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Abstract In this two-part paper we begin the development
of a new class of methods for modeling fluid–structure inter-
action (FSI) phenomena for air blast. We aim to develop
accurate, robust, and practical computational methodology,
which is capable of modeling the dynamics of air blast cou-
pled with the structure response, where the latter involves
large, inelastic deformations and disintegration into frag-
ments. An immersed approach is adopted, which leads to
an a-priori monolithic FSI formulation with intrinsic contact
detection between solid objects, and without formal restric-
tions on the solid motions. In Part I of this paper, the core
air-blast FSI methodology suitable for a variety of discretiza-
tions is presented and tested using standard finite elements.
Part II of this paper focuses on a particular instantiation of
the proposed framework, which couples isogeometric anal-
ysis (IGA) based on non-uniform rational B-splines and
a reproducing-kernel particle method (RKPM), which is a
Meshfree technique. The combination of IGA and RKPM is
felt to be particularly attractive for the problem class of inter-
est due to the higher-order accuracy and smoothness of both
discretizations, and relative simplicity of RKPM in handling
fragmentation scenarios. A collection of mostly 2D numeri-
cal examples is presented in each of the parts to illustrate the
good performance of the proposed air-blast FSI framework.
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1 Introduction

In this two-part paper, motivated by applications stemming
from extreme events occurring as a result of man-made or
natural disasters, we begin the development of a new class of
methods for modeling fluid–structure interaction (FSI) phe-
nomena in the regimeof explosions or blast. In this setting,we
aim to develop accurate, robust, and practical computational
methodology, which is capable of modeling the dynamics of
air blast coupled with the structure response, where the lat-
ter involves not only large, inelastic deformations, but also
disintegration into fragments, which typically occurs during
explosions.

In the development of the aforementioned framework, the
followingmodeling and computational challenges need to be
addressed: (1) the air flow is in the regime of high Reynolds
and Mach numbers, requiring the fluid mechanics numerical
formulation to be simultaneously accurate and robust; (2) the
solid objects undergo large inelastic deformations, come in
and out of contact with one another, and often fragment into
smaller pieces, which requires advanced modeling and dis-
cretization techniques for the solid itself, as well as the good
management of the fluid mechanics domain and mesh; (3) at
each time instant the solid and fluid need to have kinemat-
ics and tractions in equilibrium to ensure correct coupling
between the two subsystems, requiring appropriate coupling
at the space-discrete level, and an efficient solution strategy
for the coupled system; (4) the coupled system undergoes
rapid transients, which need to be accurately and efficiently
captured.
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To address the above challenges, a novel air-bast FSI for-
mulation is developed based on the immersed methodology.
Moving-mesh methods, such as the Arbitrary Lagrangian–
Eulerian (ALE) [1–6] or Space–Time (ST) [4,7–27]
approaches are not pursued in the present work largely
due to the challenges arising in the item 2 above. While
the advantage of moving-mesh methods over immersed-
type techniques lies in their ability to deliver higher fluid-
mechanics accuracy near the fluid–structure interfaces, we
forego this advantage in favor of a relative ease with which
immersed-type methods handle topological changes aris-
ing from structural contact or fragmentation. It should be
noted, however, that recently developed ST–TC techniques
[28–32], which are ST methods that are able to handle topol-
ogy changes, may provide a pathway for the application of
moving-mesh methods to air-blast FSI.

In the proposed method, the Navier–Stokes equations of
compressible flows are coupled with a large-deformation
inelastic solid. Balance equations for both media are writ-
ten in the weak form on the current configuration, and the
compatibility of kinematics and tractions is established at a
fully continuous level. Two discretizations, background and
foreground, are employed in the discrete formulation. Back-
ground discretization, which is assumed fixed, provides the
basis functions used to approximate the unknowns of the cou-
pled FSI problem. Foreground discretization, which moves
with the solid material particles, is employed to track the
solid current position, store the history-dependent variables
needed in the solid formulation, and carry out numerical
quadrature for the solid terms in the coupled FSI formulation.
Pressure-primitive variables [33,34], which are compatible
with the solid degrees-of-freedom (DOFs), are employed to
discretize the compressible-flow equations. SUPG [35–39]
and residual-based discontinuity capturing [40–46] are used
to stabilize the compressible-flow formulation.

In this setting, since the background mesh does not track
the fluid–solid interface, no formal restrictions on the solid
motion are imposed in the coupled formulation. In addi-
tion, due to the fact that the fluid and solid share the same
background-mesh DOFs, the resulting FSI formulation is a-
priorimonolithic, even in the case of explicit time integration,
which iswhatwe do here to efficiently handle the fast dynam-
ics of air-blast FSI. This a-priori monolithic coupling is a
major advantage over existing methods using explicit time
stepping in combinationwith the so-called “loosely-coupled”
FSI, in which, unlike in the present formulation, there is no
guarantee that the fluid and solid tractions are in equilibrium
during the time step.

The proposed methodology shares similarities with the
existing immersed-type techniques, such as embeddeddomain
[47–54], immersed boundary [55,56], immersed finite ele-
ment [57,58], material point [59,60], finite cell [61], and
immersogeometric [62–64] methods.

Part I of this paper presents the core air-blast FSI method-
ology, which is suitable for discretization using standard
FEM as well as other techniques, such as, for example,
isogeometric analysis (IGA) [65,66]. Part II of this paper
provides a particular instantiation of the proposed frame-
work, which couples IGA as the background discretization
and the reproducing-kernel particle method (RKPM) [67] as
the foreground discretization. This combination is particu-
larly attractive for the problem class of interest due to the
higher-order accuracy of both techniques and relative sim-
plicity of RKPM in handling fragmentation scenarios.

Part I of this paper is outlined as follows. In Sect. 2, the
governing equations of the fluid and solid mechanics, and
their coupling, are presented at the continuous level. Space
discretization of the coupled FSI system and time integra-
tion are presented in Sect. 3. In Sect. 4 several 2D numerical
examples using low-order FEM are shown, which illustrate
the good performance of the proposed air-blast FSI method-
ology.

2 Governing equations of fluid and solid
mechanics, and their coupling

In this section we present the governing equations of com-
pressible flow and inelastic solid, and their coupling. All
the developments in this section take place at the contin-
uum level, and a weak form of the coupled FSI problem is
derived that is suitable for discretization using an immersed
technique.

2.1 Compressible-flow formulation

The air blast phenomena are modeled using the Navier–
Stokes equations of compressible flows, which may be
expressed as

U,t + Fi,i − S f = 0, (1)

where

U =
⎛
⎝

ρ f

ρ f u
ρ f etot

⎞
⎠ (2)

are the so-called conservation variables [33], ρ f is the fluid
density, u is the material-particle velocity, etot = e + ‖u‖

2 is
the total energy density, and e is the internal energy density
given by e = cvT , where cv is specific heat at constant vol-
ume and T is the temperature. InEq. (1),S f is the source term
and Fi is the total flux that consists of advective, pressure,
and diffusive contributions, namely,
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Fi = Fa
i + Fp

i − Fd
i . (3)

Here,

Fa
i = uiU, (4)

Fp
i =

⎛
⎝

0
p1i

u · p1i

⎞
⎠ , (5)

and

Fd
i =

⎛
⎝

0
τττ i

u · τττ i − qi ,

⎞
⎠ , (6)

where p is the pressure, 1i is the i th Cartesian basis vector
in Rd , d is the space dimension, τττ i derives from the viscous
stresses and is given by

τττ i = 2μ∇su1i + λ(∇ · u)1i , (7)

where μ is the fluid viscosity, λ = −2/3μ, and ∇s is the
symmetric spatial gradient, and qi is the heat flux given by

qi = −κT,i , (8)

where κ is the fluid thermal conductivity. We assume that the
fluid is an ideal gas with the equation of state given by

p = ρ f RT, (9)

where R is the specific gas constant. In the above formulas,
i is the space dimension index, (·),i denotes a partial deriva-
tive with respect to spatial coordinates x, and (·),t denotes a
partial time derivative holding the spatial coordinates fixed.
Einstein’s summation convention is used throughout the
manuscript.

2.2 Quasi-linear form of the compressible-flow
equations

The Navier–Stokes equations of compressible flows may be
written in a quasi-linear form using primitive variables based
on pressure [33] as follows

A f
0Y,t + Aa

i Y,i + Fp
i,i − Fd

i,i − S f = 0, (10)

whereY denotes the set of pressure-primitive variables given
by

Y =
⎛
⎝

p
u
T

⎞
⎠ , (11)

A f
0 is the Jacobian of the mapping U(Y) given by

A f
0 = ∂U

∂Y
, (12)

and Aa
i is the Jacobian of the mapping Fa

i (Y) given by

Aa
i = ∂Fa

i

∂Y
. (13)

We also define the Jacobian matrix that takes the pressure
terms into account, namely,

A f
i = Aa

i + ∂Fp
i

∂Y
. (14)

The above Jacobianmatricesmaybe analytically derived (see
[33] for details). Here we provide an explicit expression for
A f
0 ,

A f
0 =

⎛
⎝

ρ f βT 0T −ρ f αp

ρ f βTu ρ f I −ρ f αpu
ρ f βT etot ρ f uT ρ f (−αpetot + cv)

⎞
⎠ , (15)

where I is a d×d identity matrix, βT = 1/p and αp = 1/T .

Explicit expressions forAa
i ’s andA

f
i ’s may be found in [33].

Remark The choice of primitive variables based on pressure
to discretize the Navier–Stokes equations of compressible
flows in this work is based on two factors: a. This variable set,
or a subset thereof, is typically employed for the discretiza-
tion of the equations of solid and structural mechanics, and
thus presents a convenient variable choice for the discretiza-
tion of the coupled FSI problem; b. The Jacobian matrices
have a well defined incompressible limit, which presents a
pathway to a unified formulation for both compressible and
incompressible flows [68].

2.3 Updated Lagrangian formulation of an inelastic
solid

We consider an inelastic solid, and state the point-wise
balance of mass and momentum written in the updated
Lagrangian form [69] as

ρs
0 − ρs J = 0, (16)

ρs u̇ − ∇ · σσσ − s = 0. (17)

In Eqs. (16)–(17), u, as before, is a material particle velocity,
ρs and ρs

0 are the solid densities in the current and reference
configurations, respectively, σσσ is the Cauchy stress, s is the
source term, ˙(·) is used to denote thematerial time derivative,
that is, time derivative holding material coordinates X fixed,
and J = det ∂x

∂X .
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Standard J2 flow theory with isotropic hardening [70,71],
which is suitable for metals, is considered in this work. The
solid constitutive equations,written in the rate format amate-
rial point, are summarized in what follows:

• Additive decomposition of the rate-of-deformation tensor

D = ∇su = 1

2
(∇u + ∇uT ) = De + Dp, (18)

where De and Dp are its elastic and plastic components,
respectively.

• Stress-rate constitutive relation

σσσ∇ J = CCC : De = CCC : (D − Dp), (19)

whereCCC is the constitutivematerial tensor, andσσσ∇ J is the
objective Jaumann rate of the Cauchy stress [69] given
by

σσσ∇ J = σ̇σσ − σσσωωωT − ωωωσσσ, (20)

where σ̇σσ is the material time derivative of the Cauchy
stress, and

ωωω = 1

2
(∇u − ∇uT ) (21)

is the spin tensor.
• Yield surface

f (σσσ , ε̄ p) = σ̄ (σσσ) − σY (ε̄p) = 0, (22)

where σ̄ is the equivalent or von Mises stress given by

σ̄ (σσσ) =
√
3

2
σσσ ′ : σσσ ′, (23)

σσσ ′ = σσσ − 1

3
(tr σσσ) I, (24)

andσY is the yield stress assumeddependent on the equiv-
alent plastic strain ε̄p.

• Flow rule

Dp = ˙̄εp ∂ f

∂σσσ
, (25)

which corresponds to associative plasticity [70,71] and
states that the plastic flow occurs in the direction orthog-
onal to the yield surface. For the vonMises yield criterion
the partial derivative in the associative flow rule equation
may be computed explicitly and becomes

∂ f

∂σσσ
=

√
3

2

σσσ ′

‖σσσ ′‖ . (26)

• Consistency condition

ḟ = ∂ f

∂σσσ
: σ̇σσ − ∂ f

∂ε̄p
˙̄εp = 0, (27)

which, in combination with the associative flow rule,
leads to the following expression for the equivalent
plastic-strain rate:

˙̄εp =
∂ f
∂σσσ

: CCC : D
H + ∂ f

∂σσσ
: CCC : ∂ f

∂σσσ

. (28)

Remark Note that the key quantity appearing in the above
constitutive model is ∇u, the spatial velocity gradient. It is
the time history of this quantity that “drives” the evolution
of the solid Cauchy stress.

Remark In the present work we consider the solid as isother-
mal. However, introducing thermal coupling by making the
Cauchy stress temperature-dependent and adding the energy-
balance equation to the system given by Eqs. (16)–(17) does
not present a conceptual difficulty and will be pursued in the
future work.

2.4 Quasi-linear form of the inelastic solid equations

Solid linear-momentum balance given by Eq. (17) may be
written in a quasi-linear form consistent with that of the
Navier–Stokes equations of compressible flows as

As
0Ẏ − Fσ

i,i − Ss = 0, (29)

where Y is the set of primitive variables from Eq. (11),

As
0 =

⎛
⎝
0 0T 0
0 ρsI 0
0 0T 0

⎞
⎠ , (30)

Fσ
i =

⎛
⎝

0
σσσ1i
0

⎞
⎠ , (31)

and

Ss =
⎛
⎝
0
s
0

⎞
⎠ . (32)

It is convenient to express the material time derivative in
Eq. (29) using its spatial counterpart and a convection term
as

Ẏ = Y,t + uiY,i , (33)
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inwhich case the quasi-linear formofEq. (17)may bewritten
as

As
0Y,t + As

iY,i − Fσ
i,i − Ss = 0, (34)

where

As
i =

⎛
⎝
0 0T 0
0 ρsui I 0
0 0T 0

⎞
⎠ . (35)

Note that, in this formulation, because the time derivatives
in the fluid and solid mechanics governing equations take on
the samemeaning, one can naturally define a time integration
scheme that consistently accounts for the fluid and solid parts
of the the coupled FSI problem.

2.5 Weak form of the coupled FSI problem

Let � denote the combined fluid and solid domain, and
let � f and �s denote the individual, time-dependent fluid
and solid subdomains in the spatial configuration, such that
� f ⋃

�s = � and � f ⋂
�s = ∅. Let  f s denote their

interface, which also evolves in time. We define the follow-
ing semilinear forms and linear functionals corresponding to
the weak forms of the fluid and solid subproblems:

M f
ω (W,Y) =

∫
ω

W · A f
0Y,t dω, (36)

B f
ω (W,Y) =

∫
ω

W · Aa
i Y,i dω−

∫
ω

W,i ·
(
Fp
i − Fd

i

)
dω,

(37)

F f
ω (W) =

∫
ω

W · S f dω +
∫


f
H

W · H f d, (38)

Ms
ω(W,Y) =

∫
ω

W · As
0Y,t dω, (39)

Bs
ω(W,Y) =

∫
ω

W · As
iY,i dω +

∫
ω

W,i · Fσ
i dω, (40)

Fs
ω(W) =

∫
ω

W · Ss dω +
∫

s
H

W · Hs d, (41)

where Y and W, the vector-valued trial and test functions,
respectively, are the members of S and V , the correspond-
ing trial and test function spaces, respectively, defined on all
of �, 

f
H and s

H are the subsets of the fluid- and solid-
domain boundaries where natural boundary conditions are
imposed, and H f and Hs contain the prescribed values of
the natural boundary conditions. Note that in Eqs. (36)–(41)
the subscriptω on the semilinear forms and linear functionals
denotes the domain of integration.

With the above definitions, the coupled FSI problem
maybe stated as: Find Y ∈ S, such that ∀W ∈ V ,

M f
� f (W,Y) + B f

� f (W,Y) − F f
� f (W) (42)

+
Ms

�s (W,Y) + Bs
�s (W,Y) − Fs

�s (W)

=
0,

where we assume that functions in S and V have sufficient
regularity for the coupled FSI problem given by Eq. (42) to
be well-posed, and are continuous across  f s .

Examination of the Euler–Lagrange conditions for the
above coupled problem reveal that the fluid and solid govern-
ing equations hold on the interior of their respective domains,
namely,

R f (Y) = A f
0Y,t + Aa

i Y,i + Fp
i,i − Fd

i,i = 0 in � f , (43)

and

Rs(Y) = As
0Y,t + As

iY,i − Fσ
i,i − Ss = 0 in �s, (44)

and the natural boundary conditions hold on their respective
boundaries, namely,

− Fp
i n

f
i + Fd

i n
f
i − H f = 0 on 

f
H , (45)

and

Fσ
i n

s
i − Hs = 0 on s

H , (46)

where n f
i and nsi are the cartesian components of the out-

ward unit normal vector to the fluid and solid domains,
respectively, in the current configuration. In addition, at the
fluid–solid interface, the following compatibility condition
holds,

−Fp
i n

f
i + Fd

i n
f
i + Fσ

i n
s
i = 0 on  f s, (47)

which is a consequence of the test-function continuity at the
fluid–solid interface. Equation (47) implies that the fluid and
solid tractions are in equilibrium at the fluid–solid interface,
namely,

−pn f
i + τi j n

f
j + σi j n

s
j = 0 on  f s . (48)

In addition, the energy-equation component ofEq. (47) yields
the following condition at the fluid–solid interface

−puin
f
i + uiτi j n

f
j − qin

f
i = 0 on  f s, (49)
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which is a consequence of not considering thermal coupling
in the solid mechanics formulation. In case thermal coupling
is added to the solid mechanics formulation, Eq. (47) would
naturally lead to the equilibrium of heat fluxes at the fluid–
solid interface.

Remark Using the additive property of integrals, the coupled
FSI formulation given by Eq. (42) may be re-written as: Find
Y ∈ S, such that ∀W ∈ V ,

M f
�(W,Y) + B f

�(W,Y) − F f
�(W) (50)

+
Ms

�s (W,Y) + Bs
�s (W,Y) − Fs

�s (W)

−
M f

�s (W,Y) + B f
�s (W,Y) − F f

�s (W)

=
0,

where the integration over the fluid mechanics domain is
replaced by integration over the combined domainminus that
over the solid domain. This form of the coupled problem,
which at the continuous level is equivalent to the original
formulation given by Eq. (42), is convenient for the appli-
cation of an immersed approach to the discretization of the
coupled FSI equations (see, e.g., [72]).

3 Discrete formulation and algorithmic aspects

Here we present the discretization of the continuous FSI
formulation developed in the previous section. We briefly
cover a stabilized formulation with discontinuity captur-
ing employed for the compressible-flow equations, state the
semi-discrete immersed FSI formulation, and present time
discretization of the coupled FSI problem, including the
stress update algorithm.

3.1 Stabilization of the compressible-flow equations

To discretize the compressible-flow equations we make
use of the SUPG formulation [35–39] augmented with a
discontinuity-capturingoperator [40–46].The latter is impor-
tant to ensure stability for high-Mach-number flows, which is
the case in the present work.We briefly summarize the SUPG
and discontinuity-capturing operators in what follows. The
reader is referred to [73] for the details of the compressible-
flow formulation employed in the present work.

The SUPG stabilization operator for compressible flows
maybe expressedbymeans of the following semilinear form:

Bst
ω (W,Y) =

∫
ω̃

(
A f
i

)T
W,i · τττR f (Y) dω̃, (51)

where it is assumed that ω is discretized into elements, ω̃

is a collection of element interiors, the integral
∫
ω̃
is taken

element-wise, and τττ is a (d + 2) × (d + 2) stabilization
matrix. We make use of the following definition of τττ ,

τττ =
(
A f
0

)−1
τ̂ττ , (52)

where τ̂ττ is a stabilization matrix defined for conserva-
tion variables (see, e.g., [33,34]). Premultiplication of τ̂ττ by
(A f

0 )−1 gives an appropriate transformation of the stabiliza-
tion matrix between the two variable sets.

The discontinuity-capturing operator is also designed for
conservation variables with a transformation to the pressure-
primitive variables, leading to the following definition,

Bdc
ω (W,Y) =

∫
ω̃

W,i · ν̂ννdcA f
0Y,i dω̃, (53)

where ν̂νν
dc is a diagonal (d + 2) × (d + 2) matrix of

shock-capturing parameters defined for conservation vari-
ables (see e.g., [42–46]) and A f

0 gives the transformation to
the primitive-variable formulation. The design of ν̂ννdc makes
use of the compressible-flow-equation residuals, which ren-
ders the discontinuity-capturing operator consistent.

Remark In compressible-flow computations in the blast
regime one often makes use of the classical von Neumann–
Richtmyer artificial viscosities (see, e.g., [74,75].) No such
viscosities are employed in the present formulation, and the
numerical results presented later in the article indicate that
shock-capturing given by Eq. (53) is sufficient to stabilize the
formulation in the high-Mach-number regime of blast waves.

3.2 Coupled FSI formulation at the semi-discrete level

Taking the coupled FSI formulation at the continuous
level given by Eq. (50) as a starting point, and using the
SUPG and discontinuity-capturing operators to stabilize the
compressible-flow equations, the semi-discrete immersed
FSI formulation may be stated as: Find Yh ∈ Sh , such that
∀Wh ∈ Vh ,

M f
�(Wh,Yh) + B f

�(Wh,Yh) − F f
�(Wh) (54)

+ Bst
� (Wh,Yh) + Bdc

� (Wh,Yh)

+
Ms

�s (Wh,Yh) + Bs
�s (Wh,Yh) − Fs

�s (Wh)

−
M f

�s (Wh,Yh) + B f
�s (Wh,Yh) − F f

�s (Wh)

+ Bst
�s (Wh,Yh) + Bdc

�s (Wh,Yh)

+
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∫
̃ f

βh [[wh
,i ni ]] · [[uh, j n j ]] d̃

=
0.

Here,Yh andWh , the discrete trial and test functions, respec-
tively, and Sh and Vh , the corresponding discrete function
spaces, are defined on the background domain�. As a result,
the unknown degrees of freedom (DOFs) are defined com-
pletely on the background mesh. Equal-order discretization
is employed for all the unknowns in the variable set Yh .

In Eq. (54) the integrals are computed using numerical
quadrature. The terms on the first and fourth lines on the
left-hand-side of Eq. (54) are computed using quadrature
rules defined on the background domain, while the terms on
the second and third lines are computed using foreground-
domain quadrature rules. To carry out integration on the
foreground mesh, the background mesh quantities need to
be evaluated at the locations corresponding to the quadrature
points of the foreground mesh. These locations are found
through a simple inverse mapping.

Remark It is well known that solid near incompressibil-
ity may lead to volumetric locking, which is especially
pronounced for lower-order elements. To alleviate this phe-
nomenon,we adapt aB-barmethodology [76–78] to the solid
mechanics part of the present immersed FSI formulation.
In the evaluation of the velocity and test-function gradi-
ents, the strain displacement matrix from the background
discretization is replaced with itsB-bar counterpart in a stan-
dard fashion, wherein the dilatational part of the motion is
projected to a lower-order space (see, e.g., [76,79]). In the
present work, the B-bar methodology is only employed for
C0-continuous linear FEM background discretizations.

The last term on the left-hand-side of Eq. (54) is the so-called
“ghost velocity” stabilization developed for immersed FEM
in [80]. In this termw is used to denote the linear-momentum
components of the test functionW, [[·]] is the “jump” opera-
tor, ̃ f is the set of all edges in 2D and faces in 3D near the
interface, h is the size of the local edge or face, and β is the
mesh-independent penalty parameter. Ghost velocity stabi-
lization penalizes the jump in the velocity gradient near the
fluid–solid interface and significantly improves the stability
of the velocity solution.

Remark The edge or face over which the ghost velocity sta-
bilization is applied is such that both elements sharing that
edge or face are either covered by the structure or cut by the
interface. This condition excludes edges or faces that are on
the exterior of the cut-element set.

Remark For a thermally coupled solid, an analogous stabi-
lization technique may be employed also for the temperature
variable.

Remark Note that the ghost velocity stabilization terms are
active only in the case when a C0-continuous background
discretization is employed. When smooth splines are used,
this term vanishes due to the basis-function derivative con-
tinuity across element boundaries. Although stability of
spline discretizations may be further improved by penal-
izing higher-order velocity and temperature derivatives at
cut-element edges or faces, this is not done in the present
work.

3.3 Time discretization

An explicit version of the Generalized-α method [81–83] is
employed for the time discretization of Eq. (54). In this case
the discrete residual RRR is thought of as a function of the
background nodal or control-point unknown vectorYYY and its
time derivative ẎYY , namely,

RRR(ẎYY,YYY) = MMMẎYY +NNN (YYY). (55)

In Eq. (55), to set the stage for an explicit time integration
algorithm, the discrete residual is decomposed into the parts
containing YYY and ẎYY . Also in Eq. (55),

[MMM]abAB =
∫

�

NA

[
A f
0

]
ab

NB d� (56)

+∫
�s

NA
[
As
0

]
ab NB d�

−∫
�s

NA

[
A f
0

]
ab

NB d�,

are the components of the coupled mass matrix, A, B are the
nodal or control-point indices, a, b are the local DOF indices,
and N ’s are the basis function coming from the background
discretization. The residual vectorNNN (YYY) is comprised of the
remaining terms in the coupled FSI formulation given by
Eq. (54), and its components may be expressed as

[NNN (YYY)]aA =B f
�

(
NAEa,Yh

)
− F f

�(NAEa) (57)

+ Bst
�

(
NAEa,Yh

)
+ Bdc

� (NAEa,Yh)

+
Bs

�s

(
NAEa,Yh

)
− Fs

�s (NAEa)

−
B f

�s

(
NAEa,Yh

)
− F f

�s (NAEa)

123



90 Comput Mech (2017) 60:83–100

+ Bst
�s

(
NAEa,Yh

)
+ Bdc

�s

(
NAEa,Yh

)

+∫
̃ f

βh [[NA,i ni1b(a)]] · [[uh, j n j ]] d̃,

whereEa is the ath Cartesian basis vector inRd+2, and 1b, as
before, is the bth Cartesian basis vector in R

d , with b(a) =
a − 1 and 10 = 1d+1 = 0.

The generalized-α technique applied to Eq. (55) amounts
to collocating the discrete residual at the intermediate loca-
tions within a time step as follows: Given YYYn and ẎYYn , find
YYYn+1 and ẎYYn+1, such that,

RRR
(
ẎYYn+αm ,YYYn+α f

)
= 0, (58)

where the intermediate solution time levels are defined as

(·)n+α = (·)n + α((·)n+1 − (·)n), (59)

and the relationship between the solution and its time deriva-
tive in the time-discrete setting is given by the Newmark
formula

YYYn+1 = YYYn + �t
(
(1 − γ )ẎYYn + γ ẎYYn+1

)
. (60)

Here, αm , α f , and γ are real-valued parameters chosen based
on the second-order accuracy and unconditional stability
requirements of the Generalized-α method. See [81–83] for
more details.

3.3.1 Predictor–multicorrector algorithm

To solve the nonlinear system given by Eqs. (58)–(60)
we adopt an explicit version of a two-stage predictor-
multicorrector algorithm presented in what follows.

Predictor stage Given the solution at time level tn , initial-
ize the time-level tn+1 solution as

ẎYY0
n+1 = γ − 1

γ
ẎYYn,

YYY0
n+1 = YYYn . (61)

In addition, the foreground solid domain position at time level
tn+1 is initialized as follows:

a0n+1 = γ − 1

γ
an,

u0n+1 = un,

d0n+1 = dn + �tun + �t2

2

(
(1 − 2β)an + 2βa0n+1

)
, (62)

where a, u, and d denote the solid nodal or control-point
values of the acceleration, velocity and displacement, and β

is the additional Newmark parameter of the Generalized-α
scheme. The displacement variable d is used to place the
foreground solid mesh in the appropriate configuration for
the purposes of numerical integration.

Multicorrector stage Compute the solution at time level tn+1

by repeating the following steps:

1. Evaluate the iterates at intermediate time levels on the
background mesh,

ẎYY l
n+αm

= ẎYYn + αm

(
ẎYY l

n+1 − ẎYYn

)
,

YYY l
n+α f

= YYYn + α f

(
YYY l

n+1 −YYYn

)
, (63)

and on the foreground mesh,

dln+α f
= dn + α f (dln+1 − dn), (64)

where l is the multicorrector iteration counter.
2. Use the intermediate solution values to assemble the dis-

crete residual of the coupled FSI problem and solve for
the increment of the solution time derivative,

�ẎYY l
n+1 = −(αmMMM)−1 RRR

(
ẎYY l

n+αm
,YYY l

n+α f

)
. (65)

In the above equation, in the interest of efficiency, MMM
may approximated by its lumped counterpart given by

MMM ≈ MMML ,

[MMML ]abAB =
(∑

C

[MMM]abBC
)

δAB, (66)

where δAB is the Kronecker delta.
3. Update the solution on the background mesh,

ẎYY l+1
n+1 = ẎYY l

n+1 + �ẎYY l
n+1,

YYY l+1
n+1 = YYY l

n+1 + γ�t�ẎYY l
n+1, (67)

and on the foreground mesh,

ul+1
n+1 = IYYY l+1

n+1,

al+1
n+1 = ul+1

n+1 − un
γ�t

− 1 − γ

γ
an,

dl+1
n+1 = dn + �tun + �t2

2

(
(1 − 2β)an + 2βal+1

n+1

)
,

(68)

and increase the Newton-iteration counter l by one. Note
that, just like in the predictor stage, the update of the
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Fig. 1 Square bar impacting a rigid wall. Equivalent plastic strain for the immersed (a) and Lagrangian (b) simulations

Fig. 2 Moving bar contacting
stationary bar and impacting a
rigid wall. A temporal sequence
showing the bar current
configuration and velocity
magnitude. a 0.0ms, b 0.2ms,
c 1.8ms and d 2.4ms

foreground mesh kinematics entails the velocity projec-
tion from the background mesh, denoted by the symbol
I above, followed by the reconstruction of the remaining
kinematic quantities via the Newmark formulas.

Remark Computation of the solution-time-derivative incre-
ment in Eq. (65) using a lumped mass matrix requires
computing the inverse of a (d + 2) × (d + 2) matrix at
each background-mesh node or control point. It is possible to
develop a vector representation of the lumped-mass matrix
of the form

[MMML ]abA = [A0]ab
∫

�

NA d�, (69)

where A0 is the equivalent Jacobian matrix associated with
node or control point A. The matrixA0 has an inverse, which
may be derived analytically (see [84]) and programmed
directly, leading to modest improvements in the computa-
tional efficiency of the time-integration algorithm.

Remark In the last step of themulticorrector algorithm, once
the solution is obtained on the background mesh, kinematic
quantities are transferred to the foregroundmesh and the solid
is moved to a new position. This procedure is also employed
in the particle finite element method (PFEM) [85,86].

Fig. 3 Chamber detonation. Problem geometry and setup

3.3.2 Stress update

Computation of the discrete residual In Eq. (65) requires
evaluation of the solid Cauchy stress at the quadrature points
of the foreground mesh, which act as material points in the
current formulation. The Cauchy stress may be advanced
within a time step as follows,
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σσσ n+1 = σσσ n + �t σ̇σσ n+α f

= σσσ n + �t (σσσ∇ J + ωωωσσσ + σσσωωωT )n+α f , (70)

where the objective Jaumann stress rate is employed, and,
for consistencywith theGeneralized-α time integration algo-
rithm, the material time derivative of the stress is taken at the
time level tn+α f . To carry out the above stress update, at each
multicorrector iteration of the Generalized-α algorithm, we
repeat following steps:

1. Rotate the Cauchy stress to the time level tn+α f as

σ̃σσ l
n+α f

= σσσ n + α f �t

(
ωωωl
n+α f

σσσ n + σσσ n

(
ωωωl
n+α f

)T
)

,

(71)

where l is the iteration counter of themulticorrector stage,
and the spin tensor at time level tn+α f is computed from
the background discretization as

ωωωl
n+α f

= 1

2

(
∇uln+α f

−
(
∇uln+α f

)T
)

. (72)

Fig. 4 Chamber detonation.
Pressure at different time
instants. Left ALE simulation;
Right immersed simulation.
a 0.1ms, b 0.4ms and c 0.7ms
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Fig. 5 Chamber detonation. Comparison of ALE and immersed sim-
ulation results. a Horizontal displacement (in m) of the bar center of
mass; b pressure (in Pa) at the center of detonation; c pressure (in Pa) at
the center of the right wall. All quantities are plotted versus time (in s)

2. Update the Cauchy stress at time level tn+α f as

σσσ l
n+α f

= σ̃σσ l
n+α f

+ �σσσ l
n+α f

, (73)

where�σσσ n+α f = �t σσσ∇ J
n+α f

is the stress increment com-
ing form the radial return mapping scheme [69].

3. Rotate the Cauchy stress to the time level tn+1 as

σσσ l
n+1 = σσσ l

n+α f
+ (1 − α f )

�t

(
ωωωl
n+α f

σσσ l
n+α f

+ σσσ l
n+α f

(
ωωωl
n+α f

)T
)

.

(74)

Remark The above stress update is a modification of the
well-known half-step rotation technique [87,88]. The result-
ing Cauchy stress in Step 2 is used in the computation of the
solid contribution to the discrete residual in Eq. (65), while
the stress in Step 3 is saved for the purposes of performing
the stress update in the next time step.

4 Numerical examples

We present several numerical examples in 2D using
piecewise-linear quadrilateral FEM discretization for both
background and foreground domains to illustrate that the
proposed methodology works well when discretized with
standard FEM. Computational results are compared with the
conforming-mesh in-houseLagrangian andALE simulations
aswell aswith experimental data,where applicable. In all FSI
computations the fluid is assumed to have properties of air
with constant viscosity μ = 1.81 × 10−5 kg/(m s), Prandtl
number 0.72, and adiabatic index γ = 1.4.

4.1 Standalone solid computation: contact and impact
modeling

Before presenting coupled FSI results, we first show the abil-
ity of the proposed formulation to handle standalone solid
mechanics simulations, including contact and impact phe-
nomena.

Impact of a metallic square bar on a rigid wall is simulated
first. The bar has dimensions of 1 m × 1 m, and is made of
steel with Young’s modulus E = 200 GPa, density ρs

0 =
7870 kg/m3, Poisson ratio ν = 0.29, yield stress σy = 4.0×
108 Pa, and plastic modulus H = 1.0 × 108 Pa. The bar is
placed a short distance away from the rigid wall and given
the initial velocity of 200 m/s. No-penetration and free-slip
boundary conditions are applied at the wall. The background
domain has dimensions 4 m × 4 m and is discretized using
60×60 elements. The foreground domain is discretized using
20 × 20 elements.

As the bar approaches the wall, contact is intrinsically
detected as a result of the velocity-field continuity and
no-penetration boundary conditions, and the bar deforms
plastically until the steady-state shape is reached. Figure 1
compares the final configuration of the bar and the equivalent
plastic strain for the Lagrangian and immersed calculations.
Very good agreement is observed between the two simula-
tions. The small differences in the shape arise mainly due to
the boundary conditions employed. In the Lagrangian com-
putation no contact model is implemented, but rather no-slip
and no-penetration conditions are imposed directly on the
contact surface. As a result, the nodes in the Lagrangian
computation stay on the contact surface. In the immersed
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computation, the actual contact is modeled intrinsically,
which results in slight “mushrooming” of the final shape.
This mushrooming phenomenon is well known for Taylor-
bar impact problems, and is reported, for example, in
[53].

This example is developed further by considering con-
tact between two square bars followed by impact on the
rigid wall. The dimensions, material parameters, and meshes
employed are the same as in the single-bar problem. A bar
moving at 400 m/s impacts another bar, which is at rest, as
shown in Fig. 2. After contact, the objects deform plastically
and travel together at a lower speed, and eventually impact
the wall, deform further, and come to rest. This sequence
is illustrated in Fig. 2 where the deformed bar configura-
tion is colored with the particle velocity, showing that the
velocity field is continuous at the interface between the two
objects. The proposed formulation is able to handle this
contact-impact situation with a topology change without any
difficulty.

4.2 Chamber detonation

In this fully coupled FSI example a bar is subjected to a det-
onation blast load. Figure 3 gives the problem description.
A bar with dimensions 0.2 m × 0.1 m is placed at the cen-
ter of a closed chamber with dimensions 0.4 m × 0.4 m.
The bar thickness is set to 3.5 mm. The material properties
of steel as in the previous section are assumed for the bar.
The air in the chamber is initially at rest with T = 270 K
and p = 100,000 Pa. The detonation is initiated by setting
higher values of pressure (p = 6,746,268.65 Pa) and tem-
perature (T = 1, 465 K) in a semi-circular region centered
on the left wall and with radius of 6.1 mm. Free-slip and no-
penetration boundary conditions are assumed at the chamber
walls. The background domain is discretized using 160×160
elements. The foreground domain is discretized using 80×40
elements.

Figure 4 shows snapshots of air pressure at differ-
ent instants for both the ALE and immersed simulations,

Fig. 6 Chamber detonation. Final configuration of the solid and surrounding mesh. a ALE; b immersed

Fig. 7 Flexible panel subjected to a shock load. Problem geometry and setup
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with good agreement achieved between the two solutions.
Figure 5 depicts the time history of horizontal displacement
of the center of the bar, air pressure at the center of detona-
tion, and air pressure at the center of the right wall. These
quantities are in very good agreement between the ALE and
immersed computations.

Figure 6 shows the final shape of the bar as well as
the deformed fluid mesh for the ALE computation. While
very good agreement is achieved between the two solu-
tions, the ALE simulation produces a mesh that is dis-
torted in the vicinity of the bar’s left-edge top and bottom
corners.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8 Flexible panel subjected to a shock load. Pressure field and
panel deflection at different time instants. a 70.0µs, b 150µs, c 200µs,
d 570µs, e 1000µs and f 1245µs

4.3 Flexible panel subjected to a shock load

We compute one of the test cases presented in [89], wherein
a panel of length 40 mm and thickness 1 mm is exposed
to a shock load. The problem setup and dimensions are
shown in Fig. 7. Reference [89] also provides the shock-tube
experimental data for this setup, which we use to validate
our computational methodology. The panel is assumed to
be elastic with Young’s modulus E = 220 GPa, density
ρs
0 = 7600 kg/m3 and Poisson’s ratio ν = 0.33. Initially,

the shock is placed 5 mm ahead of the step. The conditions
behind the shock are assumed to be ρ f = 1.6458 kg/m3,
‖u‖ = 112.61 m/s, and p = 156,180.0 Pa, while ahead of
the shock air is assumed to be at rest with ρ f = 1.2 kg/m3

and p = 100,000 Pa. Slip boundary conditions are applied
on the lateral and back walls of the shock tube. At the inlet
the boundary conditions are set consistently with the initial
conditions. The fluid mesh resolution around the panel is
0.3 mm, and the panel is discretized with uniform elements

Fig. 9 Flexible panel subjected to a shock load. a History of the panel
tip horizontal displacement; b history of the pressure at the pressure-
sensor location. Experimental results of [89] are plotted for comparison
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Fig. 10 Detonation with
multiple objects. Problem
geometry and setup. All
dimensions are in cm

of size 0.05 mm. Note that, in order to minimize reflections
from the left wall, the computational domain is extended
behind the shock.

Figure 8 shows the pressure field along the tube at different
instants during the simulation. The shock wave impacts the
panel, which, in turn, begins to vibrate. The shock wave con-
tinues to travel to the right, while several other shock waves
are initiated due to reflections from the panel and step.

Figure 9 compares the simulation results with experimen-
tal data for the panel tip horizontal displacement and pressure
at a pressure-sensor location (shown in Fig. 7). Good agree-
ment between the computational and experimental results is
obtained. Panel vibration amplitude and period are captured
well in the simulation. Simulation results for the pressure
time history are also in good agreement with the experimen-
tal data in the earlier stages of the computation. However,
deviation from the experimental curve after time t = 2.2 ms
is observed, and is due to a spurious reflection wave that
arrives from the left wall in the simulation. We note that such
a discrepancy is also reported in the numerical simulations
presented in [89].

4.4 Detonation with multiple objects

We conclude this section with a qualitative example show-
ing the ability of the proposed methodology to naturally
handle scenarios of detonation in the presence of multiple
objects. Several rectangular objects are placed in a rectangu-
lar chamber with dimensions 1 m × 4 m, and are subjected
to a detonation load. See Fig. 10 for the problem setup.
To the right of the detonation location the larger objects

have dimensions 0.3 m × 0.07 m, 0.12 m × 0.07 m, and
0.02 m × 0.04 m. The object to the left of the detonation
location has dimensions 0.05 m × 0.05 m. The detonation
is initiated by assuming air at rest with T = 270 K and
p = 100,000 Pa, and elevating the pressure to p = 6.7 MPa
and temperature to T = 1465 K in the zone of radius
0.055 m. All objects are assumed to be made of steel, as in
previous examples, and are modeled as elastic. Slip bound-
ary conditions are applied at the chamber walls. Uniform
mesh with dimension 0.008 m for the air and 0.002 m for
the solid objects is employed for the problem discretiza-
tion.

Figure 11 shows the air speed and the solid deformed
configuration at different instances after the detonation is
initiated. Shock waves travel in the chamber and between
the objects, forming complex patterns, while objects con-
tact each other and impact the chamber walls without any
restriction on their motion. This example clearly illus-
trates the general applicability of the proposed methodol-
ogy.

5 Conclusions

In Part I of this paper, a computational framework for air-blast
FSI based on an immersed approach is proposed. The frame-
work couples compressible flow in the high-Mach-number
regime with inelastic structures. The discrete formulation
employes the background and foreground discretization as
follows. Background discretization is fixed and provides
the discrete trial and test function spaces for the coupled
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Fig. 11 Detonation with
multiple objects. Air speed and
solid in the current configuration
at different instants during the
simulation. a 0.03ms, b 0.2ms,
c 0.4ms, d 0.6ms, e 0.8ms, f
1.0ms, g 1.2ms and h 1.4ms

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FSI problem. Foreground discretization is moving with the
solid material particles and is employed to track its cur-
rent position, store history-dependent variables, and perform
numerical quadrature.

The compressible-flow equations are discretized using
pressure-primitive variables for compatibility with the solid
DOFs and stabilized using residual-based SUPG and
discontinuity-capturing techniques. These appear to be suffi-
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cient to produce a robust computational methodology for air
blast without resorting to classical shock viscosities, which
are not consistent and often tend to produce overly diffusive
results.

The proposed immersed approach has the advantage over
existing embedded domain methods in that a monolithic FSI
formulation is naturally obtained, even if the governing equa-
tions are advanced in time using an explicit algorithm. In
addition, no restrictions on the solid motion is imposed in the
framework, which enables handling of the domain topologi-
cal changeswith relative ease.Although, due to the utilization
of an immersed approach, fluid mechanics accuracy near the
solid surfaces is not as high as in a moving-mesh technique,
preliminary comparisons with an ALE-based approach sug-
gest that in the regime of air blast the overall accuracy of
the coupled simulations does not suffer significantly. This is
likely due to the fact that because of the fast dynamics of
air blast, fluid boundary layers, which require higher mesh
resolution near solid walls for good accuracy, do not have a
chance to develop fully.

The framework was tested using standard low-order FEM
discretization for the background and foreground domains.
Ghost velocity stabilization was introduced in the coupled
FSI formulation, and was found essential in stabilizing the
velocity field near the fluid–solid interface. Preliminary 2D
numerical examples presented indicate the good accuracy
and robustness of the proposed computational methodology.
Future work will involve 3D computations as well as the
assessment of the framework’s ability to represent solid dis-
integration and fragmentation during blast.
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