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Abstract. This work presents an efficient shakedown analysis of 3D frames under multi-
ple load combinations. Mixed fiber beam FEs are employed for an accurate discretization.
The stress admissible domain is defined at fiber level as a function of the load factor using
the maximum and minimum effect due to all loads. An incremental-iterative method is
used at structural level. It evaluates a fictitious path made of a sequence of safe states
with a load factor converging to the safety limit. Each point is obtained by finding kine-
matic variables corresponding to self-equilibrated stresses satisfying Melan’s condition for
the current load factor to be safe. An iterative FE state determination provides stress
DOFs corresponding to assigned kinematic DOFs and load factor. Important features of
the method are: i) a direct application of the Newton method, ii) a computational cost
unaffected by dimension and complexity of the load domain, iii) an accurate safety factor
using a small number of fibers and iv) an efficient solution for large buildings.

1 INTRODUCTION

If the stress intensity at a certain point of a structure made of ductile materials reaches
the yield point, the structure does not necessarily fail or deform excessively. Instead, a
certain amount of stress redistribution can take place and some further load increments
could be supported. Thus, the actual load-carrying capacity of a structure is generally
higher than the elastic limit, sometimes considerably so, as for 3D frames. This consid-
eration has encouraged engineers to exploit this overstrength for a cost-effective design.
However, it is important to keep in mind that, during their operational life, structures are
subjected to variable loads, whose law of variability in time is often unknown. Instead, it is
usually possible to have a good estimate of the variability range in terms of maximum and
minimum load amplitude and combination formulas are often available to account for the
probability of simultaneous actions. Within this context, shakedown analysis, based on
Melan’s and Koiter’s theorems, is able to provide a reliable safety factor against plastic col-
lapse, loss in functionality due to excessive deformation (ratcheting) or collapse due to low
cycle fatigue (plastic shakedown), and also gives valuable information about the internal
stress redistribution due to the plastic adaptation. The strain-driven incremental-iterative
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shakedown analysis, initially proposed in [1], is a simple and general method applicable
to any structural model and FE formulation. It provides a sequence of non-decreasing
safe (according to Melan’s theorem) load factors converging to the shakedown limit by
reconstructing a pseudo-equilibrium path. Compared to a standard path-following elasto-
plastic analysis, it requires just a more involved definition of the closest point projection
(CPP) scheme used to evaluate FE self-equilibrated and plastically admissible stresses
corresponding to a displacement increment, which has to keep into account the range of
load variability. The important feature of such an approach is that the global optimiza-
tion problem of the lower bound theorem is replaced by an iterative global solution plus
small-sized optimization problems (CPP) defined at the integration point, or at FE level
for mixed interpolations. One of the main open problems is the difficulty in managing the
large number of load conditions and the complex combination rules required for a realis-
tic definition of the load domain, which can lead to a very time-consuming analysis. The
plastic admissibility is commonly checked in terms of stress resultants, usually axial force
and bending moments, through cross section yield functions with multi-surface and/or
nonlinear expressions. This aspect, together with the check of plastic admissibility for
multiple sections, makes the CPP at FE level a multi-constraint optimization problem in
terms of the stress DOFs in order to preserve the equilibrated stress interpolation [2, 3]. In
shakedown analysis, the complexity of the section admissibility condition along with the
check at multiple sections for all the vertexes of the load domain leads to a huge number
of constraints for the CPP problem and to a significantly high computational time for its
solution also when external high-performance optimization solvers are employed. The use
of a Selection Rule Algorithm [4] only partially simplifies the problem by reducing the
number of vertexes of the stress envelope.

This work presents an efficient shakedown analysis of 3D frames under multiple load
combinations. Mixed fiber beam FEs are employed for an accurate discretization. The
stress admissible domain is defined at fiber level as a function of the load factor using the
maximum and minimum effect due to all loads. An incremental-iterative method is used
at structural level. It evaluates a fictitious equilibrium path made of a sequence of safe
states with a converging non-decreasing load factor. Each point is obtained by finding
kinematic variables corresponding to self-equilibrated stresses satisfying Melan’s condition
for the current load factor to be safe. An iterative FE state determination provides stress
DOFs corresponding to assigned kinematic DOFs and load factor. Important features of
the method are: i) a direct application of the Newton method, ii) a computational cost
unaffected by dimension and complexity of the load domain, iii) an accurate safety factor
using a small number of fibers and iv) an efficient solution for large buildings [5].

2 SHAKEDOWN PROBLEM STATEMENT FOR A FIBER MODEL

2.1 3D beam model

Let us consider a cylinder in a reference configuration B, characterized by length ` and
confined by a lateral boundary, ∂B, and two terminal bases, Ω0 and Ω`. The cylinder is
referred to a Cartesian frame (O, x1 ≡ s, x2, x3) with unit vectors {i1, i2, i3} and i1 aligned
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with the cylinder axis. In this system (see Fig.1), we denote with X = si1 +x the position
of a point P , where s is an abscissa which identifies the generic cross-section Ω(s) of the
beam, while x = x2i2 + x3i3 is the position of P inside Ω(s).

x1 x2

x3

x3

x

Ω�Ω0

B

s

X0

X

Ω

∂B [0 n2 n3]
T

Figure 1: The cylindrical solid.

The displacement field v[X] of the model is expressed, as usual, as a rigid motion of
the section

v(X) = u(s) +ϕ(s) ∧ x (1)

where u(s) and ϕ(s) are the mean translation and rotation of the section and the operator
∧ denotes the cross product. The kinematics assumed in Eq.(1) allows us to evaluate,
using a linear Cauchy continuum, the stress-strain work W in terms of the generalized
strains and stresses on the section as

W :=

∫
`

(
n(s)Tε(s) + τ (s)Tγ(s)

)
ds (2)

in which the generalized strains ε, collecting axial strain and bending curvatures, and γ,
collecting shear strains and torsional curvature, are defined as

ε(s) ≡

 eχ2

χ3

 =

u1,s

ϕ2,s

ϕ3,s

 γ(s) ≡

γ2

γ3

χ1

 =

u2,s − ϕ3

u3,s + ϕ2

ϕ1,s

 (3)

where a comma stands for derivative. The stress resultants on the section n and τ due
to normal and tangential stresses respectively are defined as

n(s) =

N1(s)
M2(s)
M3(s)

 =

∫
Ω

σ11(s,x)a(x)dΩ, τ (s) =

N2(s)
N3(s)
M1(s)

 =

∫
Ω

 σ12

σ13

σ13x2 − σ12x3

 dΩ

(4)
with a = [1, x3,−x2]T . In particular, n collects axial force and bending moments while τ
collects shear forces and torque. Introducing the vectors

t(s) =

[
n(s)
τ (s)

]
ρ(s) =

[
ε(s)
γ(s)

]
(5)
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we assume an elastic constitutive law expressed as

ρ(s) = F(s)t(s) with F(s)−1 = C(s) =

[
E 0
0 G

]
. (6)

We introduce also the extraction operator Tn and Tτ such that

n(s) = Tnt(s), τ (s) =Tτt(s), t(s) = TT
nn(s) + TT

τ τ (s)

ε(s) = Tnρ(s), γ(s) =Tτρ(s), ρ(s) = TT
nε(s) + TT

τ γ(s).
(7)

Finally, using the kinematics in Eq.(1), the normal strain over the section, work-conjugated
to σ ≡ σ11, is

ε(s,x) ≡ v1,s = a(x)Tε(s,x). (8)

2.2 Mixed finite element model

The beam finite element adopted (see [4]) uses a stress interpolation

t(s) = L(s)βe (9)

which exactly satisfies the equilibrium equations on the element for zero body forces, that
is

N ,s = 0, M,s +i1 ∧N = 0, (10)

while body load effects are then exactly included as a particular solution. Eq.(10) states
that N ≡ [N1, N2, N3]T and the torsional moment component M1 are constant, while the
two flexural components M2(s) and M3(s) of M(s) ≡ [M1,M2,M3]T are linear with s and
linked to the shear resultants so that N2` = −(M3(`)−M3(0)) and N3` = (M2(`)−M2(0)).
The internal work in Eq.(2) becomes

W ≡N T (u(`)− u(0)) + M(`)Tϕ(`)−M(0)Tϕ(0) = dTe QT
e βe (11)

allowing us to directly obtain the discrete form of W without any FEM interpolation for
the kinematic variables u(s) and ϕ(s). In Eq.(11) the vectors that collect the kinematics
de and static βe FE generalized parameters and the compatibility operator Qe are defined
as

βe =


N1

M2(0)
M3(0)
M2(`)
M3(`)
M1

 , de =


u(0)
ϕ(0)
u(`)
ϕ(`)

 , Qe =
1

`


−` iT1 0 ` iT1 0

iT3 −` iT2 −iT3 0
−iT2 −` i3 iT2 0
−iT3 0 iT3 ` iT2
iT2 0 −iT2 ` iT3
0 −` iT1 0 ` iT1

 . (12)

2.3 Shakedown problem

We say that a structure shakes down to an elastic state or, simply, shakedown occurs if,
after an initial phase during which the occurrence and the accumulation of plastic strain
increments are possible, the structural response, for every load path, tends to be purely
elastic and is characterized by a finite total plastic work.
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2.3.1 Load domain

The FE external load vector p(t), varying with the time t, can be expressed as a
combination of p load patterns pi belonging to an admissible load domain P. We assume

P :=

q⋃
k=1

P(k) , P(k) :=

{
p =

p∑
i=1

αki(t)pi : αminki ≤ αki(t) ≤ αmaxki

}
(13)

where αki defines the range of variability in time of pi for the kth load combination
accounting for the probability of simultaneous actions. Each combination P(k) is a convex
polytope with 2p vertexes.

2.3.2 Melan’s shakedown theorem and admissibility condition

For frames with medium to large span to depth ratios of the members, it is a reasonable
approximation to define the elastic domain only in terms of normal stress components
σ ≡ σ11. In this case, it is useful to define the envelope of elastic stress S(s,x) associated
to a generic point of the body (s,x) as the set of elastic stresses σ̂(s,x) produced by all
loads p ∈ P. With these assumptions, the static shakedown theorem can be formulated as
follows: shakedown occurs if there exists an additional time-independent self-equilibrated
stress σ(s,x) such that

fc(s,x) ≤ λσ̂(s,x) + σ(s,x) ≤ ft(s,x), ∀σ̂(s,x) ∈ S(s,x) (14)

where ft(s,x) and fc(s,x) are the stress limits of the material in traction (positive) or
compression (negative) respectively. An amplification factor λ of the reference load do-
main is introduced. This makes it possible to define the shakedown safety factor of the
reference load domain as the maximum value of λ for which shakedown occurs.

2.3.3 Shakedown yield function

The shakedown admissibility condition (14) for a load domain amplified by λ, omitting
the dependence from s and x, can be written in terms of stress envelope endpoints as{

σ + λσ̂max ≤ ft

σ + λσ̂min ≥ fc.
(15)

This rewriting allows us to introduce the shakedown yield function f(σ, λ)

f(σ, λ) ≡ |σ − c(λ)| − r(λ) ≤ 0 (16)

where

c = c0 − λĉ with c0 =
ft + fc

2
ĉ =

σ̂max + σ̂min

2

r = r0 − λr̂ with r0 =
ft − fc

2
r̂ =

σ̂max − σ̂min

2

(17)
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Condition in Eq.(16) defines the admissible domain of the additional self-equilibrated
stress σ that depends on the load amplifier λ. We can note how this domain is unrelated
to the complexity of the load variation, but depends only on the maximum σ̂max and
minimum σ̂min elastic effect on the point, apart from the material strength.

It is important to remark the first important feature of the proposed approach: only
the two vertexes of the elastic envelope of each fiber affect the admissible domain, inde-
pendently from the number of basic actions or the complexity of the load domain.

2.3.4 Shakedown safety factor for the fiber model

According to a fiber FE concept, the admissibility condition is imposed at a discrete
number of points belonging to the FE domain. To this end, a certain number of integration
points (IPs) (cross sections) are used along the beam axis. Gauss-Lobatto rules are
preferred in order to include the check at the end sections. At least 3 Gauss-Lobatto IPs
are needed to exactly integrate the elastic complementary energy along the element

1

2
βTe Heβe =

1

2

∑
g

nTg E−1
g ngwg +

1

2

∑
g

τ Tg G−1
g τ gwg (18)

but more than 3 points can be used for a more accurate check of the admissibility con-
dition. Note that a generic integration point quantity (.)g belongs to a FE e but the
subscript e is omitted to simplify the notation. For each IP, the cross section is dis-
cretized using a finite number nf of fibers with a normal stress σ constant over each fiber
domain of area A and equal to the mid point one. The complementary energy density of
the section, on the basis of Eq.(8), can then be evaluated as

1

2
nTg E−1

g ng =
1

2

∑
m

1

Em
σ2
mAm (19)

where E is the Young modulus and the subscript m denotes a generic fiber. Also in this
case, a generic fiber quantity (.)m belongs to an IP g and a FE e, but subscripts g and e
are omitted to simplify the notation. Remembering that the fiber strain is linked to the
generalized ones as εm = aTmε and the elastic law σ = Eε, the previous equation allows
us to evaluate Eg as

∑
m

Emε
2
mAm =

1

2
εTg

(∑
m

EmamaTm

)
εg ⇒ Eg =

(∑
m

EmamaTm

)

For the fiber model, the normal stress resultants in Eq. (4) on the section can be
computed as a function of the normal stresses of the fibers at IP, collected in vector
σg = [σ1, · · · , σnf ], as

ng(σg) =
∑
m

σmAmam. (20)
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We have that the vector collecting all stress resultants can be written, exploiting Eq.(7),
as

tg(σg, τ g) =

[
ng
τ g

]
≡ TT

n

∑
m

(σmAmam) + TT
τ τ g. (21)

The shakedown safety factor λS of the discretized structure can be obtained by solving
the following constrained optimisation problem

maximize λ

subject to QTβ = 0

f(σm, λ) ≤ 0 ∀e, g,m
tg(σg, τ g)− Lgβe = 0 ∀g, e

(22)

where the last equality constraint is necessary to preserve the equilibrated stress inter-
polation (9) over the element. We can note that (22) is very similar to the static limit
analysis optimization problem. In particular, the only relevant difference is that the plas-
tic admissibility is imposed for the two vertexes of S(s,x). Shakedown analysis reduces
to limit analysis when the stress envelope degenerates into a single point [6].

3 INCREMENTAL-ITERATIVE SHAKEDOWN ANALYSIS

In this section, we show how to solve the shakedown optimization problem in Eq.(22)
by using an incremental-iterative continuation strategy. To this aim, we define a sequence
of non-decreasing safe load multipliers converging to the shakedown safety factor.

3.1 Sequence of safe load multiplier converging to the shakedown safety fac-
tor

Let us denote with z = {λ,β,d, τ g,σg,ρg} the set of all the problem variables. It is
possible to define a sequence of states z(n) corresponding to a non-decreasing sequence of
load factors λ(n) converging to the shakedown limit (Eq.(22)). A superscript (n) denotes
the searched solution at the new step of the sequence. ∆(.) = (.)(n) − (.)(n−1) represents
the difference between quantities of step (n) and (n − 1). We introduce the following
non-negative energy term

Ψg(∆σg,∆τ g) =
1

2

∑
m

1

Em
∆σ2

mAmwg +
1

2
∆τ Tg G−1

g ∆τ gwg (23)

which represents a norm of the stress increment. The problem variables at the new step
z(n), omitting the superscript (n) to simplify the notation, that correspond to an assigned
λ = λ̄ ≥ λ(n−1), are obtained as the solution of the following optimization problem

minimize
∑
e,g

Ψg(∆σg,∆τ g)

subject to QTβ = 0

fm(λ̄, σm) ≤ 0 ∀m, g, e
tg(σg, τ g)− Lgβe = 0 ∀g, e

(24)
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i.e. by finding the increment of self-equilibrated stress with minimum norm (23) which
makes it possible to fulfill the sufficient condition of the lower bound shakedown theorem
for λ̄ = λ(n) to be safe. Clearly, the sequence λ(n) can start from λ(0) = λE since no
additional stresses are needed for λ < λE. It is necessary to note that Eq.(24) admits
solution only if λ(n) ≤ λS because, by definition, no additional self-equilibrated stress able
to satisfy the admissibility condition can be found beyond λS. This suggests that it is
not convenient to directly assign the values of λ(n). Instead, we can use a continuation
strategy replacing λ = λ̄ with an arc-length equation for defining z(n) [7]:

g(∆d,∆λ)−∆ξ = 0. (25)

At each step, the self-equilibrium of the additional stress and can be collected in the
group of global equations together with Eq.(25):

Global equations

{
QTβ = 0

g(∆z)−∆ξ = 0.
(26a)

Element-wise equations preserve the kinematic compatibility of ∆ρg with ∆de and the
FE equilibrated stress interpolation in Eq.(9):

Element equations

Qe∆de −
∑
g

LT
g ∆ρgwg = 0

tg(σg, τ g)− Lgβe = 0 ∀g
∀e. (26b)

Finally, constitutive laws at each IP link the section stress resultants tg to the section
generalized strain increment ∆ρg:

Constitutive equations


Fiber stress σ

∆σm − Em
(

∆εm − µm
∂fm(λ, σm)

∂σm

)
= 0

µm ≥ 0 µmfm(λ, σm) = 0

Tangential stress resultants ∆τ g = GgTτ∆ρg
(26c)

where ∆εm = aTm∆ε, with ∆ε = Tn∆ρg = [∆e,∆χ2,∆χ3]T , denotes the increment of
strain work-conjugate to σm

∆εm = ∆e+ ∆χ2x3m −∆χ3x2m.

The first of Eqs.(26c), for an assigned ∆ρg and then ∆εm, is the elasto-plastic constitutive
law of the fiber m integrated by a backward Euler scheme and can be seen as the first
order condition of the following CPP problem:minimize

1

2
Em(σm − σ∗

m)2

subject to fm(λ, σm) ≤ 0
∀m (27)
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with the fiber elastic predictor σ∗
m = σ

(n−1)
m +Em∆εm. The solution of this one-dimensional

optimization problem is straightforward and just requires a min-max scalar operation:

σm = max (fc − λσ̂min, min (σ∗
m, ft − λσ̂max)) . (28)

Equations (26) define the elasto-plastic shakedown step since are very similar to the step
equations of a standard incremental elasto-plastic analysis. The main difference is that
the admissible domain for the self-equilibrated stress σ is a function of the load factor λ.
The fiber based approach makes it possible to avoid complex multisurface optimization
problems on the section required when the elastic domain is expressed in terms of stress
resultants (see [4]), along with a straightforward definition of the elastic stress envelope for
multiple load combinations. The proof of convergence of the load factor sequence to the
shakedown safety factor is given in [5]. The main advantage of the proposed incremental
process is that it does not require any constrained optimization algorithm.

3.2 Decomposed strain-driven solution algorithm

The formulation presented in the previous section allows us to evaluate the shakedown
safety factor by means of a sequence of increments. At each increment the current estimate
of the load factor can be obtained by solving Eq.s (26). Such equations are subdivided into
three groups: global equations, element equations and constitutive equations. Instead of
solving Eqs.(26) all together, it is possible to apply a strain-driven decomposed strategy
based on the solution of the following three nested sub-steps.

• A section state determination provides the stress resultants tg at each IP along the
beam axis as a function of an assigned section generalized strain increment ∆ρg and
the current estimate of the load factor λ by means of the constitutive law (26c).

• An element state determination finds the element stress interpolation variables βe
corresponding to an assigned increment of element nodal kinematic variables ∆de
and the current load factor estimate λ by means of the element equations (26b).
This require an element-wise iterative solution involving, at each iteration, a section
state determination at the IPs.

• A global analysis uses an iterative process to find the solution of the global equations
(26a) with the stress interpolation variables β written as functions of the unknown
global kinematic degrees of freedom d and the current load factor λ through the
element state determination.

Section state determination, element state determination and global solution are described
in details in [5]. The same algorithm was used in [8] to evaluate the time of fire exposure
leading to collapse.

4 NUMERICAL TESTS AND CONCLUSIONS

In this section, a numerical application is illustrated. The computational cost of the
analyses can be assessed in terms of total number of global iterations, each of them
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Figure 2: Loads and geometry for the simple 3D frame.

dominated by the decomposition of the tangent stiffness matrix. Three material types
are used for the cross sections: i) structural steel with E = 210000MPa, fc = −300MPa
and ft = 300MPa; ii) concrete with E = 25000MPa, fc = −30MPa and ft = 0; iii)
reinforcing steel bars with E = 210000MPa, fc = −400MPa and ft = 400MPa. The
test regards the simple 3D frame under variable actions shown in Fig.2. The polyhedral
load domain, adopting a single load combination, is defined as follows

p(t) =
8∑

k=1

αkpk


1.1 ≤ α1(t) ≤ 1.3

0.0 ≤ αk(t),≤ 1.5, k = 2 · · · 4
−1.0 ≤ αk(t),≤ 1.0, k = 5 · · · 8

The magnitudes of the distributed and concentrated loads are p1 = 22.5kN/m, p2 =
30kN/m, p3 = 15kN/m, p4 = 45kN , p5 = · · · = p8 = 4.5kN . Two material configurations
are considered. In the first one, all members have the RC section reported in Fig.2. A steel
HEA240 section is used for all members in the second one. These simple configurations
are selected in order to make this test easily reproducible. Two FEs are employed for each
beam, while a single element per column is used. A mesh refinement does not provide any
difference because of the equilibrated stress interpolation. Flanges and web of HE section
are discretized using nl × nt fibers, nt through the thickness and nl along the orthogonal
direction. A uniform nf × nf discretization is used for the concrete part of RC sections,
while reinforcing bars are modeled using a single fiber per bar with area concentrated at
the bar center. The RC section is supposed to be confined in such a way that concrete
has a sufficient ductility in compression. 3 Gauss-Lobatto IPs per FE are used since no
difference in the shakedown safety factor has been observed with 5 and 7 points. Figure 3
shows the pseudo-equilibrium path for the 2 material configurations varying the number
of fibers. It is possible to observe how the incremental-iterative process quickly converges
at the shakedown safety factor. 10 × 10 fibers give accurate results for the RC section,
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Figure 3: Pseudo-equilibrium path varying the number of fibers.

according to Tab.1, while 10 × 1 fibers per wall give practically the exact solution for
the steel section, as reported in Tab.2. In the same tables, the number of steps, the total
number of global iterations and the average number of FE iterations for each element state
determination is also reported. Around 15-20 steps provide a converged safety factor for
both RC and steel material. The number of total global iterations is generally quite small,
higher in the RC case compared to the steel one, while each element state determination
converges with an average number of 2-3 iterations. The computational cost is then very
similar to that of a standard incremental elasto-plastic analysis. Finally, the number of
fibers does not affect significantly neither the global nor the element iterative burden.

fibers λS steps total global iters mean FE iters

5× 5 1.35 19 72 2.64
10× 10 1.36 18 64 2.57
20× 20 1.37 20 94 2.70

100× 100 1.37 19 75 2.92

Table 1: RC frame: shakedown safety factor, number of steps, total number of global
iterations and average number of iterations for the element state determination

11



Domenico Magisano, Leonardo Leonetti and Giovanni Garcea

fibers λE λS steps total global iters mean FE iters

5× 1 1.19 2.15 15 37 1.93
10× 1 1.13 2.17 16 40 1.88
30× 1 1.08 2.18 17 42 1.95
30× 4 1.07 2.18 18 49 2.03

Table 2: Steel frame: shakedown safety factor, number of steps, total number of global
iterations and average number of iterations for the element state determination.
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