
1st Latin-American Workshop on Structural Health Monitoring 
LATAM-SHM 2023 
December, 5-8 2023 

 
 

DAMAGE IDENTIFICATION OF RC BEAMS USING FEED-
FORWARD BACK PROPAGATION NEURAL NETWORK APPROACH 

(FFBPN) 

 

KJAROL A. OROZ*, VLADIMIR RAMOS*, JOAN R. CASAS† AND RICK M. 

DELGADILLO* 

* Department of Civil Engineering, Peruvian University of Applied Sciences (UPC) 
Prolongación Primavera 2390, Monterrico Santiago de Surco, Lima, Perú - web page: 

https://www.upc.edu.pe/ 
e-mail: u201714025@upc.edu.pe, u201615839@upc.edu.pe, rick.delgadillo@upc.edu.pe 

 
† Department of Civil and Environmental Engineering, Technical University of Catalonia 

(BarcelonaTech), Catalonia, Spain. 
Campus Nord, C1 building. Jordi Girona, 1-3, 08034, Barcelona, Spain 
e-mail: joan.ramon.casas@upc.edu - web page: https://www.upc.edu/es 

 

Key words: Damage Detection, Artificial Neural Network (ANN), Natural Frequency, 
Artificial Intelligence (AI), Feed-Forward Back Propagation Neural Network Approach 
(FFBPN), Structural Health Monitoring (SHM). 

Abstract. Reinforced concrete (RC) beams are constantly exposed to environmental factors, 
overloads and aging, which is a challenging problem because they increase the risk of structural 
failure. In this sense, the detection of structural damage through modal parameters and artificial 
intelligence (AI) tools makes it possible to establish a comprehensive and precise vibration-
based methodology within the field of Structural Health Monitoring (SHM). In this article, the 
variation of vibration frequencies is used in combination with Machine Learning (ML) 
techniques through the use of Feed-Forward Back Propagation Network (FFBPN) for structural 
damage detection in reinforced concrete beams (RC). The proposed methodology considers 
three steps: (i) the vibration frequencies of the beam are obtained using the ANSYS software 
for twenty-six structural damage scenarios, of which twenty are for code training and six are 
test for accuracy validation (ii) the training data and the data set values are used to study the 
performance of an FFBPN (iii) The FFBPN trained with the natural frequency data is able to 
detect and assess the severity of transverse cracks in the beam. Finally, the proposed 
methodology shows an accuracy greater than 91.5% for damage detection and its severity in 
the reinforced concrete beam for the six test scenarios proposed. Besides, these results serve to 
evaluate the structural conditions in beams of real constructions such as buildings, hospitals, 
schools. 
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1 INTRODUCTION 
Buildings are fundamental for the development of society, since they allow the supply of the 

great demand for housing that currently exists due to the accelerated growth of the population. 
Therefore, they must be maintained in optimal architectural and, above all, structural condition, 
which allows them to guarantee the safety of their occupants. However, there are various factors 
that affect the operability and useful life of buildings such as inadequate structural calculations, 
landslides, debris flow and environmental conditions, but mainly damage to structural elements 
due to seismic movements and earthquakes. Currently, modern artificial intelligence techniques 
are not used for damage detection. Structural inspections are commonly done visually and with 
images [1]. Furthermore, the presence of damage in a beam produces a change in the stiffness 
of the structural element, consequently, producing a discontinuity in the mode shape reducing 
the vibration frequency. Therefore, neural networks are a reliable and practical alternative to 
model the behavior of reinforced concrete beams and detect their damage through vibration 
frequencies [2].  

 
In [3] the cracking and deformations of reinforced concrete beams are evaluated using 

artificial neural networks to evaluate cracking and at the same time maintain a consistent 
deformation pattern, the results show that ANNs make reliable predictions of crack width and 
this is supported by laboratory testing and validation. The R statistic value of training, testing 
and validation is 0.90109, 0.95589 and 0.96000 respectively. The authors [4] present an 
automated scheme for crack detection based on digital image correlation (DIC) measurement 
and calibration. This scheme allows an automatic evaluation of opening and sliding along the 
crack. Also, in [5] a new crack detection approach was proposed that combines DCNN deep 
convolutional neural networks and local threshold segmentation, 98.26% accuracy was 
obtained on 25 test images. 

 
In [6] a new method of damage detection and localization using the vibration of the structure 

is proposed using a long short-term memory (LSTM) network, it is demonstrated that the 
technique is capable of classifying time series signals into multiple classes and damage levels 
with high precision. Furthermore, in [7] proposes a methodology for detecting damage in 
structures where the location of the damage is determined using dynamic data of the damaged 
structure, a finite element model of damaged beams with various geometries and boundary 
conditions was used to validate the proposed method performs dynamic tests on a damaged 
reinforced concrete bridge and the model of a cantilever steel beam. The authors [8] study the 
detection of damages that present uncertainties such as: modeling errors, measurement errors, 
variable loading conditions and environmental noises, using finite element modeling (FEM). In 
this method, only dynamic responses of the healthy real system are used to update the FEM 
model and minimize errors. An investigation on a cantilever steel beam with multiple cracks is 
presented in [9] and modeled in ANSYS software. For damage detection, the modal sensitivity 
method based on Bayesian parameter estimation is used to minimize the difference between the 
calculated and measured results. Furthermore, the authors of [10] develop a method based on 
modified damage indices (DI), and use artificial neural network (ANN) in order to locate and 
quantify damage in steel frames. The results demonstrate the efficiency and competence of the 
proposed non-destructive method for damage detection. Also, other research studies bridges 
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through real case studies and numerical models. For example, [11] proposes a methodology to 
detect and locate damage to bridges that present environmental variability and traffic 
considering the non-stationary vehicle-bridge elements. The algorithms efficiently solve the 
problem when operational and environmental variability in the recorded data is considered. The 
authors [12] studied images for the evaluation of the conditions of the reinforced concrete road 
bridge components. The results between the experiments, the simulation and the ANN 
predictions turned out to be very satisfactory. In [13] identifies structural damage in bridges 
using the responses of vibrations subjected to environmental and vehicle-induced excitation. 
As a result, it was proven that the empirical vibration parameters evaluated are suitable for 
damage identification (detection, localization and quantification). In [14] the non-linear and 
non-stationary dynamic response of bridges under operational loads is studied, the signals are 
used which are decomposed into intrinsic mode functions (IMF) using a novel completed set 
EMD technique enhanced with adaptive noise (ICEEMDAN). ). The experimental results 
demonstrate greater sensitivity and robustness for damage location. In [15] presents a technique 
to detect damage at the element level of a reinforced concrete building, using the ANN method. 
As a result, lightweight and robust networks lead to accurate detection at floor and element 
level quickly. 

 
In this article, artificial neural networks (ANN) will be used to identify the presence and 

severity of structural damage by varying modal parameters (vibration frequencies) in reinforced 
concrete (RC) beams. The usefulness of natural vibration frequencies in structures has been 
proven as a reliable method for detecting and locating damage; in addition, it can be used in 
various types of real structures in civil engineering [16], [17]. Likewise, the authors of [18], 
[19] have carried out in-depth investigations on the detection of cracks in beams by analyzing 
their modal parameters in which it was determined that it is possible to perform the arrest, 
location of the damage correctly, and The extent of damage can also be estimated. In [20] the 
Artificial Neural Networks (ANN) technique is used to evaluate the modal parameters of a 
GFRP polymer beam with cracks. In that study, the modal frequencies of the beam with 
different cracks are obtained from the MATLAB software and the ANN results are compared 
with those obtained using the FEM in ANSYS. The article concludes that the ANN can 
accurately predict taking into account the performance of the neural network to obtain the modal 
parameters of the beam. 

 
The main objective of this article is to identify the presence and severity of structural damage 

in a rectangular reinforced concrete cantilever beam using the combination of modal parameters 
and ML algorithms such as artificial neural networks (ANN). A cantilever beam was chosen 
since with these support conditions the variations in frequencies and deformations can be better 
appreciated. To determine the vibration frequencies, the reinforced concrete beam was modeled 
in the ANSYS software and damage was simulated in 26 scenarios, of which 20 scenarios were 
used for training the code and 6 test scenarios for validation of operation and determination of 
the precision. Subsequently, the natural frequencies of the 20 training scenarios were used as 
input data in an ANN model in order to determine the existence and severity of damage as 
output data. The neural network was created using MATLAB software [21]. Figure 1 shows 
the process for damage detection using AI algorithms by evaluating the frequencies in each 
damage scenario. 
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Figure 1: Damage detection process of a reinforced concrete beam. 

2 FEM BEAM SIMULATION 
In the present investigation, a cantilevered concrete beam was modeled, where the 

mechanical properties of the beam are Young's modulus 3200 N/m^2, Poisson's modulus 0.2, 
density 2460 kg/m^3, shear modulus 17 N/m ^2, tensile strength 12 N/m^2, elastic limit 82 
N/m^2, compressive strength (f’c) 210 kg/cm^2. Figure 2 shows the geometric characteristics 
of the beam; 25 cases of damage were simulated with cracks located in different positions. 
 

 
Figure 2: Geometric properties of the beam. 

Figure 3 shows the damage scenarios located at 1 m, 2 m and 3 m from the fixed support on 
the upper and lower face of the beam. Also, Figure 4 shows the damage scenarios located at 0.5 
m, 2 m and 3.5 m from the fixed support, in which the damage states are shown and 6 cracks 
with a square section of 15x15 mm were considered that run along the transverse axis. 

 

 
Figure 3: Damage scenarios in reinforced concrete beam. 
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Figure 4: Test damage scenarios on reinforced concrete beam. 

3 VIBRATION FREQUENCIES 
Table 1 shows the results in ANSYS Workbench for the first 5 scenarios, the three-

dimensional (3D) finite element model was used, where a 50 mm mesh was used and the 
boundary conditions were established to obtain the 8 modes of vibration damage cases. 

 
Table 1: Vibration frequencies 

 
Mode 1 2 3 4 5 6 7 8 

Undamaged 
Beam 4.017E-03 5.703E-03 2.437E-02 3.356E-02 4.001E-02 6.513E-02 7.138E-02 8.646E-02 

Damage 1 4.015E-03 5.695E-03 2.437E-02 3.356E-02 3.999E-02 6.512E-02 7.134E-02 8.639E-02 
Damage 2 4.017E-03 5.701E-03 2.436E-02 3.351E-02 4.001E-02 6.513E-02 7.136E-02 8.646E-02 
Damage 3 4.018E-03 5.703E-03 2.437E-02 3.354E-02 4.002E-02 6.511E-02 7.138E-02 8.634E-02 
Damage 4 4.013E-03 5.687E-03 2.437E-02 3.356E-02 3.998E-02 6.511E-02 7.131E-02 8.632E-02 
Damage 5 4.016E-03 5.699E-03 2.435E-02 3.347E-02 4.000E-02 6.513E-02 7.134E-02 8.646E-02 

4 IMPLEMENTATIONS OF THE ANN 
ANNs are computational information processing systems that imitate the way human 

neurons operate; upon receiving information, these systems analyze and retain it for future 
application. They commonly present an architecture of three main components: an input layer, 
one or more hidden layers, and an output layer. Figure 5 shows the architecture of an ANN in 
which 𝑊!" represents the weight of the neuronal connection between an input and the neurons 
in the hidden layer, the bias is represented by 𝐵" and 𝑊"# defines the weight of the neuronal 
connection between the neuron in the hidden and output layers. The 𝐵# is the bias associated 
with the neurons in the output layer. The indices 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛   represent the 
amount of data collected and the number of hidden layer neurons respectively.  

 
Figure 5: ANN’s architecture. 



K. Oroz, V. Ramos, J. Casas, R. Delgadillo 

 6 

Equation (1) defines the total number of parameters (bias and weight) used in this neural 
network. 

𝑛 × (𝑚 + 2) + 1 (1) 

 
Two formulas are required to go from the input layer to the output layer. Equation (2) 

presents a summation function that is related to the training parameters and the results of the 
previous layers 

𝜑! = 𝜑#$𝑊"!

#

"$%

𝑓" + 𝑏!) , 𝑗 = (1 −𝑚) 
(2) 

 
Where 𝑊 and 𝐵 represent the weight and bias respectively of the training parameters. The 

variable 𝑛 is the number of extracted data and 𝑚 is the number of neurons selected in the hidden 
layer. Finally, 𝜑" and 𝑓! are the input and output data of the neural network respectively. On 
the other hand, in equation (3) the output of the hidden layer towards the outputs is determined 
as presented in the following formulation: 

𝜑!% =
1

1 + 𝑒&'! 
(3) 

 
The MatLab software was used to train a feedforward backpropagation ANN. For this, the 

Levenberg–Marquardt algorithm was used as the training function, the hyperbolic tangent as 
the activation function, and the mean square error (MSE) as performance validation. Likewise, 
the method shown in [24] was applied to determine the number of neurons required for the 
ANN. For the development of the ANN, it was determined to use 2 hidden layers of 25 neurons 
each. The complete information of the neural network architecture (metadata) is shown in Table 
2. 

 
Table 2: ANN’S Metada 

 
ANN Type Feed Forward Backpropagation 
Number of hidden layers  2 
N. º of neurons in the input layer 8 
N. º of neurons in hidden layers 25 
N. º of neurons in the output layer 4 
Activation function Hyperbolic Tangent 
Performance validation Mean Square Error 
Training algorithm Levenberg–Marquardt 

 
The structure of the ANN and its respective metadata are shown in Figure 5. You can see 

the 8 neurons as inputs that correspond to the 8 modes of vibration of the beam, the two hidden 
layers of 25 neurons and the 4 output neurons, which correspond to the four possible states of 
damage severity that the neural network can detect. The green squares belong to the input layer 
and output layer. Likewise, the two hidden layers are observed with blue squares. 
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Figure 5: ANN’s structure. 

To train the network, the frequencies of the first eight modes of the 20 training scenarios 
obtained through finite element simulations (FEM) of the beam were used as input data, as 
explained in the previous chapter. It was determined to use 8 modes since the sum of the 
accumulated modal energies was greater than 85% of the total energy of the beam and good 
precision was obtained. 70% of the input data was used to train the network, while 15% was 
used for error validation and another 15% as tests to validate the performance of the neural 
network. Likewise, the operation of the ANN was validated with 6 additional test scenarios to 
obtain the accuracy of the neural network. Regarding the output data, four variables were 
established. The first variable describes the presence of damage, with two possible options: 0 
if there is no presence of cracks, 1 if there is a presence of cracks. The other three output 
variables indicate the magnitude of the beam damage. The damage scenarios considered during 
the training phase are the same as those detailed in the previous chapter, which implies that the 
crack parameters remain constant, with an opening of 0.015m and the positions at x=0.50m, 
x=2.00m and x =3.50m considering x=0 as the left end of the beam. 

5 ANALYSIS OF THE RESULTS 
Once the training stage was completed, the evaluation of the performance of the ANN was 

carried out using the MatLab Neural Network Training interface in which the performance and 
regression of the network could be observed by drawing lines and curves. neuronal. Figure 6 
shows the validation graph of the most accurate performance obtained from ANN training 
evaluated using the mean square error (MSE), which is a metric used to measure the 
performance of a neural network. The lines on the graph represent the MSE for each of these 
training stages. The blue line represents the MSE for the training data set, the red line for the 
testing data set, and the green line for the validation data set. The goal is to minimize the MSE 
in all these stages to obtain an accurate and well-fitted model. The lines follow a trend towards 
the x-axis since with each cycle (Epoch), which is the number of times the complete model sees 
the training data set during the training process, the error decreases. The lowest MSE value was 
1.9476×10^(-23) which was obtained in cycle number 60 for the data validation set. Which 
indicates that although the code is designed for 1000 training cycles, only 60 were necessary to 
validate them. In this sense, depending on the required precision, the number of targets and 
especially the number of neurons in the hidden layers, the training may require fewer cycles to 
validate a minimum MSE that guarantees considerable precision of the ANN. 

 
Likewise, the bar graph of the neural network's errors when estimating the severity of the 

damage is also shown. The inaccuracy histogram is the representation of the discrepancies 
between the desired and estimated values after training the feedforward ANN. These erroneous 
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values show the difference between the estimates and the objectives set for the neural network, 
which were identification of the presence and severity of the damage. Each of the bars 
represents a range of error values and the height of each bar indicates the number of predictions 
that fell within that range, blue bar for the training data set, red bar for the test and the green 
bar for the validation data set. The graph shows 15 predictions (11 training, 3 test and 1 
validation) that fell within the error range of approximately 0.00412, 1 validation prediction in 
error range -0.2187, 3 training predictions in error range 0.01734 and 1 validation prediction in 
error range 0.189. In general, a symmetric distribution of errors is observed around zero, which 
indicates that the ANN is making predictions with high precision for both high and low values. 

 

     
Figure 6: Validation of the ANN’s best performance and bar graph of the neural network errors. 

 
Figure 7 shows the graphs of the performance of the neural network for the four damage severity 
objectives (targets) that showed values between 99.7% and 99.9% precision, which indicates 
that good precision was obtained from the training of the neural network. Furthermore, it was 
observed that when the number of neurons in the hidden layers was decreased to 2, the accuracy 
was reduced by approximately 56% for one of the test targets. Which indicates that according 
to the amount of input data, it is necessary to evaluate the necessary number of neurons in the 
hidden layers to obtain better training of the neural network [25].  
 

      
Figure 7: Neural network training results. 
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The damage scenarios, as well as the predictions of the severity of the damage and accuracy 
obtained from the neural network for the 6 test scenarios are presented in Table 3. It can be seen 
that 5 scenarios were predicted with damage and 1 without damage, likewise the accuracy of 
the predictions was greater than 85% in general with values of up to 98%, indicating that the 
ANN training was satisfactory to obtain significant results. The accuracy of the neural network 
was directly proportional to the amount of data used for training. The prediction for moderate 
(91%, 92%) and severe (95%, 97%) damage severities was higher because 20 damage scenarios 
were used and 13 of them presented moderate and severe severity, therefore the prediction for 
these severities were greater. 

 
Table 3: Damage and severity scenarios obtained 

 
Predicted Output Data 

Scenario Damage Presence Damage Severity Precision 
1 Yes Moderate Damage 91% 
2 Yes Serious Damage 97% 
3 Yes Serious Damage 95% 
4 Yes Minor Damage 89% 
5 Yes Moderate Damage 92% 
6 No No Damage 85% 

 
Table 4 shows the analysis and comparison of the results for the 6 test scenarios. The 

predefined damages were compared with the results predicted by the neural network and it was 
observed that the ANN managed to correctly define the six damage states, as well as their 
severity. The neural network obtained 100% accuracy in damage predictions and an average 
accuracy of 91.5% in damage severity predictions. Likewise, it was observed that the lowest 
precision obtained was 85% in the scenario without damage, this is because in the training data 
there was only 1 scenario with the label without damage. 

 
Table 4: Defined test damage scenarios and severity results 

 
Defined Data Predicted Data 

Scenario Damage Severity Damage Severity Precision 
1 Moderate Damage Moderate Damage 98% 
2 Serious Damage Serious Damage 89% 
3 Serious Damage Serious Damage 88% 
4 Minor Damage Minor Damage 97% 
5 Moderate Damage Moderate Damage 92% 
6 No Damage No Damage 85% 

 
After analyzing the results obtained, it was possible to validate that the ANN model shown 

in this study can be functional and also has high precision in the identification of structural 
damage, thus serving as a basis for other research on new methodologies for monitoring the 
structural health (SHM). Feed-forward Backpropagation ANNs can learn from the information 
and refine their predictive ability over time, which could result in more accurate and reliable 
estimates. Additionally, ANNs are more versatile than conventional methodologies since they 
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can identify more complex interactions between input and output variables. This can be 
particularly valuable in situations where the fundamental relationships between variables are not 
adequately understood or are non-linear. Finally, ANNs can be trained with large amounts of 
data and even years of monitoring (big data), allowing the inclusion of a wide number of 
quantitative and qualitative input variables, which could generate more robust predictions. 
Consequently, neural networks can offer engineers a powerful instrument to detect and evaluate 
structural damage in beam-like elements throughout their useful life and could eventually lead 
to new findings and advances in the field of SHM. 

6 CONCLUSIONS 
- In this paper, an ANN was applied to identify and quantify the severity of structural 

damage by varying the frequencies of a cantilevered concrete beam with a rectangular 
cross section. To train the neural network, 20 scenarios with different levels of damage 
were simulated, which obtained the vibration frequencies for the first 8 modes that 
guaranteed a significant participation of the mass of the beam. Furthermore, 6 additional 
test scenarios were used to validate the performance and accuracy of the neural network. 

- The ANN model was able to predict damage and classify it according to its severity as 
mild, moderate and severe. In addition, this demonstrates the success of using dynamic 
properties such as vibration frequencies to train an ANN with high precision and its 
subsequent identification and evaluation of the severity of the damage. The 
performance of the neural network was greater than 91.5%, which means that it has a 
high reliability value. By analyzing the MSE and the mean of the results, it has been 
shown that the ANN model provides a more effective prediction for damage 
identification than traditional high-order and linear regression models. Which is an 
important advance in the field of SMH since it allows monitoring by varying modal 
parameters (non-destructive) of the state of structural integrity in concrete beams. 
Regarding the training of the ANN, the number of targets and especially the number 
of neurons in the hidden layers directly influence the number of epochs that the 
network must simulate to validate a minimum MSE that guarantees considerable 
precision of the ANN. Therefore, it is advisable to analyze the amount of input data 
and the number of targets that the neural network will have to define the number of 
neurons necessary for better efficiency of the ANN. 

- Finally, the results of this research will be used to evaluate real structures such as 
buildings, hospitals, schools and others. Furthermore, AI tools have been shown to 
optimally assist in detecting, locating and quantifying structural damage in resistant 
structural elements. 
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