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ABSTRACT

In this talk, we present a new surrogate modeling technique for efficient approximation of solutions
and output quantities of parametrized partial differential equations [1]. The model is hierarchical as it
is built on a full order model (FOM), reduced order model (ROM) and machine-learning (ML) model
chain. The model is adaptive in the sense that the ROM and ML model are adapted on-the-fly during
a sequence of parametric requests to the model. To allow for a certification of the model hierarchy,
as well as to control the adaptation process, we employ rigorous a posteriori error estimates for the
ROM and ML models, see [3]. The model is therefore able to fulfill fixed or adaptively chosen error
tolerances for every requested parameter. In particular, we provide an example of an ML-based model
that allows for rigorous analytical quality statements. Numerical experiments showcase the efficiency
of our approach in different scenarios, for instance a parameter optimization problem and uncertainty
quantification. Here, the ROM is instantiated by Reduced Basis Methods [2] and the ML model is
given by a neural network, similar to [4], or a VKOGA kernel model, see [5]. However, a wide range
of ML algorithms is applicable within the modeling chain while maintaining the certification of the
results.
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