14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020

Virtual Congress: 11-15 January 2021

F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

VERIFICATION OF BDF TIME-INTEGRATION METHOD WITH
VARIABLE STEP SIZE

CHRISTIAAN M. KLAIJ!

Maritime Research Institute Netherlands'
P.O. Box 28, 6700 AA Wageningen, The Netherlands
c.klaij@marin.nl, www.marin.nl

Key words: Time integration, Backward Differentiation Formulas, variable step size, incompressible
flow, Navier-Stokes equations

Abstract. Solution methods for systems of ordinary differential equations with variable step size
base their choice for the step size on (an estimate of) the local truncation error. Significant savings in
computational effort can be obtained as the step size is only refined when necessary. We first summarize
the information that is needed for a variable step size BDF2 method in a way that is directly suitable
for implementation in an existing code. We then propose a solution verification procedure that does not
require direct control of the step size to carry out refinement studies and apply it to a textbook example.
Finally, we explore the use of the variable step size BDF2 method for time integration of the Navier-
Stokes equations in the CFD package REFRESCO and find plausible results for vortex shedding in the
wake of a cylinder, but no major savings for this particular case.

1 INTRODUCTION

With the ever increasing computational power, unsteady simulations are coming within reach of research
and commercial CFD applications in the maritime industry. This trend motivates the study of time
integration methods, in an effort to better understand the time step dependence of such simulations and
to explore more efficient alternatives.

The time integration methods of choice in many CFD packages are the first-order backward Euler
method and the second-order BDF2 method, due to their robustness and proven ability to solve the
unsteady (Reynolds-averaged) Navier-Stokes equations, typically discretized with second-order finite-
volume methods. Both methods are members of the family of n-step Backward Differentiation Formulas
(BDFn), backward-Euler being equivalent to BDF1. This family of implicit time integration methods is
favored for its ability to solve non-stiff and stiff problems, with constant and variable step size and with
an accuracy ranging from first up to sixth order. These methods and their advantages compared to other
methods are well-described in the textbooks by Hairer, Ngrsett and Wanner [4, 5].

As a first step, the variable step size BDF2 method was selected for implementation in MARIN’s CFD
software package REFRESCO [7]. Itis a logical extension of the current method from constant to variable
step size. The step size selection is guided by an estimate of the local truncation error. We hope for
significant gains in efficiency by adjusting the step size to the flow instead of having a constant (small)
step size during the entire simulation. In Section 2 of this paper, we present a variable step size BDF2

Christiaan M. Klaij

method in a way that is directly suitable for implementation in REFRESCO or any other code.

The relation between the (estimated) local truncation error and the global error is not always trivial. So
the fact that a certain tolerance is met for the error estimator does not exempt us from the next step: so-
lution verification. Verification and Validation [8] studies provide confidence in the overall quality of the
numerical modeling and solution. The intricacies of solution verification procedures for unsteady flows
have recently been discussed in [3]. In essence, these procedures rely on systematic mesh and/or time-
step refinement studies, where the observed order of convergence is compared to the theoretical order.
This raises the question of how to perform a refinement study when the step size is chosen automatically,
instead of being controlled by the user. We will attempt to answer this question in Section 3 and show
solution verification results for the textbook demonstration case known as the Brusselator, consisting of
two coupled nonlinear ordinary differential equations.

As final step, we explore the applicability of the variable step size BDF2 method to time-integration
of the incompressible Navier-Stokes equations in Section 4. After discussing some of the challenges
encountered during the implementation, we show some preliminary results for the archetypal unsteady
flow in the wake behind a circular cylinder before drawing conclusions in Section 5.

2 VARIABLE STEP SIZE BDF2 METHOD

Solution methods for (systems of) ordinary differential equations are well-described in the textbooks by
Hairer, Ngrsett and Wanner [4, 5], including the Backward Differentiation Formulas (BDF) with variable
step size that are of interest here. The information, however, is scattered over hundreds of pages, with
methods written in general form for arbitrary order of accuracy, using sums and products with recursively
defined terms. Besides, the step size selection procedure is mainly described for Adams methods, not
for BDF methods. Therefore, in this section, we gather the information that is needed for a variable step
size BDF2 method and present it in a way that is directly suitable for implementation in REFRESCO or
any other code.

2.1 BDF methods with constant step size

Consider the ordinary differential equation y'(x) = f(y(x)) where (-)’ denotes differentiation with respect
to x, with f a given function and y(x) the unknown solution, with given initial value y(xo) = yo. This
is the notation from the textbook [4, Sec.l.1, p.2] that we will follow in the remainder. The six stable
BDF methods with constant step size are listed in [4, Sec.Ill.1, Eq.(1.22”), p.365]. The first three BDF
methods are

Y1 —Yn = hfni1

3 1
Eyn-i-l —2yn+ Eyn—l = hfut1

11 3 1
—YVnt1 = 3Yn+ =Vn-1— zYn—2 = hfni1

6 2 3
where y, is the numerical approximation to the exact solution y(x,), f, = f(y,) and h is the constant
step size of the uniform mesh x; = xo + ih with i =0, 1,. .. These implicit non-linear equations are solved
(iteratively) for y,+1. The methods are respectively first-, second- and third-order accurate.

Christiaan M. Klaij

2.2 Error estimator

The local truncation error (LTE) for step 7 is defined as y(x,) — y,. By approximating the exact solution
y(x,,) with the higher-order BDF3 method, we get an error estimator ygpr3 — yppr2 for the lower-order
BDF2 method:

1 1
Y(Xng1) = Y1 = 3Vt = YnFYn-1 = 3¥n-2)]

Notice that this error estimator can be directly calculated once y, 1 has been obtained with BDF2 and
Yns Yn—1 and y,—o are kept in memory. It does not require an additional iterative solution with BDF3, but
merely the additional storage of y,_». The idea of approximating the LTE as the difference of a higher-
and lower-order method, assuming a constant step size, is described in [4, Sec.IIl.7, p.421] for Adams
methods.

2.3 BDF2 method with variable step size

The second BDF method with variable step size is given in [4, Sec.IIL.5, Eq.(5.14), p.401] and can be
written as:

142w, (1+w,)? w2
- — + _1=h 2
14w, Yn+1 1+w, Yn 1 Wnyn 1 nfnt1 ()

with w,, = h,,/h,_; the step size ratio and h, = x,,+1 — x,. The other BDF methods are not explicitly
listed, but given in general form using (recursive) divided differences in [4, Sec.IIL.5, Eq.(5.12), p.400].

2.4 Stability

The BDF methods with variable step size are stable under certain restrictions [4, Sec.IIL.5, Th.5.5, p.402]
of the variation:
o< hn/hn—l < Q

The actual values for the lower bound ® and upper bound Q are given in [4, Sec.IIL.5, Tab.5.1, p.405].
For the BDF2 method these values are quite mild:

0< hy/hp 1 <1+V2~2414

This states that the current step can be arbitrarily smaller than the previous one, but at most 2.4 times
larger. For third- and higher-order BDF methods these values are much more restrictive.

2.5 Convergence

The global error can be found by considering the local error at each step, propagating these errors and
summing them at the final time. Under certain conditions expressed in [4, Sec.IIL.5, Th.5.8, p.407], the
global error satisfies

Hy(xn) _ynH < Ch? (3)

with 4 = max h; the maximum step size during the computation and p the theoretical order of grid con-
vergence, with p = 2 for the variable step size BDF2 method.

Christiaan M. Klaij

2.6 Step size selection

A procedure for automatic step size selection is given in [4, Sec.Il.4, p.167] for Runge-Kutta methods
and in [4, Sec.IIl.7, p.421] for Adams methods. The main idea is that a starting size is chosen and the
solution and its error estimator are computed. The step is accepted if the error is below the desired
tolerance and the size can be increased for the next step. Otherwise, the step is rejected and the size is
decreased for a new try. The change in step size depends on the difference between the error and the
desired tolerance. For a step of size h, the relative error is defined as

Xn) — .
err = |y("S)Cy"| with s¢ = Aol + max{|yn|, |[yn—1|}Reol 4)
and the new step size is obtained by
Npew = hmin {Fmax, max{ Fin, (1 /err)ﬁF}} 5)

with factors F = 0.8, Fnin = 0 and Fiax = 2.414, if the previous step was accepted, or Fy.x = 1 if it was
rejected. Notice that the order p leads to the power (-) 13 for the BDF2 method. If y is a vector, the error
can be evaluated in the /; or [, norm.

2.7 Dense output

Remember that the error estimator y(x,) — y, assumes a uniform grid with step size h. This requires dense
output: the accurate interpolation of intermediate values from the given non-uniform distribution. Dense
output using Hermite interpolation is discussed in detail for Runge-Kutta and other methods [4, Sec.11.6],
but not for BDF methods. The reason is probably that BDF methods offer dense output by definition. The
BDF3 method on which the error estimator is based by definition constructs a polynomial ¢(z) through
the points (X41,Yn+1)s (XnyYn)s (Xn—15Yn—1), (Xn—2,Yn—2) such that ¢’ (x,+1) = f(Yu+1), see [4, Sec.IIL5,
Eq.(5.11), p.400]. Therefore, the solution at another point ¢ in the interval can simply be obtained by
evaluating ¢(¢). The polynomial ¢(¢) for the BDF3 method is given as a sum over j of divided differences
&/

Jj=0: 82+1
j=1: + (= Xnr1)8) 4
j=2: +(t—xn+])(t—xn)5%+l
j=3: +(t_an)(t_xn)(t_xnfl)afz-s-l =q(t) (6)
The divided differences are recursively defined as:
52 o 82
Jj=3: 1 = A
Xp+1 — Xp—2
1 1 1_sl
2 =t g Yo
Xn+1 —Xn—1 Xn —Xp—2
0_g0 0 0
j=1 §! = 62+1 _62 Sl — 871 _Snfl Sl — 8nfl _8n72
" Xn4+1 = Xn Xn — Xn—1 nl Xn—1—Xpn-2
Jj=0: &=y 8y = v 80 = Va1 82 =yn2

Christiaan M. Klaij

2.8 Algorithm

The algorithm for integration with automatic step size selection can be summarized as follows:
1. Given y,, y,—1 and step size h,, compute y,.| by solving Eq. (2).
2. Calculate the values y: |, = q(x, —hy) and y;_, = g(x, —2h,) using Eq. (6).
3. Calculate the scaled error from Eq. (4) using Eq. (1) with y,11, y,, y,_; and y; _,.
4. Calculate the new step size from Eq. (5).
(a) if err < 1, accept the current step and take the next step with size /ey

(b) if err > 1, reject the current step and retake with size fipey

2.9 Error estimator with variable step size?

In [2], the LTE is approximated as the difference between the BDF2 and BDF3 method with variable
step size, which seems logical at first sight. We tried this approach but found that the refinement process
fails when (very) small values are chosen for the relative tolerance. After a number of accepted steps,
the new step does not satisfy the tolerance, and is decreased. But even a decrease to zero fails! This
behavior was not due to an implementation issue, nor to a faulty expression of the LTE, but rather to a
reasoning mistake: the LTE estimator does not tend to zero if the last step A, is decreased, while h,,_|
and h,_, remain fixed. That is why the procedure proposed in [4] interpolates the previous values y,_
and y,_; to a uniform grid with step size h, before computing the error estimate. It ensures that the error
estimator tends to zero as , tends to zero. Therefore, any tolerance can be satisfied by reducing the step
size sufficiently.

3 VERIFICATION METHOD FOR VARIABLE STEP SIZE
3.1 Brusselator example

To gain some experience with this method, we first tried the so-called Brusselator example [4, Sec.1.16,
Eq.(16.12), p.116]. Here, y is a vector with two components and the non-linear function f(y) is given by

Yy =A+yy— (B+ 1)y
b = By1 — yiy2

with parameters A = 1, B = 3 and initial position (1.5,3.0). The solution is periodic and describes an oval
trajectory in the (y;,y,)-plane, see Figure 1. A Newton solver is used for the non-linear system. Figure 2
shows the solution y1(x),y,(x) for the first three cycles. A relative tolerance of 10~ was prescribed,
meaning that the estimated error is less than 0.1% of the solution at each step. A total of 179 steps was
needed, with 15 rejected steps. These rejections typically occur around the sharp bends in the trajectory
where the step size must be refined to meet the tolerance. The step size varies between 0.01 and 1 which
suggests huge savings compared to a constant step size method with step size fixed to the minimum of
0.01. Table 1 shows how the number of steps increases as the relative tolerance is tightened. Notice that
(very) small tolerances are achieved without a dramatic increase in the number of rejected steps. Exact

Christiaan M. Klaij

— trajectory

yl

Figure 1: Trajectory of the Brusselator example from starting point (1.5,3.0) to position at time x = 7.8 using the
automatic variable step size BDF2 method with Ry, = 1073,

Table 1: Number of steps for the Brusselator example for various tolerances.

Riol steps accepted rejected
1071 34 27 7
1072 100 86 14
1073 179 164 15
1073 745 740 5
1078 7381 7377 4

comparison with [4] is not possible because the Adams methods are used there instead and both step size
and order of the method are adjusted. Nevertheless, the results are in overall agreement: similar step
sizes and similar refinement when the solution varies strongly.

3.2 Solution verification method: constant versus variable step size

As convincing as the demonstration above may be, it does not consider the quality of the solution, which
is addressed here using solution verification. Although ‘exact’ solutions exist for the Brusselator example
in the form of infinite series [1], we will assume the more general situation where an exact solution is not
available and continue with solution verification based on refinement studies. Such studies do not require
access to the source code and can therefore be carried out by any user for any case. The main question
to be answered here is how to perform a refinement study when the step size is chosen automatically
instead of being chosen by the user.

As quantity of interest, we choose the norm of the position vector (y;,y;) at ‘time’ x = 7.8, which covers
the start-up and the three sharp bends of the trajectory. The observed convergence rate can be computed

as
|04 — d2n]

| 021 — On|

rate =

Christiaan M. Klaij

5 T T /./','..‘\ T T |/’/.‘"..'.‘| T v ;7/'/.
4 ™ . ..’. o« .‘g y2 ,,‘,/,4',, .
ol : ~ B
3t e %{\ - ,{\& 1
b o H .\ ; y
2 w : :’i \ i
P H S
1 i -
e e e v e '..," V L
0 Il Il 1 1 1 |)) -
1€ T T T T T T : —
: step size
. /) h/’—\ o
| PR g ..“(.m./
0.1; L& "f“ Lz. "f“ E
E ; :
A Y i
v of
0.01 L 1 I L |) . | |
1F T T T T T T . - ,
01 F error estimate E
001 £ target (rtol 1€-3) --------]
006881 'i\?s_...mf-‘,“, R T P TN
. : ;
1e-05 F 3
1e-06 & L 1 L 1 | | | | |
0 2 4 6 8 10 12 14 16 18 20

Figure 2: Three cycles of the Brusselator example using the variable step size BDF2 method with Rio; = 1073.

with ¢, = ||(y1,y2)]| the norm of the position vector at x = 7.8. For the constant step size BDF2 method,
the subscript /2 denotes the step size. Since the global error scales with Ch” in the asymptotic regime and
the order p is equal to two for the BDF2 method, the observed rate should be around four if the method
is correctly implemented. This is indeed the case as seen in Table 2. Notice that we do not compute the
order p itself because doing so would assume equal step size ratio’s, see [3, Eq. (7)], which is trivial for
constant but not for variable step size.

For a variable step size, the user controls the tolerance Ry, not the step size itself. Therefore, the first
(naive) approach would be to interpret the subscript & as the prescribed relative tolerance, and succes-
sively halve it to carry out the refinement study. The surprising result of this approach is shown in
Table 3: the observed convergence rate has dropped well below two! However, this does not indicate an
implementation issue. Remember from Eq. (3) that the global error is supposed to scale with Ch? with
h = maxh; and p = 2 for variable step size BDF2. But in Table 3, we notice that max A; is not halved
when the relative tolerance is halved. Instead, as shown by Eq. (4) and Eq. (5), the step size h scales
with (1/err)'/3 and (1 /err) scales with Ry, . Thus, halving Ry only reduces the step size & by a factor
21/3 ~ 1.25. As a result, the observed convergence rate becomes 22/3 ~ 1.58 instead.

This relation between the relative tolerance and the (maximum) steps size directly points to a more savvy
approach: reduce the relative tolerance by a factor eight instead of two. This should indirectly reduce the
step size by a factor 8!/3 =2 and show the expected convergence rate of four if the method is correctly
implemented. This is confirmed by the results in Table 4. Notice that the first two steps in the simulations
from Tables 3 and 4 are taken with the constant step size & of the corresponding row in Table 2. This
explains the small differences in results for Ry, = 2-15 and 2~ !8. More elaborate starting procedures can

Christiaan M. Klaij

Table 2: Standard convergence study of position at x = 7.8 with constant step size BDF2.

h steps [(r1532)] rate
2-4 125 2.93359910 -
273 250 2.94047485 -
26 500 2.94301065 2.71
277 1000 2.94373770 3.49
2-8 2000 2.94393036 3.77
279 4000 2.94397984 3.89

210 8000 2.94399237 3.95
2-1 16000 2.94399553 3.97
2712 32000 2.94399632 3.99

Table 3: Naive convergence study of position at x = 7.8 with variable step size BDF2 (halving Ryo)).

Riol max h; steps | y2)l rate
2-12 0.34 123 2.89705272 -
2-13 0.26 157 2.92275801 -
214 0.27 199 2.93345705 2.40
271 0.18 252 2.93839611 2.17
216 0.14 317 2.94087052 2.00
217 0.11 398 2.94218145 1.89
218 0.093 501 2.94291838 1.78
2719 0.075 630 2.94334639 1.72
2720 0.059 792 2.94360079 1.68

be found in[4, Sec 11.4,p.169].

Now that the calculations with both constant and variable step size have been verified, we face the fact
that the performance of the variable step size BDF2 method is disappointing. For instance, imagine that
four significant digits would be desired for the position at x = 7.8. With the constant step size method, we
can see in Table 2 that we would need 7 =277 2 0.0078 and 1000 steps to achieve this level of precision.
With the variable step size method, Table 4 shows that we would need Ry = 2721 ~4.7-1077 and 995
steps, despite the fact that the maximum steps size of 0.046 is significantly higher than the constant step
size of 0.0078. Clearly, there must also be a large number of significantly lower step sizes involved.
At this point, it is unclear whether this is the expected behavior for this particular case. It points to a
wider shortcoming of the verification process: by refinement studies we can verify stability (the method
converges) and consistency (it converges with the expected rate) but not actual performance.

4 APPLICATION TO NAVIER-STOKES SOLVER

Time integration with automatic step size selection is standard in the solution of ordinary differential
equations, but it is certainly not standard in CFD packages. Besides fundamental reasons, if any, this
may be explained by practical challenges that we discuss first.

Christiaan M. Klaij

Table 4: Savvy convergence study of position at x = 7.8 with variable step size BDF2 (indirectly halving max #;).

Riol max h; steps |1, p2) || rate
2-12 0.34 123 2.89705272 -
271 0.18 250 2.93533722 -
218 0.093 499 2.94210815 5.65
221 0.046 995 2.94355214 4.69
22 0.023 1988 2.94388859 4.29
2727 0.011 3972 2.94396996 4.13
2730 0.0059 7940 2.94398997 4.06
2733 0.0029 15875 2.94399494 4.03
2736 0.0014 31743 2.94399617 4.02

4.1 Challenges

The target CFD package REFRESCO solves the incompressible (Reynolds-averaged) Navier-Stokes equa-
tions, discretized with a finite volume method on unstructured meshes of arbitrary polyhedral cells with
all variables co-located in the cell centers. The equations are linearized with Picard’s method and solved
iteratively with pressure-correction type methods [6]. All governing equations except the pressure cor-
rection equation are cast in the generic form

BT -
/ng\/—l—/sq)v-ndS—/S,uW)-ndS—/Vst

with ¢ the generic field, v the velocity, u the (effective) viscosity, s a source term and V a control volume
with surface S. This equation can be recast in the form ¢’ = f(¢) where the ()’ denotes differentiation
with respect to 7. Replacing 7 by x and ¢ by y, we arrive at the textbook notation y'(x) = f(y(x)) for
ODE’s that was introduced in Section 2.

The application of the variable step size BDF2 method requires (a) additional storage of the solution
at level n — 2 for the error estimator and (b) the ability to reject a time step and return to the previous
state to retake the step with a modified size. Point (a) mainly raises concerns about memory usage and
was tackled by defining a master variable, tentatively set to the momentum magnitude ||pv/||, for which
an additional level n — 2 is stored. This only adds a single scalar field to the storage and covers the
three momentum equations at once. Since the mass equation does not have a time derivative, it was not
considered. The error is solely estimated for this master variable to control the step size selection. Point
(b) is more challenging, as it requires the storage of the exact state at the beginning of each time step and
precludes the overwriting of quantities such as fluxes and gradients, during the iterative process between
time steps. In case of mesh motion, deformation and adaptive refinement (not considered here), this also
concerns the overwriting of geometrical quantities that change at the beginning of a new time step. Thus,
it may be tempting to apply the method without rejection first. However, we found that this leads to very
irregular patterns where a large step, that should have been rejected, is typically followed by a series of
steps that are rather small.

Christiaan M. Klaij

.
= §

—

0
i
///
)
il

!
h

1l
///
i

Figure 3: Impression of mesh and vortex shedding behind circular cylinder at Re = 200.

Table 5: Total number of time steps and outer loops for the cylinder case during ¢ Ure;/D = 10.

step size (At Urer/D
Riol steps outer loops o X

n.a. 200 20749 constant 0.05
1073 64 accpt + O rejct 19078 0.12 0.19
5-10~* 94 accpt + 2 rejct 19534 0.077 0.14
2.5-107* 171 accpt + 22 rejct 20795 0.037 0.10

4.2 Vortex shedding example

Vortex shedding flow around a circular cylinder was selected as the archetypal unsteady case that is well
documented and easy to replicate for any code. The Reynolds number is 200 and a very coarse block-
structured mesh is used as shown in Figure 3. When the target tolerance is set to 1073, we see in Figure 4
that the time-step size varies between AtUys/D = 0.01 and 0.02 and repeats its variation together with the
shedding cycles. There seems to be some relation between the step size and the lift and drag coefficients,
with smaller step sizes around their minimum and maximum. Compared to Figure 2 of the Brusselator
example, the signals are much smoother and hence do not require significant variation in step size.

Table 5 shows the effect of the relative tolerance: for lower tolerances, there seems to be a larger variation
in step size and an increase in the number of rejected steps. The performance is measured in terms of the
number of outer loops. At each time step, an iterative convergence tolerance of 10~% must be satisfied:
for the constant step size of 0.05 this typically requires ten outer loops, but this number increases as the
step size increases. For fair comparison, we also count the outer loops carried out during the rejected
time steps. As a result, the variable step size BDF2 method is not significantly cheaper because the
saving in number of steps is almost entirely negated by the increase in outer loops per time step. The
(almost linear) increase of the number of outer loops with the step size is probably related to the Picard
linearization of the momentum equations.

10

Christiaan M. Klaij

1.6 T T T T T 1
Drag coef —e—

— 155 o ., Pt R Lift coef -—e-— | 15
8 —
<3 e o
(8] [g
1.5 I~ ./ 0 8
g s / \ e
e -
1.45 L\/ Ceee® . 05
1.4 |
0.25

S mvﬁfﬁi}x

0.05 -

01k error estimate ——+—
0.01 E target (rtol 1e-3) --------

000 1 r,' PAr 0‘0“;'" .'_'."4'/"“""'6—"&'0'/'”‘;'.';'.'5** L g DAL L ‘u:.' At o g & PR r“c:.'.';"' “e-o-w g
0.0001 F
1e-05 F

1e-06 L 1 1 1 1 1
52 54 56 58 60

tUref/D

Figure 4: Cylinder lift and drag coefficients using the automatic variable step size BDF2 method with R = 1073.

4.3 Solution verification?

Solution verification of periodic unsteady flow is a delicate matter as pointed out in [3] for a one-
dimensional manufactured solution. The initial condition already exerts an influence, iterative errors
may propagate to the next time step and statistical errors may occur. All of these errors must be quanti-
fied and controlled before the discretization error can be measured. An additional complication here, is
that the period is now part of the solution instead of being known from the manufactured solution. Al-
though these difficulties can be overcome, for instance by using some signal analysis software, it defeats
the purpose of presenting an easily replicable benchmark case. Added to the previous observation that
the flow does not require significant step size variation, we can only conclude that this case is not ideal
for evaluating adaptive time-integration methods.

S CONCLUSIONS

In this paper, we gathered from Hairer, Ngrsett and Wanner’s textbooks all the information needed for the
implementation of a second-order Backward Differentiation Formula (BDF2) with automatic step size
variation, guided by an estimate of the local truncation error. Along the way, we clarified some points
that can easily be misunderstood, such as why a BDF3 solve is not necessary despite the error estimate
being based on the difference between second- and third-order solutions, and why dense output is used
to evaluate the error estimate with equidistant spacing.

This variable step size BDF2 method was then applied to the textbook example known as the Brusselator
to verify that the step size is refined and coarsened in overall agreement with the textbook results. How-

11

Christiaan M. Klaij

ever, the fact that a certain tolerance is met for the (estimated) local truncation error does not exempt
us from solution verification, which concerns the global error. Since the usual approach of successively
halving the (constant) step size to measure the convergence rate cannot be applied to variable step size
methods, we proposed a solution verification method that indirectly halves the maximum step size by
reducing the tolerance with a specific factor. The method was called ‘savvy’ as opposed to the ‘naive’
idea of halving the target tolerance because it requires knowledge of the step size selection procedure
to determine the appropriate factor. This information should not be hidden from end-users if we expect
them to carry out their own solution verification studies.

Finally, we explored the use of the variable step size BDF2 method for time integration of the Navier-
Stokes equations in the CFD package REFRESCO by simulating laminar flow around a two-dimensional
circular cylinder. Although there are some practical issues, such as the ability to reject time steps that
fail to meet the target tolerance, we did find the method to be feasible and obtained plausible results for
the variation in step size. This example probably did not show significant savings in computational time
because the flow is quite regular, which does not leave much room for step size variation. Also, solution
verification is not straightforward for this case. Further work should aim at defining a benchmark case
that does highlight the benefits of variable step size, yet is easy to replicate with various codes and more
amenable to solution verification.

REFERENCES

[1] G. Adomian. The diffusion-Brusselator equation. Computers & mathematics with applications,
29(5):1-3, 1995.

[2] E. Alberdi Celaya, J. J. Anza Aquirrezabala, and P. Chatzipantelidis. Implementation of an adaptive
BDF2 formula and comparison with the MATLAB Odel5s. Procedia Computer Science, 29:1014—
1026, 2014.

[3] L. Eca, G. Vaz, S. L. Toxopeus, and M. Hoekstra. Numerical errors in unsteady flow simulations.
Journal of Verification, Validation and Uncertainty Quantification, 4, 2019.

[4] E. Hairer, S. P. Ngrsett, and G. Wanner. Solving ordinary differential equations 1. Nonstiff problems.
Springer-Verlag Berlin Heidelberg, 1993.

[5] E. Hairer and G. Wanner. Solving ordinary differential equations II. Stiff and differential-algebraic
problems. Springer-Verlag Berlin Heidelberg, 1996.

[6] C. M. Klaij and C. Vuik. SIMPLE-type preconditioners for cell-centered, colocated finite volume
discretization of incompressible Reynolds-averaged Navier-Stokes equations. International Journal
for Numerical Methods in Fluids, 71(7):830-849, 2013.

[7] Maritime Research Institute Netherlands. ReFRESCO Web page. http://www.refresco.org,
2020. Accessed: July 9, 2020.

[8] P. J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa
Publishers, Albuquerque, New Mexico, 1998.

12

