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ABSTRACT

The damage of mechanical structures is a permanent concern in engineering, related to issues of
durability and safety. The theme is currently the subject of various research activities; a typical
example is the ERC project DREAM-ON (2021-2026), in which this work is involved, which focuses
on complex mechanical structures in composite materials and aims to address the numerical challenges
related to integrated health monitoring of large-scale structures, in order to move from smart materials
to smart structures, able to monitor their condition autonomously and operate safely even in degraded
mode. More specifically, the work addresses a particular challenge of the ERC project; it aims at
building an efficient numerical procedure for the assimilation of data from distributed fiber-based
sensors. The idea is to create a hybrid numerical twin, combining physical models (which represent
a rich history of engineering sciences, and which provide a strong a priori knowledge) and learning
techniques from AI (here, neural networks). To get rid of model bias, neural networks, known as
universal approximators, can be used to represent the constitutive relation. Yet, classical neural
networks (in the sense that they are not informed by physics), have the disadvantages of requiring
very large volumes of data to be trained, as well as decreasing accuracy when generalizing to new
data. Coupling techniques between machine learning and physical models help to alleviate frequent
concerns in neural network such as the lack of physical consistency, lack of generalization and difficulty
to train (quantity of data, hyperparameters tuning).

Here, a method using neural networks for learning behavior laws in the form of thermodynamic
potentials is proposed. In this approach, the architecture of the network satisfies thermodynamic
principles thanks to computation of some quantities by automatic differentiation as well as convexity
properties imposed in the neural network structure. Coupling physical knowledge with neural network
for constitutive modelling is now an emerging field and two trends can be distinguished.

A first community aims to train neural networks in a supervised learning procedure with strain-stress
database (or strain-free energy) generated from a known constitutive model [1, 2, 3, 4]. As the forward
pass of a neural network can be easily parallelized, the use of neural network after training can achieve
high gain in computational time when the initial model is costly to compute, for example in the case
of microscale modelling. Even though the goal of this paper is not part of this trend, inspiration can
be found in the way to include physical knowledge.

One other goal - the one of this work - is to discover constitutive relation from observations. Measuring
strain-stress couple with complex loading is today a challenge, so the supervised training procedure
cannot be used to train neural network. In [5] and [6] methods tackled the issue of unsupervised train-
ing of neural network for constitutive modelling but full-field displacement observations are needed.
The presented work proposes an unsupervised method based on the minimization of the modified
Constitutive Relation Error [7] to train a thermodynamics-consistent Neural Network with partial
strain observations. The methodology will be illustrated and analyzed on different test cases.
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