparative optimal routes, road properties were combined line-
arly for some additional cases (e.g. minimisation of travel time
and angular deviation).

Route similarity was assessed across the entire dataset, with
averages calculated for the percentage similarity by optimising
metric. The best performing model, and most reflective of observed
behaviour, as shown in the results in Table 2, was the turn-
weighted distance model, with an average percentage similarity
score of 42.1%. Similarly well represented were the road hierarchy
weighted distance model (41.2%) and the pure distance model
(39.4%). Scoring poorly with respect to route similarity were many
of the angular deviation models, with the least deviation from tar-
get model achieving only a 17.50% match on average. Interestingly,
the expected travel time model - being based on observed average
travel time also performs poorly relative to others, despite it aim-
ing to reflect the most realistic approach to congestion avoidance
and travel time minimisation.

The degree of similarity between observed and shortest paths
can also be explored across varying journey lengths and time of
day. These results show across the board that similarity improves
on the mean at shortest trip lengths, but degrades as journey
length increases. Taking minimal distance as an example, at jour-
neys between 0.5 and 1 km the mean accuracy is 71.28%, but falls
to 28.78% for journeys over 10 km. The results indicate that shorter
distances make selection of the optimal route easier, presumably
given the few alternatives available. Smaller variations can be
observed across the time of travel. Taking distance again as the
example, mean accuracy improves during the evening hours
(7 pm to 7 am) to 40.69%, falling below the mean during other
times of day (to 38.33%, 38.07% and 38.26% for the morning, inter
and evening peak periods respectively). Other shortest path mea-
sures align with these trends. The results suggest a movement back
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Table 2
Mean percentage similarity for all journeys by shortest routing mechanism.
Objective function Mean accuracy Over 75% match
Minimal distance 39.42 14.44
Least free flow travel time 37.78 13.71
Least observed travel time® 26.72 5.03
Minimal angular deviation” 26.78 7.31
Minimal (angular deviation x distance) 32.56 9.64
Minimal (angular deviation * time) 32.36 10.06
Fewest turns® 25.05 4.14
Minimal (turns = distance) 42.10 17.49
Minimal (turns = time) 39.08 15.40
Minimal (right turns = distance) 39.05 13.95
Minimal (right turns x time) 38.02 13.92
Minimal (road category® = distance) 41.21 17.16
Minimal (road category * time) 37.88 14.46
Minimal (road category = angular deviation) 28.04 8.62
Minimal (number of lanes x distance) 38.55 14.04
Minimal (number of lanes x time) 34.74 11.96
Minimal (number of lanes * angular deviation) 24.86 6.98
Minimal angular deviation from target 17.52 2.78
Fewest road segments 21.05 2.88

@ Data collected by Transport for London from a fleet of GPS-enabled vehicles over 3 months. Mean travel times are established for five time periods (0-6 h, 6-10 h, 10-
16 h, 16-19 h, and 19-0 h), and routes calculated using data corresponding to the period in which the observed journey took place. Where travel time data is unavailable,
kinematic calculations are implemented to capture acceleration and deceleration at junctions.

b Utilising methodology described in Hillier and lida (2005).

¢ In line with theory and applications described in Golledge and Garling (2002) and Duckham and Kulik (2003).

4 Category assigned using the UK Department of Transport road classifications, ‘Motorways’ and ‘A Roads’ are given a weight of 1; ‘B Roads’ are weighted as 2; ‘Minor Roads’
and ‘Local Streets’ are weighted with 3; and all remaining roads (e.g. ‘Private Roads’) weighted with 4.

<-2.5 Std. Dev.
-2.5--1.5 Std. Dev.

—— -1.5--0.50 Std. Dev.

-0.50 - 0.50 Std. Dev.
— 0.50 - 1.5 Std. Dev.
—— >1.5Std. Dev.

Fig. 2. Standard deviations around differences between observed traffic flows and alternatives calculated using an optimal distance metric between West and East postcodes.

towards optimal routing in response to the reduction of congestion The calculation of mean accuracy is quite an unforgiving
during the evening hours, although the small variation may also metric on which to judge route accuracy, where poor correla-
represent a greater propensity for shorter journeys during this tion on some routes may hide stronger correlation on a major-

period. ity of occasions. Another approach is to assess the number of
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occasions on which an optimal approach performs well. In the
second column in Table 2 is a value for each model indicating
the proportion of routes achieving a 75% match or greater. Once
more, poor performance is widespread, with many of the mod-
els achieving 75% accuracy on only 10-15% of all routes. This
demonstrates that only on a relative few occasions do these
models perform at near acceptable levels. These scores are
slightly lower than those indicated in a similar previous study
(Prato and Bekhor, 2006).

Another perspective can be drawn through measuring how
near observed routes come to achieving the lowest potential cost
function. By comparing route characteristics, the spatial devia-
tions between observed and shortest alternatives are not of great
importance. Taking distance, comparing the lengths of all
observed routes against their shortest counterparts, observed
routes are found to be 1.39 times the length of the optimal alter-
native. Against free flow travel time, observed routes are 1.53
times longer the shortest possible route time. Comparing turns,
observed routes are shown to use 1.69 more turns per km than
alternatives using the fewest possible number of turns. These
final results indicate that even when not selecting the shortest
possible path, drivers do not perform well with respect to mini-
mising costs.

While the route similarity assessments have provided some
insight into the route attributes generally favoured by drivers, it
is clear that none of the optimal routes tested offer a strong predic-
tive capability of real-world behaviour. Given the wide range of
optimal routes tested, this is perhaps the greatest indictment falls
upon the premise that whole optimised routes reflect real-world
route choice decision process.

5. Anchor-based routing analysis

The second stage of analysis assesses the role of urban features
in influencing route choice. As described earlier, this analysis will
consist of three stages - the first, investigating spatial deviations
from optimal behaviours with a view to identifying the influence
of anchors; the second, exploring statistical distributions in urban
feature selection; and third, the potential influence of process in
influencing route choice.

5.1. Spatial deviation from shortest paths

According to the same method used above, optimal route alter-
natives are generated between each observed trip origin and desti-
nation point. For this phase of the research, however, only distance
and expected travel time routing measures are examined. This is
because they represent the models most widely used currently
within urban and transportation modelling research. Route sets
are calculated for the case studies outlined earlier, and the spatial
deviations between observed and modelled route sets are mapped
and analysed.

5.1.1. Case study — West to East London

In the first case, lateral travel across central London is explored,
with all 9850 journeys originating in west London and finishing in
east London postcodes extracted. The origin and destination spread
requires traversal of central London, but does not necessitate cross-
ing of the River Thames.

Differences in flow between the actual route set and the two
artificially generated route sets were calculated. Figs. 2 and 3 show
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Fig. 3. Standard deviations around differences between observed traffic flows and alternatives calculated using an optimal expected travel time metric between West and

East postcodes.
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the spatial deviations in route set distributions, categorising by the
number of standard deviations around the mean. In both cases, a
number of main routes across central London - such as Euston
Road and Victoria Embankment (labelled A and B respectively in
Fig. 2) — appear to attract considerably greater proportions in
observed traffic flow, in favour of a number of alternatives that
are theoretically more optimal. It is furthermore interesting to note
that there is no wholesale avoidance of central London. Rather one
can observe that route selection is frequently consigned to straigh-
ter sections of the road network, such as the Old Street to Holborn
pathway (marked A in Fig. 3). Many of the more optimal routes
through this region appear to require more turns, indicative of

requiring a higher effort or cognitive load from the individual rout-
ing through that region.

5.1.2. Case study - North to South-East London

In the second case study, 3210 trips were extracted covering
trips from all northern postcodes to all south-eastern region post-
code regions. The trip distributions of the real and artificially gen-
erated routes are shown in Figs. 4 and 5.

Once more, clear deviations between optimal and observed
route sets can be tracked. One prominent region is north of central
London, where three main routes - Kingsland Road, New North
Road and York Way (labelled A in Fig. 5) - all demonstrate
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Fig. 4. Standard deviations around differences between observed traffic flows and alternatives calculated using an optimal distance metric between North and South-East

postcodes.
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relatively greater attraction for observed route selection. Within
the central zone, higher proportionate volumes of traffic are clearly
identified along the inner ring road section, continuing from Kings
Cross around the eastern side of central London to Tower Bridge.
There are additional common discrepancies with respect to the
selection of bridges to cross the River Thames, where Tower, Black-
friars, Waterloo and Westminster Bridges (labelled B in Fig. 5) all
appear more popular alternatives relative to distance and time
minimising routes. Furthermore, once over the Thames, an attrac-
tion in trips towards the large, busy intersections at Elephant and
Castle and Bricklayers’ Arms is indicated (shown at point C in

Fig. 5), highlighting these features as potential points of attraction
within the route choice decision process.

These analyses provide indication of the locations on the road
network attract route selections beyond those that would have
otherwise been expected were all individuals to have selected an
optimal distance or travel time route. Many of the locations
attracting greater flow are continuous, straight sections of the road
network. Whereas the apparently more optimal routes rejected by
drivers pass consist of a more intricate structure, requiring more
turns and so high navigation abilities. The basis of these deviations
provides some explanation for the poor general performance of
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Fig. 5. Standard deviations around differences between observed traffic flows and alternatives calculated using an optimal expected travel time metric between North and

South-East postcodes.
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optimal routing models observed earlier. The next stage of analysis
will aim to improve the classification of these locations, and their
role in the route choice process.

5.2. Role of anchors

The assessment of the role of key locations in shaping route
choice is carried out at two levels of scale. In the first instance, fea-
tures that attract a large number of journeys will be examined
within the context of all route choices, with the extent of their
attractiveness above other locations being established. Second,
the role of locations is examined on a finer grained scale, looking
at how many decisions may be associated with few localised
features.

5.2.1. Globally important anchors
Global significance is measured by extracting the variable
utilisation of different parts of the road network over all trips. Seg-

90000

ments within the road network that share a road name are grouped
together. Grouping the road network by shared name draws
together elements of the network that may be interpreted or
recalled as part of a collective feature, either through the nature
of their interconnected structure or through common historical
or functional association (Lynch, 1960).

For each road name feature, the total number of trips utilising
any part of the road name is calculated. The results are ranked
and plotted in Fig. 6. As one can observe, the resulting ranked plot
aligns closely with a long-tail distribution, where few features
attract heavy usage, with the majority of features attracting little
usage. At the head of the distribution are roads such as Piccadilly
(ranked 1st), Park Lane (2nd), Euston Road (3rd) and Victoria
Embankment (6th), noted earlier for seemingly attracting route
choices away from optimal alternatives, and each chosen on over
60,000 occasions. In line with any long-tail distribution, these
totals drop off quickly as one moves down the rankings, with the
majority of roads rarely chosen. This is demonstrated in that across
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the dataset, of the total road choices made across all journeys
(15.94 million), 80% of these choices correspond to only 1867 of
the total 32,659 roads, equating to just 5.71% of all roads.

A long-tailed plot such as this is indicative of a Zipf Law distri-
bution, a pattern of heavily skewed influence observed across a
wide range of environments. Zipf's Law asserts that the frequency
of a certain event taking place is inversely proportional to its rank,
relative to alternative events. This pattern has been observed
across a swathe of natural phenomena, including reflecting the
growth rate of city populations relative to others (Gabaix, 1999).
The simplest way to identify a Zipf Law distribution is to plot log(-
rank) and log(trip count) on a log-log graph, to establish whether a
linear relationship exists. This graph is plotted for road choice in
Fig. 7. The log relationship between rank and the frequency with
which roads are chosen does demonstrate a linear relationship,
in line with the principles of Zipf Law. Indeed, a fitted linear line
of regression represents this relationship with an R? of 0.91, indic-
ative of a strong linear correlation, similar to Zipf Law distributions
observed elsewhere. However, despite the strong fit, higher traffic
flow along the highest ranked roads should be observed for a stron-
ger alignment with a Zipf distribution.

The alignment with the Zipf Law distribution is indicative of a
self-reinforcing mechanism supporting the repeated use of only a

few urban features during route choice. In the same way that cities
grow through a preferential attachment mechanism (Simon, 1955;
Gabaix, 1999) to form a Zipf distribution, the indication is that the
use of these urban features grows in a similar fashion. Once a loca-
tion has been established as a ‘good’ place to travel through, sub-
sequent route choices are also directed through that location
(provided they meet requirements with respect to the eventual
target). The indication is that route choice is formed around these
locations. Thus, an individual does not select a route that optimises
some set of preferences between origin and destination, but rather
chooses the dominant features that they wish to traverse en route
to their destination.

5.2.2. Locally important anchors

While particular routes have been demonstrated to be impor-
tant in influencing route choice, the exploration at the global scale
potentially hides local interactions with other urban features. In
this second stage of analysis, route choices — and the potential role
of urban features - are examined at a finer resolution. The distribu-
tions of routes between specific locations provide indication of the
most important locations for decision-making en route between
origin and destination.
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— 0.0269 - 0.0870

— 0.0871-0.1672
— 0.1673-0.2776
0.2777 - 0.4983

Fig. 8. Proportionate traffic flow of 310 trips from NW3 to EC4.
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Fig. 9. Proportionate traffic flow of 393 trips from E14 to NW1.

5.2.2.1. Case study - NW3 to EC4 regions. Within the dataset, a total
of 310 trips are observed to pass between the NW3 and EC4 post-
code regions. Examining the distribution of route selections
between the two regions, as demonstrated in Fig. 8, like other
examples, there is considerable heterogeneity with a concentration
along a few core routes. Yet of additional note within this represen-
tation is how a significant degree of variation in behaviour can be
tracked back to splits in traffic at particular points.

Assuming that all individuals are broadly aiming to reach their
destination in the EC4 region, one can observe that decisions vary
at points where individuals are faced with two valid options.
Examining particular junctions more specifically, at junction A in
Fig. 8, a split of the 109 inflowing vehicles is observed between
two more southerly routes, with 42 routes taking the south-east-
erly bound route, and 67 choosing to take the south-westerly
route. Likewise, at junction B, a split of 102 vehicles is observed,
with 38 choosing a eastbound route along Euston Road, with 62
vehicles choosing to travel straight onwards. At junction C, of the
88 inflowing vehicles, 61 chose to travel straight onwards and 27
chose to take the Holborn Gyratory to the east.

5.2.2.2. Case study - E14 to NW1 regions. The set of 393 route
choices between E14 and NW1 are interesting given the prevalence
of three dominant routes between origin and destination zones. As
can be observed in Fig. 9, many trips pass via global attractors
including Victoria Embankment (passing along the river), City Road
(heading north-east) and Farringdon Road (heading north from the
river).

The prevalence of each of these attractive locations leads to a
number of particular junctions at which route choice decisions
must be taken. At junction A, representing a decision point

between westbound routes (via the Victoria Embankment route)
and those heading northbound (via the City Road route), of the
222 inflowing trips, 42 decided to deviate, with 180 deciding to
continue straight on. Likewise, a similar decision is made at junc-
tion B, where, of the 171 inflowing trips, 145 are shown to continue
westbound, with 30 taking the turning northwards. Elsewhere,
roundabouts are clearly important decision points, and this is pro-
ven within this scenario, where, of the 123 individuals arriving on
Old Street at the roundabout at point C, 109 deviate northbound,
and just 14 continue eastwards.

The exploration of two case studies, where origin and destina-
tion are known to within a specific spatial extent, has highlighted
the importance of particular urban features in shaping fine-grained
route choices. Despite a fixed origin and destination, particular
urban features provoke different choices, resulting in different
routes being selected. The result is significant heterogeneity in
route choice, led by deviation of choices at these urban features,
that again likely influences earlier observed poor correlation with
shortest path routes. The indication from these examples is that
- while route choice is strongly influenced by the dominant fea-
tures identified in the previous section - choices around the selec-
tion of those features are undertaken at a local level, in interactions
with major junctions.

5.3. Directional influences on route choice

Prior indications suggest that urban features form the basis of
route choice, however, there remains a lack of insight into the pro-
cess through which these choices are made. To explore this, the
final stage of analysis examines variation in routing behaviour by
direction of travel across two case studies. The aim is to identify
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Northbound Cluster

Northbound Outlier

Southbound Outlier

Southbound Cluster

Fig. 10. Spatial clustering results for trips between NW1 and SW11 regions indicating significant areas of high mono-directional traffic flow.

whether deviations exist, and whether the nature of these devia-
tions provides additional insight into choice behaviours.

To accomplish this aim, spatial deviations in route flows are
extracted for route sets running in opposite directions. Deviations
are calculated on a road segment-by-segment basis, but differences
are calculated by area using the LISA local autocorrelation method
described earlier. This approach not only provides us with statisti-
cally significant? spatial clusters of deviation in route flows, the
method incorporates wider spatial trends, beyond merely seg-
ment-level deviations.

5.3.1. Case study - NW1 to SW11 regions

Trips between NW1 and SW11 are extracted, consisting of 542
trips running northbound from SW11 to NW1, and 310 trips in the
opposite direction. Proportionate flows for each route set are calcu-
lated, and spatial clusters derived. These clusters are shown in
Fig. 10.

2 LISA calculates a local Moran’s I statistics that is translated into a Z-score, against
a null hypothesis of no local autocorrelation. Clusters are extracted where they
exceed a 0.05 probability threshold.

From Fig. 10, it is clear that the Park Lane region, in addition to
Marylebone and Euston Road, are identified as significantly more
attractive to southbound traffic than northbound. Conversely,
northbound traffic is significantly more drawn towards the routes
running along the south bank of the river Thames, moving up
towards the destination through the Holborn and Bloomsbury
regions.

Aside from the clusters, the locations of outliers - routes where
flow volume counters the dominant flow in the area provide fur-
ther insight into route selection. These cases include the preference
for travel along the north bank of the Thames where travelling
southbound. It is important to note that there are no traffic regula-
tions within the area that would likely cause this deviation. In
other areas, such as within the northbound cluster, one-way
streets are the cause of outliers appearing, amongst a dominance
of northbound flow.

5.3.2. Case study - SW1 to N1 regions

The second case study examines counter-acting flow between
the SW1 and N1 regions locations, which, in contrast to the previ-
ous case, are not separated by the barrier of the river Thames. In
this case, 672 routes are extracted running northbound from
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Fig. 12. Hypothetical application of the route choice behavioural framework.

SW1 to N1, and 898 trips running in the other direction. The spatial
clusters established from the differences in proportionate flow are
shown in Fig. 11.

Observing the spatial clusters presented, it is apparent that a
higher volume of northbound route choice is once again found
along the Park Lane and Euston Road pathway, in preference to

Northbound Cluster
Northbound Outlier
Southbound Outlier

Southbound Cluster

alternative routes through central London. Southbound traffic, con-
versely, more regularly follows a more direct set of routes through
central regions. Only along the yellow-coloured Embankment
route, north of the river Thames, are no significantly dominant
clusters are found in either direction. The wider patterns, once
again, demonstrate a cyclical nature to the bi-directionality of tra-
vel, with little indication of route regulation playing a significant
role in the definition of the wider differences.

Across both case studies, the presence of asymmetry in route
selection is clear. Its presence indicates that route choice is influ-
enced by the availability of subgoals attractive from the point of
origin. Travelling from one direction, a subgoal may seem an
approachable initial target; from another direction this may not
be the case, and a completely different location, perhaps one that
is nearer, is deemed logically the most appropriate first location
to target. More significantly, this process indicates that the route
choice process is step-based, and that individuals construct their
route by moving from one sub-goal to the next. Once the first
sub-goal has been reached, the next sub-goal is chosen, until the
destination is reached. This evidence provides further explanation
to why shortest routes so poorly reflected observed route choice in
earlier tests.
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6. Discussion and conclusions

The analyses laid out in this paper have described how closely
the routing behaviours of minicab drivers in London align with
the shortest path and anchor-based concepts of route choice.
Although it is impossible to fully clarify the nature of route choice
through empirical observations alone, some strong trends have
emerged. In this section, the major findings from these analyses
are digested, and then positioned within an initial conceptual
framework for route choice. Following this, the potential applica-
tion and future directions for this research will be discussed.

In the first instance, the analyses highlighted the poor perfor-
mance of shortest path routing methodologies in predicting
observed behaviour. Not only were shortest path alternatives a
poor match for observed routing behaviours, drivers were shown
to travel further in terms of distance and travel time than would
be deemed optimal.

The tests applied to establishing the role of anchors in route
choice were more promising. The use of a few locations far beyond
the vast majority of other routes was well demonstrated across a
range of scales. The prevalence of these locations, and their regu-
larity of their selection far beyond that indicated by shortest path
alternatives, is indicative of these features being used as the basis
for route choice. The repeated use of these features suggests that
individuals principally consider these locations during the con-
struction of a route plan, rather than seeking to select a wholly
optimal route.

At a finer scale, there were strong indications that road junc-
tions are used as points at which additional route choices are
made. Within the context of anchor-based navigation, these loca-
tions may be seen as points at which navigation towards an anchor
is refined. They have a role in shaping route choice, but do not hold
the same overarching role of anchors.

The findings around the asymmetry support the notion of
anchor-based navigation. With no observable impact from route
restrictions present across the case studies, the discrepancy in
route choices made in opposite directions indicates a role for
intermediary locations, perceived differently from each origin,
in shaping decisions. These trends indicate the presence of a
step-wise methodology within the choice process. In this sense,
the best initial choice to make - to route towards a particular
anchor - will vary according to the location from which a choice
is made. As the individual routes towards their destination, this
initial choice will then influence subsequent choices. The
nature of asymmetry casts further doubt around how optimal
routing methodologies reflect the choice process, of which
most identify the same optimal route regardless of direction of
travel.

6.1. Towards an anchor-based framework of route choice

The strength of the results presents an argument for the devel-
opment of a new framework for modelling route choice. While this
study is limited in a number of ways - as highlighted during the
description of the dataset earlier - an initial framework may be
developed from these results for potential future validation or
elaboration at a later stage, with the availability of additional
datasets.

The development of an anchor-based framework for route
choice incorporates not only the main findings from this study,
but is supported by findings within the literature. As such, anchor
selection becomes the basis for route choice, and is supported by
subsequent choices made at road junctions. The selection of
anchors is shaped by a desire to minimise distance and angular

deviation from the target location, and individuals move broadly

towards their destination based on a cognitive sense of direction.
The designed process proceeds iteratively, as the individual

moves from anchor to anchor until their reach their destination.

(1) Establish broad direction and distance of destination from
current position.

(2) Locate the best nearby anchor that a) minimises deviation
from destination direction angle, b) moves closer to the des-
tination than the current location, and c) is not expected to
introduce unacceptable delay through congestion.

(3) Navigate towards subgoal using known intermediate junc-
tions, avoiding locations with high ‘expected’ congestion.

(4) On reaching subgoal, if not close to destination restart
process.

The application of this process is best described through worked
example, mapped out in Fig. 12. This figure presents a simplified
representation of the subgoals and junctions that dominate the
route choice decision process, and the links between features. In
undertaking route choice, the individual first identifies the direc-
tion of the destination from the origin, indicated as red and green
circles respectively. Once established, the individual moves to step
2, choosing the subgoal that is best aligned with the principles of
deviation, distance and delay, namely point A in this case. To reach
point A, the individual points through the local road network, via
intermediary junctions, located at less prominent points, which
require traversal in order to link between subgoals. Upon reaching
point A, the individual makes restarts this decision process, travel-
ling to subgoal B according to the same principles. The individual
would ultimately therefore select a route through the darker
objects within this network.

Two outcomes of this framework should be highlighted. First,
the process is subjective, and limited by the extents of an individ-
ual’s knowledge - a factor strongly indicated within current liter-
ature. While a more optimal route between origin and
destination may be found by routing via subgoals A and then C,
the individual is restricted from doing so by not holding enough
knowledge of the road network to make this a possibility. As such,
the known route via subgoal B is selected. Second, the process fur-
thermore explains asymmetry in route choice. If the direction of
travel were to be reversed, the individual would be expected to
first choose subgoal C, rather than subgoal B, resulting in the differ-
ences highlighted by the dashed circles in Fig. 12.

6.2. Future directions

The findings from this research present a number of routes for
potential expansion and elaboration. As the breadth and volume
of similar datasets emerge, opportunities will emerge that enable
the major findings outlined during this work to be validated. The
use alternative datasets will provide evidence for or contrary to
the trends identified here. Validation datasets are required that
overcome some of the limitations experienced here with respect
to the geographic concentration of routes in central London, the
above-average expertise of drivers, and the potential influence of
GPS devices.

With positive validation, the argument for the development of
methods that place anchors at the centre of route generation will
become stronger. In this case, a major route of research would
involve the integration of these methods with conventional route
choice methods, potentially as an alternative method for generat-
ing route choice sets. The route choice framework requires expan-
sion, parameterisation and eventual implementation. One major
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stage in this process will involve the establishment of a spatial
hierarchy, representing the anchors upon which route choice deci-
sions are made. Factors relating to street configuration, traffic engi-
neering, traffic flow and urban form may all be investigated in
deriving this structure.

The implementation of the model furthermore requires more
exactly specifying the decision-making stages outlined within the
earlier framework. For example, what is deemed an acceptable
deviation from the destination? What is considered acceptable
delay? And perhaps most importantly, how do these preferences
vary across the population of decision-makers, and how are these
variations encapsulated within the model? There is considerable
promise for integration with models incorporating risk and uncer-
tainty in route choice (Avineri and Bovy, 2008; Gao et al., 2010;
Chorus et al., 2008). There must be thought given to the process
by which individuals learn anchor-based routes, which may again
build on current literature (Senk, 2010). The inclusion of heteroge-
neous measures of perception would indicate the potential for the
use of agent-based modelling for capturing full complexity of
behaviours at an individual level.

In the coming years, another interesting avenue of research may
potentially involve observing how routing behaviours shift with
the increasing proliferation of traffic information and navigation
guidance devices (Ben-Elia and Avineri, 2015). While in this study
(undertaken between late 2010 and early 2011) its role is shown to
be limited, later technological advances may lead to greater reli-
ance on algorithmically-generated optimal routes rather than per-
sonal knowledge of space. This has implications for the
degradation of spatial knowledge, as suggested elsewhere
(Parush et al., 2007). It may also contribute towards the formation
of equilibrium in traffic flow, where all individuals are optimising
their behaviours based on near-perfect information. Nevertheless,
work will furthermore be required around establishing the behav-
ioural nature of how traffic information and route guidance is used.
Identifying the environments and contexts within which individu-
als solely (or partly) use guided information and where travellers
continue to utilise their own spatial knowledge.
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