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Abstract. This paper focus on mathematical modelling and numerical simulation of human
phonation process. The mathematical FSI model is presented consisting of the description of
the structural model, the flow model and the coupling conditions. In order to treat the VFs
contact, the problem of the glottis closure is addressed. To this end several ingredients are used
including the use of suitable boundary conditions, modification of the flow model and robust
mesh deformation algorithm. The FSI model is extended to FSAI problem by inclusion of the
Lighthill model of aeroacoustics. The numerical approximation of the problem is presented and
several numerical results are shown.

1 INTRODUCTION

Mathematical models of fluid-structure interaction (FSI) problems and their numerical sim-
ulations are in last decades becoming more important in large variaty of applications. Recently,
except the aerospace, civil and mechanical engineering applications, see e.g. [4], also the numer-
ical methods for solution of FSI problems are being developed also in the field of biomechanics,
[5]. In particular let us mention the biomechanics of voice, where the methods of numerical
simulation of human phonation process are currently in an intensive development, see [22].
During the phonation the fundamental sound is created by vibrations of vocal folds induced
by the airflow coming from the human lungs. This primary sound is further modulated by the
geometry of the vocal tract corresponding to a pronounced vowel, see e.g. [7].

Although the air flow is compressible for the purpose of simulations the incompressible
model is used justified by the fact that the maximal flow velocities in the vocal tract during
phonation are well bellow 90 m/s. This peak of maximal velocity is occuring only in the
glottis area, whereas the typical flow velocities in the other areas are significantly smaller.
The compressible effects are modelled using an aeroacoustic analogy. Such approach is usually
referred to as hybrid approach, see e.g. [21].

In this paper we are concerned with the fluid-structure-acoustic interaction problem consist-
ing of the interaction of incompressible flow and a nonlinear elastic structure in 3D. The mutual
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interaction is then coupled to the acoustic problem. The problem is mathematically described
and numerically approximated.

Further attention is paid to the problem of treatment of the periodical closure of the glottal
area. Here, the approach proposed in [18, 17] is extended to the more general situation of elastic
structure. The paper is structured into this introduction followed by mathematical description
of the FSAI problem. Section 3 is devoted to the numerical approximation of the problem,
section 4 then presents numerical results obtained by the in-house developed code namely for
the three dimensional problems.

2 MATHEMATICAL DESCRIPTION

2.1 Structural model

In this section the problem of deformation of an hyperelastic structure is described mathe-
matically. Let us consider elastic structure represented by a material or reference configuration,
a bounded domain Ωs ⊂ R3 with the Lipschitz continuous boundary ∂Ωs. The elastic body
is deformed and its deformation is denoted by φ : Ω × [0, T ] → R3, where φ is supposed to
be orientation preserving bijection of Ω onto Ωφt = φ(Ω, t). For the stationary case the time
variable t is omitted in what follows, i.e. Ωφ = Ωφ(t). Here, Ωφ is called the actual configuration
and the mapping φ is called the deformation. It maps a material point x to the point in actual
configuration xφ given as xφ = φ(x), or xφ = φ(x, t). The deformation can be described with
the aid of the displacement function

φ(x, t) = x+ u(x, t) for x ∈ Ω, t ∈ [0, T ].

In what follows the following notation is used, F is the deformation gradient, C is the right
Cauchy-Green tensor and by E the Green strain tensor is denoted

F = ∇φ(x) = I +∇u, C = F TF , E =
1

2
(C − I) (1)

where the Green strain tensor is given as

E =
1

2
(∇u+∇Tu) +

1

2
∇Tu∇u, Eij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

∂uk
∂xi

∂uk
∂xj

. (2)

The governing equations of elastic structure motion are the balance equa- tions in the de-
formed domain Ωφ,t

ρφ
D2u

Dt2
−∇ · σφ = gφ, (3)

where D
Dt

denotes the material derivative, ρφ denotes the density of the material, gφ represents
the volume forces acting on the structure, σφ is the Cauchy stress tensor.

As the deformed domain Ωφ,t depends on the displacement u, it is suitable to rewrite the
equations in the reference(material) domain Ωs. In this case the equations to be solved are
given in Ωs as

ρs
D2u

Dt2
−∇ ·Σs = g, (4)

where ρs denotes the density of the material given in the reference domain, Σs is the first
Piola-Kirchoff tensor related to the Cauchy stress tensor by Σs = JσφF−T . For the Cauchy
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stress tensor it is neccessary to provide a constitutive relation, which is usually expressed in
terms of the symmetric second Piola-Kirchhoff tensor Ss, which is given by

Ss = F−1Σs = JF−1σφF−T (5)

In this paper the St.Venant-Kirchhoff material model is used as an example of hyperelastic
isotropic material. For the St.Venant-Kirchhoff model the constitutive relation is given

Ss = λs(trE)I+ 2µsE, (6)

where λs and µs denotes the Lamé coefficients related to the Young modulus E and Poisson
ratio νs.

System of equations (4) is equipped with an initial condition for u and for ∂u
∂t
, and with

mixed boundary conditions. The homogenous Dirichlet boundary condition is used everywhere
except at the interface with the fluid domain, where the boundary condition is specified by

σφ · n = T S on Γφ
Wt, (7)

where T S denotes the aerodynamic forces acting on the structure determined by the solution
of the flow model.

2.2 Flow model

First, let us emphasize that the moving structure results in the time dependent fluid domain
Ωf

t . In particular the motion of the interface ΓWt - i.e. the part of the fluid domain boundary
which corresponds to the surface of the structure neighbouring the fluid domain - needs to be
treated. The two-dimensional flow motion is described using the incompressible Navier-Stokes
equations in the ALE conservative form, cf. [12]. Let us assume that for any t ∈ (0, T ) there

exists (smooth enough) bijection of the reference configuration Ω
f

0 onto Ω
f

t , i.e. the so-called

ALE mapping At : Ω
f

0 → Ω
f

t . The ALE conservative form of the Navier-Stokes equations reads

1

JA

DAt

Dt

(
JAv

)
+∇ · ((v −wD)⊗ v) =

1

ρf
∇ · τ + f in Ωt (8)

∇ · v = 0

where v is the flow velocity, symbolDAt/Dt denotes the ALE derivative (i.e. the time derivative
with respect to the reference configuration, see e.g. [13]), wD denotes the domain velocity, ρf

denotes the constant fluid density, JA denotes the Jacobian of the ALE mapping and τ is the
Cauchy stress tensor given by

τ = −pI+ µ
(
∇v +∇Tv

)
, τij =

[
−pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)]
, (9)

where p is the pressure, µ is the viscosity and δij is the Kronecker’s delta.
System of equations (8) is equipped with an initial condition

v(x, 0) = v0(x) x ∈ Ωf
0 , (10)
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and by mixed boundary conditions. In order to specify the boundary conditions the boundary
∂Ω of the computational domain Ω is decomposed into the inlet ΓI , the interface ΓWt and the
outlet ΓO, i.e. ∂Ω = ΓWt ∪ ΓO ∪ ΓI . The following boundary conditions are used

a)− ν
∂v

∂n
+ (p− pIref )n− 1

2
(v · n)− v =

1

ε
(v − vD), x ∈ ΓI , t ∈ (0, T )

b)v(x, t) =wD(x, t) x ∈ ΓWt, t ∈ (0, T ) (11)

c)− ν
∂v

∂n
+ (p− pref )n− 1

2
(v · n)− v =0, x ∈ ΓO, t ∈ (0, T ).

2.3 Coupled problem

The fluid model (8) and the structural model (4) are coupled by two explicit conditions.
First, the kinematic boundary condition (11b) prescribed at the surface ΓWt, where the domain
velocity is equal to the structural velocity, i.e. wD = Du

Dt
.

The second coupling condition is the dynamic boundary conditions represented by the bound-
ary condition (7 b), where the vector T s is given as

T sτ f · n. (12)

with the fluid stress tensor τ f given by (9).
Last, both problems are moreover coupled due to the deformation of the domain Ωf

t , which
surrounds the vibrating surfaces of the elastic bodies Ωs

t . The ALE mapping At can be
considered as a smooth extension of the Lagrangian mapping from Ωs

ref onto the domain

Ωref = Ωs
ref ∪ ΓW,ref ∪ Ωf

ref . The ALE mapping At is described using an extension uext from

Ωs onto Ωref of the displacement u as

At(X) = X + uext(X, t) (13)

for any X ∈ Ωf
0 . This extension satisfy uext(x, t) = u(x, t) for any x ∈ Ωs

ref and for any
t ∈ (0, T ). The displacement uext can be written as a solution of an abstract boundary value
problem, see e.g. [23] or [15].

2.4 Acoustics and Aeroacoustics

For modelling of sound propagation here either the acoustic model based on the Lighthill’s
analogy or other acoustic analogies are used, see [9], [20] or [14]. For the sake of brevity only
the description of the Lighthill’s analogy is shortly discussed here. The sound propagation
is modelled in the acoustic domain Ωa which contains a (smaller) subdomain Ωf

t occupied by
a flowing (compressible) fluid, whose flow is characterized by the velocity u, the fluctuating
pressure p′ = p − p0 and fluctuating density ρ′ = ρ − ρ0. For purpose of the acoustic problem
the fluid domain Ωf

t is assumed to be fixed, i.e. Ωf
t ≈ Ωf

0 as well as the whole acoustic domain
Ωa. The fluid in the acoustic domain Ωa except Ωf

0 is assumed to be at rest with the mean
density ρ0, the mean pressure p0 and the speed of sound c0.

The acoustic analogy is derived using the momentum conservation, the assumption of the
isentropic flow and the continuity equation, , see [9]. This leads to the wave equation for the

unknown pressure fluctuation p′ = p− p0 given as 1
c20

∂2p′

∂t2
−∆p′ = 0, which describes the sound

propagation in the domain Ωa except the fluid domain, where the aeroacoustics sources needs
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to be considered. Using the same procedure the inhomogeneous wave equation for the unknown
pressure fluctuation p′ = p− p0 reads

1

c20

∂2p′

∂t2
−∆p′ =

∂2Tij
∂xi∂xj

, (14)

where on the right hand side a term describing the sound sources appears given by the so-called
Lighthill tensor Tij where the approximation for low Mach number flows is used

Tij ≈ ρ0vivj, (15)

see [10]. Equation 14 is equipped with the sound hard boundary condition prescribed at the
channel walls, the sound emitting condition is used on the part corresponding to the vibrating
surface of the vocal folds and the Sommerfeld boundary condition is used at the free field part of
the boundary, see e.g. [10]. The latter condition can be replaced alternatively by the perfectly
matched layer(PML) approach, see [20].

2.5 Glottis closure model

Several simplifications are used in order to address the closure of the glottis. First, only
the symmetric two-dimensional motion of the vocal folds is assumed and consequently the
computational domain Ωf

t is assumed to be symmetric, see Figure 1, where at the axis of
symmetry the symmetry boundary condition is prescribed. Further, only a simplified model is
used for the structure depending on two degrees of freedom similarly as in [16]. This is justified
as the dynamic mode decomposition of the motion during the phonation showed that there are
only a small limited number (2-3) of shapes involved, which well corresponds to the eigenmodes
of the structure.
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Figure 1: Computational domain for the FSI problem using the symmetry assumption for the purpose
of application of glottis closure model

The presented mathematical model is an extension of the procedure proposed in [18] and
consists of several ingredients. One of the ingredients is the already mentioned inlet boundary
condition (11b), where the inlet flow velocity is prescribed using a penalization approach.
Further, the modification of motion of the computational domain Ωf

t during the closure phase
needs to be applied. This modification is applied only for the closure phase, i.e. the case when
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the half-gap g(t) of the channel is bellow a given threshold gmin. The half-gap g(t) is computed
as (oriented) distance of the (lower part) vocal fold surface ΓW,t from the symmetry axis, see

Fig. 1. Second, such a modification of Ωf
t creates an artificial subdomain which should be

occupied by the vocal fold. Here, the modified governing equations are used. Last, the contact
in the structural domain needs to be considered. Here, only the model of Hertz’s impact forces
is discussed for the case of the simplified model.

Geometry modification For the open glottis phase, i.e. for g(t) ≥ gmin, the computational
domain Ωf

t is kept unmodified. During the closure phase, i.e for the half gap g(t) ≤ gmin, the
displacement of the VF surface ΓV F

Wt is modified in the fluid computational domain as ΓWt.
This modification creates an artificial extension ΩP

t ⊂ Ωt of the computational fluid domain,
see Fig. 2. The domain ΩP

t is determined as the part of domain which should be occupied by
the VF.

Formally the set ΩP
t is set empty, ΩP

t = ∅, for the opening phase. Similarly as in [18] we
consider the geometrical modifications based on the local deformation of the surface only at
the contact region, see Figure 2.
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Figure 2: During the contact phase the geometry of the flow domain Ωf
t does not fully follow the

motion of the structure Ωs
t but a subdomain of Ωs

t is converted into the computational fluid domain
as the porous media flow domain ΩP

t . Such a modification is made not only in the closed case (on the
left) but also in the case when then structure cross the artifical obstacle line (on the right).

Flow model modification The flow model is modified assuming that the subdomain ΩP
t is

domain of porous media with a given porosity. The flow model is then written with the aid of
modified equations formally written in the whole computational domain Ωf

t as

1

JA

DAt

Dt

(
JAv

)
+∇ · ((v −wD)⊗ v) + σP (u−wD) =

1

ρf
∇ · τ + f , ∇ · v = 0

where σP = σPχΩP
t
, χΩP

t
is the indicator(characteristic) function of the set ΩP

t and the coeffi-
cient σP > 0 corresponds to an artificial permeability of the fictitious porous media, see [2], or
it can be understand as another penalization parameter, see [1].

Impact forces model During the contact phase the Hertz impact forces are used similarly
as in [8] for the simplified problem. In this case the surface forces T s in (7b) is modified by
the addition of the Hertz impact force FH which depends on the area of overlap of the elastic
structure over the axis of symmetry. Here, a simplified model is used, where the Hertz impact
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force is distributed to the forces T s depending on the position xmax of the impact. The model
of Hertz impact forces is given as FH = kHδ

3/2(1+bH δ̇) with kH ≈ 4
3

E
1−µ2

H

√
r, where δ stands for

the penetration of the vocal fold through the contact plane (symmetry axis), bH is a damping
factor (here set to zero), r is the radius of the osculating circle (i.e. inverse of the curvature),
E is Young’s modulus of elasticity of the vocal fold and µH is its Poisson’s ratio, for values see
[8].

3 NUMERICAL APPROXIMATION

In this section the numerical approximation of the FSAI problem is described. First, we the
problem is decoupled in the fluid, structural and acoustic part. For solution of each part the
application of the finite element method is briefly described. Further, the coupling mechanism
is shortly described.

3.1 Structural model

For the sake of brevity only the linear elasticity model is assumed here and its weak for-
mulation is introduced in a standard way: the (linearized) problem (4) is multiplied by a test
function ψ = (ψi)i from the space of test functions V = {φ ∈H1(Ωs) : φ|Γs

D
= 0}, integrated

over Ωs, and with the use of Green’s theorem and boundary condition (7b) we arrive to the
weak formulation in the form(

ρs
∂2u

∂t2
,ψ

)
Ωs

+ (τ s(u), e(ψ))Ωs = (f s,ψ)Ωs + (T s,ψ)ΓW,0
, (16)

where by symbol (·, ·)M the dot product in the space L2(M) is denoted. The approximate
finite element solution of problem (16) sougth in the finite element subspace V h ⊂ V , which
is constructed with the aid of an admissible triangulation T s

h of the computational domain Ωs,
see e.g. [3], i.e. in the space

V h = V 3
h , Vh = {φ ∈ C(Ωs) : φ = 0 on Γs

D, φ|K ∈ P1(K) ∀K ∈ T s
h } ⊂ V, (17)

where P1(K) is the space of polynomials of degree less or equal one on the triangle K. The
finite element discretization leads to the system of ODEs

MsÜ + DsU̇ +KsU = bs(t), (18)

where U = U(t) is the vector of unknowns, bs(t) is the load vector, Ms is the mass matrix
Ms = (ms

ij), Ks is the stiffness matrix Ks = (ksij). The term with the matrix D represents
the (added) structural damping model based on the artificially added proportional damping
D = ϵs1M+ ϵs2K with suitably chosen parameters ϵs1, ϵ

s
2.

3.2 Flow model

For the numerical approximation of the flow model (8) the problem is formulated weakly for
the unknowns U = (v, p) leading to the equation valid for any test function V = (φ, q)

d

dt

[(
v,φ

)
Ωt

]
+
(
τ f ,∇φ

)
Ωt

+ c(w;v,φ) +
(
∇v, q

)
Ωt

+ B =
(
f ,φ

)
Ωt

,
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where w := v − wD, c represents the skew-symmetric form of the convective term, and B
represents several boundary terms depending on the prescribed boundary conditions, see [18].
Here, the test function φ is assumed to be constant with respect to the reference domain, i.e.
DAφ
Dt

≡ 0.
For the time discretization the same equidistant partition of the time interval with a con-

stant time step ∆t as for structure is used, i.e. tn = n∆t, ∆t > 0. The approximations of
velocity vn ≈ u(·, tn) and pressure pn ≈ p(·, tn) are sought at time instants tn, n = 0, 1, . . . ,
and an approximation of the domain velocity at time instant tn is denoted by wn

D. For the
time discretization the formally second order backward difference formula is used, i.e the time
derivative in

d

dt

[(
v,φ

)
Ωt

]
≈ 1

2∆t

[(
3vn+1,φ

)
Ωtn+1

−
(
4vn,φ

)
Ωtn+1

+
(
1vn−1,φ

)
Ωtn+1

]
. (19)

The weak form of the time discretized problem is then stabilized using the fully stabilized
scheme as describe in [6], modified for the purpose of the ALE mapping similarly as in [16],
due to the used ALE conservative method and for the case of glottis closure, see [18]. The
stabilized problem at time instant tn+1 form then reads: find finite element approximations
U = (u, p) := (un+1, pn+1) such that u satisfy the boundary condition (11b) and

a(U ;U, V ) + aS(U ;U, V ) + PS(U, V ) = L(V ) + LS(V ) (20)

holds for any test function V = (φ, q), where the terms a(U ;U, V ) and L(V ) corresponds to the
form (19) with the time discretization (19) used. The terms aS(U ;U, V ) and LS(V ) corresponds
to the SUPG/PSPG stabilization and PS(U, V ) represents the div-div stabilization, see [18].

3.3 Solution of coupled problem

Here, we focus only on description of the coupling of FSI problem. The coupling of acoustics
with FSI is considered only one way, i.e. the acoustics depends on the computed flow field, but
the influence of acoustics on the flow field and structural displacement is neglected.

During the computational process at any time instant tn, n = 1, 2, . . . consists of finding the
values of the velocity vn, the pressure pn, the displacement un as well as its the first and the
second derivatives u̇n and ün, respectively. Furthermore also the aerodynamical forces (T s)n
and the ALE mapping Atn needs to be determine which describes the computational domain
Ωf

tn as well as the domain velocity wn
D. The values for n = 0 at time instant t0 are given by

the specified initial condition.
Starting at time instant tn we assume that all values are known. The solution procedure can

be briefly described as the following steps

O. Approximate the aerodynamical forces T s
n+1 at tn+1 by extrapolation from the previous

time steps.

I. Using the approximation of the aerodynamical forces T s
n+1 compute the displacement of

the elastic domain un+1 at time tn+1.

II. Deform the computational domain Ωf
tn+1

and construct the ALE mapping Atn+1 and ALE
domain velocity wD at time tn+1.

8
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III. Solve the fluid flow problem and determine the flow velocity vn+1 and the pressure pn+1.

IV. Compute the aerodynamic forces acting on the structure.

V. Check whether the aerodynamic forces differs from the previous approximation T s
n+1:

If no, set n := n + 1 and continue with the step O. If yes, use the newly computed
aerodynamic forces T s

n+1 and with the step I.

3.4 Acoustics

The numerical approximation of the acoustic problem is performed in the standard way.
The problem is weakly formulated and spatially discretized by the finite element method. For
the aeroacoustics the Lighthill tensor is approximated by the convective part Tij ≈ ρ0vivj,
i.e. only the Lighthill analogy for low Mach number is considered. The acoustic pressure p′ is
approximated by the function p′h at any time step from the standard scalar finite element space
Vh of the piecewise linear functions. Such a approximation leads to the second order system of
ODEs in the form

1

c20
MaP̈ +KaP = ba(t), (21)

where P denotes the vector of unknowns Ma and Ka denote the acoustic mass and the stiffness
matrices, respectively, and the vector ba(t) corresponds to the aeroacoustic source terms for
the Lighthill analogy. The arising system of ODEs is numerically discretized in time by the
classical Newmark method.

4 NUMERICAL RESULTS

4.1 Modal analysis

First, the natural modes of vibration inherent to the elastic vocal folds are investigated.
Here, two models of vocal folds are considered. The first one corresponds to the reference [8],
where the homogenous material is considered with Young modulus E = 8kPa, Poisson ratio
µ = 0.4 and the density ρs = 1000kg / m3. The second model is more complicated model
consisting of several layers of materials, see [24].

The first four eigenmodes and eigenfrequencies of the VF model MALE-SYM are shown
in Figures 3. The first four lowest eigenfrequencies are f1 = 101.8159Hz, f2 = 147.5051,
f3 = 160.3396 and f4 = 175.3797, where frequencies f1 and f3/4 are almost identical to the
frequencies considered in article [16] (100 Hz and 160 Hz). Comparison of the eigenmodes
in Figure 3 shows that the modes related to f1 and f3 well agrees with those determined in
the two-dimensions. The mentioned frequencies corresponds well with the interval of the male
VF vibration fundamental frequency 85 − 155 Hz as published by [19]. Similar findings were
obtained for the second VF model.
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Figure 3: Eigenmodes of the structure corresponding to the eigenfrequencies f1 and f4.

4.2 Acoustic resonant frequencies of vocal tract

The sound created by the flow-induced vibration of VFs at the larynx propagates by the vocal
tract (VT) to the mouth and further exterior. The characteristics of propagated sound is mostly
influenced by the VT resonances. In the case of mathematical modelling these resonances can
be significantly influenced also by the shape of the fluid flow domain Ωf

t or by the shape of the
connection of the flow domain to the acoustical domain. In order to analyze this influence several
VT models are analyzed here in order to find their acoustic resonant frequencies, which are, in
the human phonation context, usually called formants. Formants are usually characterized not
only by the resonant frequency peak but also by the formants bandwidth, see [19].

The part of acoustic domain Ωa
tract representing a VT model for the vowel [u:] is shown in

Figure 4 together with the transfer function, where the formants were identified in the expected
range.

Figure 4: The geometry of the vocal tract and its formant detection using the transfer functions
approach.

5 SUMMARY

In this paper the detailed mathematical model of the human phonation was introduced,
where several phenomena was considered: namely the vibration of elastic vocal folds was treated
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using the solution of hyperelastic problem, the air flow was described using the incompressible
Navier Stokes equations and the Lighthill’s acoustic analogy was used for treatment of the
acoustic problem. The numerical approximation of the roblem was performed with the aid of
the finite element method in space. The strongly coupled partitioned algorithm was used.
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[16] P. Sváček and J. Horáček. Numerical simulation of glottal flow in interaction with self
oscillating vocal folds: comparison of finite element approximation with a simplified model.
Communications in Computational Physics, 12(3):789–806, 2012.
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[21] P. Šidlof, J. Horáček, and V. Řidký. Parallel CFD simulation of flow in a 3D model of
vibrating human vocal folds. Computers & Fluids, 80:290–300, 2013.
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