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1. INTRODUCTION

Nowadays there is a general concern for preservation of historical con-
structions [1-3]. This will invariably require to pay greater attention to the
reliable assessment of the structural conditions of the monuments and to
the correct design of intervention measures. It is obvious that as time goes
on, the number of historical constructions increases. In particular, many
existing bridges, towers and dams as well as some relevant buildings can
now be considered in every respect historical constructions [3].

The philosophy of conservation has the goal to preserve the original
architectural message of any monument. The first step to reach such ob-
jective is the accurate prediction of the actual safety level of the structure.
This includes the knowledge of both the mechanism of deterioration of the
material and of the structural components and the evolution of degradation
with time. The causes of deterioration usually can be subdivided in two
main groups : physical-chemical-biological aggressive agents and mechan-
ical problems. The latter can be nowadays accurately studied by means
of coupled numerical- experimental procedures, where the structural be-
haviour is analyzed by advanced non-linear finite element models which are
adequately calibrated using experimental data [5-28]. On the other hand,
the analysis of the physical-chemical-biological deterioration requires the
definition of "ad hoc” physical and numerical models for solving the equa-
tions of diffusion and transport of the aggressive species in order to predict

the evolution of degradation phenomena due to different external agents
[4,29-31].



The objective of this paper is to describe a methodology which can
be effectively used for assessing the structural conditions and durability
of historical masonry and concrete constructions. This includes the pre-
diction of local and global behaviour up to structural failure under static
and dynamic conditions. The approach combines the use of the concept
of damage to represent the non-linear deterioration process of the material
with advanced finite element models (including physical-chemical-biological
degradation) and extensive experimental testing to calibrate and validate
the overall numerical model.

The content of the paper is the following. In the next section a brief
historical background of damage models is presented. Then the basic in-
gredients of the damage model used are described together with its imple-
mentation for finite element analysis of historical constructions. Finally,
examples of preliminary applications of the model to the analysis of the
central dome of St. Marks Basilica in Venice are presented.

2. BRIEF REVIEW OF CONSTITUTIVE MODELS FOR NON
LINEAR ANALYSIS OF CONCRETE AND MASONRY
STRUCTURES

Extensive experimental studies have been undertaken to characterize the
response and ultimate strength of masonry and plain concrete under multi-
axial stress states [6-8]. Considerable scatter of results has been observed
and collaborative studies have been undertaken to identify the principal
factors influencing this variation [7,11]. Several approaches, based on ex-
perimental data, have been used to represent the constitutive relationship
under multi-axial stresses and these can be categorized into the five fol-
lowing groups: (a) linear and non linear elasticity theories, (b) perfect and
work-hardening plasticity theories, (c) endochronic theory of plasticity, (d)
plastic fracturing theory and damage theory.

A simple and popular model for non linear finite element analysis of con-
crete and masonry structures assumes elasto-plastic (or viscoplastic) con-
stitutive equations for compression behaviour, whereas a conceptually more
simple smeared elasto-brittle model is used for defining onset and progres-
sion of cracks at points in tension. Different versions of this model have
been successfully used for non-linear analysis of masonry as well as plain
and reinforced concrete structures [3,10,11,24]. A summary of some of the
more recent contributions in each of those theories can be found in [6,10,11].

The elasto-plastic-brittle smeared model, in spite of its popularity, pre-
sents various controversial features such as the need for defining uncoupled
behaviour along each principal stress (or strain) directions: the use of a shear
retention factor to ensure some shear resistance along the crack; the lack



of equilibrium at the cracking point when more than one crack is formed:;
the difficulties in defining stress paths following the opening and closing of
cracks under cycling loading conditions and the difficulty for dealing with
the combined effect of cracking and plasticity at the damaged points [24].

It is well known that micro-cracking in concrete and masonry takes
place at low load levels due to physical debonding between aggregate and
mortar particles, or to simple micro-cracking in the mortar area. Cracking
progresses following a non homogeneous path which combines the two men-
tioned mechanisms with growth and linking between micro-cracks along
different directions. Experiments carried out on mortar specimens show
that the distribution of micro-cracking is fairly discontinuous with arbitrary
orientations [6]. This fact is supported by many experiments which show
that cracking can be considered at microscopic level as a non directional
phenomenon and that the propagation of micro-cracks follows an erratic
path which depends on the size of the aggregate particles. Thus, the domi-
nant cracking directions can be interpreted at macroscopic level as the locus
of trajectories of the damage points (Figure 1).
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Figure 1. Mechanics of damage and propagation of a macroscopic
crack in plain concrete

The above concepts support the idea that the non linear behaviour of
concrete and masonry can be modeled using concepts of damage theory only



[10, 12, 13, 17-21] provided an adequate damage function is defined for
taking into account the different response of concrete under tension and
compression states. Cracking can, therefore, be interpreted as a local dam-
age effect, defined by the evolution of known material parameters and by
one or several functions which control the onset and evolution of damage.

One of the advantages of such a model is the independence of the anal-
ysis with respect to cracking directions which can be simply identified a
posteriori once the non-linear solution is obtained [10,12,13]. This allows
to overcome the problems associated to most elastic-plastic-brittle smeared
cracking models. In this paper a model developed in recent years by the
authors group [10-16,22-28] for non-linear analysis of concrete based on the
concepts of damage mentioned above is extended for structural analysis of
historical constructions. The model takes into account all the important as-
pects which should be considered in the non-linear analysis of concrete and
masonry structures such as the different response under tension and com-
pression, the effect of stiffness degradation due to mechanical and physical-
chemical-biological effects and the problem of objectivity of the results with
respect to the finite element mesh.

3. THE CONCEPT OF DAMAGE VARIABLE

In order to clarify the concept of damage consider a surface element
in a damaged material volume. This surface has an area large enough to
contain a representative number of defects, but still enabling to be referred
as pertaining to a particular material point. Thus, if S, denotes the overall
section and S, the effective resisting area (S, — S, is the area occupied by

n

the voids), the damage variable d, associated to this surface is (Figure 2)
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Clearly, d, represents the surface density of material defects and it will
have a zero value when the material is in the undamaged virgin state. Con-
versely, the reduction of the effective resisting area will lead to an increase
of damage until rupture defined by some critical value of d, (bounded by
the unreachable value of d, = 1). Note that this is a directional definition of
damage. In many cases a single scalar representation of damage is adopted
(i.e. d, = d) which suffices to ensure realistic material model [13,17-22]. Tt
is worth noting, that in this case cracks at a microscopic point need not to
have not particular direction and a macroscopic crack is then defined as the
locus of damage points as previously mentioned.

An useful concept for understanding the effect of damage is that of
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Figure 2. (a) Damaged surface; (b) Cauchy stress 0 and effective
stress 0; (c) Evolution of uniaxial stress-strain curve

effective stress. The equilibrium relationship between the standard Cauchy

stress 0 and the “effective” stress, &, in the damaged bar specimen of Figure
2 is

o8 =a8 (2)
and from (1) and (2)
0=(1-d)od=(1-d)Ee (3)

Clearly when a damaging process is occurring, the external loading is
resisted by the effective stress area and, therefore, & is a more physically
representative parameter than o (Figure 2).



4. CONTINUUM DAMAGE MODEL FOR MASONRY AND
CONCRETE UNDER PHYSICAL, CHEMICAL AND BIO-
LOGICAL EFFECTS

4.1 Basic assumptions

As mentioned above, the deterioration mechanisms that occur in many
concrete masonry structures can be divided in physical-chemical-biological
causes and mechanical ones. The latter are usually due to an excess of stress
acting on the material and can be studied by means of a standard damage
model as explained previously. The physical-chemical-biological causes of
degradations are due to the interaction between the environment and the
building material. Here the presence of water plays a primary role. The
main causes of degradations are listed in Table I [29-32,34].

Table 1 Classification of physical, chemical and biological
degradation causes [34].

Type Description of the sources of degradation

1.1 freezing-thawing
1. physical | 1.2 leaching out
causes 1.3 crystalisation of soluble salts

2.1 reaction between sulphate and hydrate calcium
silicates with production of ettringite
2.2 reaction between sulphate and hydrate alumina-

2. chemical tes with production of thaumasite
causes 2.3 reaction between calcium chloride and calcium
hydroxide with production of hydrated calcium
oxychloride

2.4 alkali-aggregate reaction

3. biological | 3.1 formation of algae, lichens and fungi
causes




4.1.1 Field equations for environmental variables

The differential equations governing moisture, heat and aggressive spe-
cies flows in a porous material (such as masonry and concrete) in the hy-
pothesis of existence of chemical reactions and by considering both diffusion
and transport mechanisms can be written as

oh Oh, 8T oh,

ot ot (")t ot

oT T th

i 4
pe, T V bVT + 5 + (') (4)

dc cOw Oc,

=V Vet oot g

where h, T' and c are respectively the relative humidity content, the temper-
ature and the diffusive species concentration (e.g. chloride, sulphate, CO,,
etc.) and w is the water content. @, is the outflow of heat per unit volume
of solid, b is the thermal conductivity and 9(-),/0t denotes changes due to
the carbonation per time unit. A more precise definition of these symbols
can be found in [29,30].

The diffusivities of relative humidity » and the aggressive species D,
are assumed to be strongly dependent on the pore humidity, temperature,
degree of hydration of cement (that is the equivalent curing time) and the
precipitate concentration c; (if the product of the chemical reaction is a pre-
cipitate, like the calcium carbonate in the carbonation process). These latter
two facts slow the diffusion phenomenon for long term results due to the
reduction of the porosity. The (non linear) expressions of the diffusivities as
a function of h, T" and c can be found in [34]. Note that the mathematical
form of the problem is similar to that of the corrosion problem of the steel
in concrete and the freeze-thaw problem [29,30,33].

4.1.2 Numerical solution of environmental variables

Due to the complexity resulting from the non linearities occurring in
the definition of the diffusivities and the coupling of the differential equa-
tions (4), analytical solutions are very difficult to obtain and a numerical
approach should be preferred. There the finite element method seems to be
the more adequate procedure to solve the space-time equations and it has
been successfully used by the authors in this context [29,30,34].

Application of the well-known Galerkin procedure after space discreti-



sation leads to the following systems of equations of coupled ordinary dif-
ferential equations in time

Oh oT  Oh,

oT 0Q, OT, ;
Crgy + BT — 2 — £ =0 (5)
acC dw 9C,
o TPC G5 =0

where h, T' and C represent the discrete relative humidity content, the dis-
crete temperature and the discrete diffusive species concentration vectors.
For the detailed expressions of the matrices in (5) see [29,30,33].

The system (5) can be written in the following concise form

Az + Bz =¢q (6)

where the meaning of the terms in the eq. (6) follows immediately from eq.
(5). The solution in time of eq. (6) can be easily attempted following a
standard one step algorithm giving

1

[LA - aB} " =q" - [(1 —a)B — A

Al z" 7
A7 (7)
where (-)" denotes values at time ¢", At is the time increment and « is a sta-
bility parameter [35]. The algebraic non linear equations (6) is thus solved
by a direct approach. Details of the stability and convergence conditions in
the solution of eq. (7) can be found in [33,35].

4.2 Coupling environmental and mechanical damage

The coupling of physical-chemical-biological effects with strength char-
acteristics can be taken into account in the damage model by modifying
eq.(3) as

o =p6(1—d)Ee (8)
where [ is a physical-chemical-biological (PCB) parameter such that

B, < B < 1. The value of 8 approaches the critical lower value B. as the PCB
degradation process reaches its maximum effect. Eq.(8) can be rewritten as

o=(1-d)Ee 9)



with d"=1-p(1-ad) (10)

Clearly the effect of 8 is that of reducing the mechanical strength. Note
that as 8 — 3, then d° — d. The evolution of B depends on that of
moisture, temperature and aggressive species within the (porous) material.
The physical parameters in this diffusion process depend also on the overall
degradation level through the damage variable d and the problem is thus
fully coupled [33,34]. A full coupled analysis involves the finite element
solution of the differential equations governing the transport of diffusing
species together with those governing the structural behaviour. The PCB-
mechanical coupling can be tackled by means of a staggered scheme [33,35].
Very few applications of the full coupled solutions can be found in the
literature. Preliminary results for simple test problems have been recently
reported in [33,34]. The analysis can be obviously simplified by choosing
a fixed value of 3, which is equivalent to accepting a certain level of PCB
degradation at the time of analysis, or by defining an appropriate time
evolution of the PCB parameters.

4.3. Three-dimensional model and evolution laws

Equation (8) can be extended to define the constitutive equation of a
three dimensional specimen in vector form as

0 =p(1—-d)a = f(1 - d)De (11)

where D is the elastic constitutive matrix o and € are the standard stress
and strain vectors.

The model defined by eq. (11) requires the knowledge of the damage
and PCB variables d and 3 ;respectively at every stage of the history of the
construction. For this purpose one must define:

For the damage variable d

a) A suitable scalar norm 7 of the strain tensor (or alternatively of the
undamaged stress tensor). Here, several possibilities exist and a, suitable
option for concrete and masonry is [10,23]

T = (9 . ; 9) [0"D"5] - (12)

where n = f' /', is the ratio between the compression and tension Limit
strengths,
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Expression (13) accounts for the different limit behaviour of the material
under compression and tension states.

b) A damage criterion formulated in the strain of the undamaged stress
spaces. The simplest form of this can be written as

F(r,r)=7—-7r<0 (14)

where 7 is the norm defined in (8) and r is the damage threshold value.
Damage grows when the norm 7 exceeds the current threshold value.
In particular, damage is initiated when 7 exceeds for the first time the
value r° (typically 7° = f,/V/E is taken [10,13]).

Figure 3 shows the form of the limit surface 7°—7° defining the onset
of damage for the expression of 7 given by eq.(12).

\o? Ao,

ELASTIC

Figure 3. Limit damage surface and uniaxial stress-strain curve
for the model of eq. (9)

c¢) Evolution laws for the damage variable d and the damage threshold
value 7. These can be written as [28], [31].

d=G(r) , r=max{r° 7} (15)

where (G is a suitable monotonic scalar function taken as

(o}

G(r)=1- % exp {A (1 - TL)} (16)



Note that G(r°) = 0 and G(c0) = 1 as expected. The parameter A
is determined from the energy dissipated in an uniaxial tension test as
[10,23]

1 ng

A (f)
where g, = f/l*, G, being the specific fracture energy per unit area
(taken as a material property), [ is the characteristic length of the
fractured domain. As always 9;> (f1)?/2E (the material must dissipate
at least the energy stored when the elastic limit is reached), parameter

A must be positive [28]. Defining 9y = g9,— (f1)’/2E, an alternative
expression for (17) is

. (17)

_ 9B
(7’

(17a)

SN

For the PCB variable B:

a)
b)

A suitable scalar norm of the residual strength. Here the simplest option
is to choose the same norm 7 proposed for the damage variable.

An evolution law for the PCB variable 8. This can be written following
[33] as

p=F(r,c) (18a)

with

471
F(r,c) =7+ (1-4) {1 + <2—Cf> J (180)

where v = - is the ratio between the actual strength norm 7 and

ref
the residual strength norm, corresponding to ¢ = Gep 1.€. the reference
concentration of the diffusing species (chloride, sulphate, CQ,, etc.) for
which the PCB degradation process reaches its maximum effect.

The ezperimental characterization of the model requires the following

material parameters : Young modulus and Poisson ratio, tension and com-
pression limit strengths and specific fracture energy obtained from uniaxial
tests as well as the time evolution of the concentration of the diffusing
species obtained from separate solution of diffuse transport equations or by
experimental measurements [29-34].



4.4. Finite element structural analysis

The damage model presented above is extremely simple in comparison
with more sophisticated models for frictional materials. The finite element
implementation follows the standard process [35]:

a) Finite element discretisation of the structure and interpolation of the
displacement field within each element as :

u= Na (19)
where u is the displacement vector, N is the shape function matrix and
a is the vector containing the displacements of the element nodes.

b) Discretisation of the strain and stress fields as

e=Lu=LNa= Ba (20)

0 =f((1—-d)De = (1 — d)DBa (21)
where L is the appropriate strain operator and B is the strain matrix.
c¢) Derivation of the (non-linear) discretised equations. Substituting equa-
tions (19)-(21) into the principle of virtual work [35]
[ seTaav = [ subav + | outds (22)
v 1% s

gives after standard algebra

UV=p—f (23)

— ‘od
P /VB odv (24)
f:/V NdeV+/SNTtdS (25)

In the above equations b and ¢ are body force and distributed force vectors
respectively, de and du denote the virtual strains and virtual displacements,
respectively and W is the so-called residual force vector which expresses the
equilibrium between the external forces vector, f and the internal forces
vector, p.

The system of equations (23) is non-linear due to the dependence of the
stresses on the damage and PCB parameters d and 8 through eq.(21). A
summary of the main steps of the non-linear solution is shown in Box 1.



nth load increment, ith iteration

Compute displacement increment

Aaj= — [H]"¥]

W7 : residual force vector (= [, B'odV — f)

H: iteration matrix (i.e. tangent stiffness matrix)
Update displacements and strains

n  __.n n
a;,, = a;+ Aa;

€;,, =€;+ BAa]

i+1
Evaluate stresses

1) Compute undamaged stresses: o, = Dg"
g i+1 i+1

n

(2) Evaluate r},, using eq.(12): r},, =77,

(3) Update r, d and 3

n

i, = max(r" 7 rl,)
di,, =G(r,)
B = Flrg el
(4) Update stresses: o}, = (1 —d", )o",,
Evaluate residual force vector: W7,

Check convergence: [|[¥7 || <e€|/f| ?
No: Continue iterations: 7 =14+ 1
Yes: a" = a},

Next load increment: n=n +1

Box 1. Quasi-static non linear finite element structural solution using
the environmental-mechanical damage model




Note that the process is relatively simple as no special algorithm for
integration of the constitutive equations is needed as the stresses are explic-
itly given by eq.(21). Further information including details of the consistent
computation of the tangent constitutive matrix can be found in [28].

The concentration of diffusing PCB species, ¢, at each stage of the
structural life should be determined by a separate transient solution of the
PCB transport equations which in turn depend on the damage level as above
explained. The solution of the full coupled problem in time is schematically
shown in Box 2.

0. New time increment t"*' = t" 4+ At

n+1
i

1. Solve evolution equation for ¢

e c't'=f(c 0", d",...)

1

2. Compute 8" = B (c}*)

2

3. Solve structural problem at time ¢"*'

n+1)

e Solve p (a"™) — f" =0 for a"™', "™ and """ using

® 0_n+1 — /Bn+1 (1 _ dn+1) En—H

4. Repeat steps 1. to 3. until convergence of environmental
and mechanical solutions at time ¢"**

5. Compute global damage index D"*' at time ¢"**

6. Next time increment — go to step 0.

Box 2. Full coupled transient solution linking environmental
and mechanical damage.

A simpler alternative is to assume an uncoupled behaviour between
the mechanical and environmental damage parameters and to obtain an
analytical expression of ¢ by solving independently the transport equations
for the diffusing species under different degradation assumptions [39]. The
mechanical problem can thus be separately solved for a fixed value of 3 to
obtain the structural response and failure load of the construction at any
desired time of its history. This process is sketched in Box 3.




1. Uncoupled transient environmental damage analysis

1.1 Solve for the time
evolution of ¢,
..... - Cq
S
IS
c
8
&
&
Time
1.2 Compute [(t) o
g 1
£
[\
©
e
c
(0]
£
5
2
w n
p
ﬂc }
" Time

2. Perform quasi-static structural analysis at time ¢ = ¢"
. 5" = B(t"
e Solve p(a") — f" =0 for a", €" and ¢" using:
e 0" =["(1-d"e"

e Compute global damage index D"

Box 3. Quasi-static structural analysis using information from un-
coupled transient environmental damage computations.




The dynamic solution under time dependent forces follows a similar
pattern. Inclusion of dynamic effects in the virtual work equation (22)
leads after discretisation to the well known transient equation system [35].

Mi+Ca+ Ka = f(t) (26)

where a and @ are nodal velocity and acceleration vectors, respectively, M
and C' are the mass and damping matrices and f(¢) is the time dependent
nodal force vector.

A full non-linear transient solution of eq.(26) is now possible using stan-
dard time integration algorithms giving the displacements, velocities, accel-
erations, strains and stresses as well as the local and global damage indexes
at each time of the deformation process. A detailed description of the dy-
namic finite element solution falls outside the scope of this paper. The
interested reader can find full details in [28,35].

5. THE CONCEPT OF GLOBAL DAMAGE

The global strength of the structure can be assessed by means of a global
damage index D. The simplest definition for D is the following

Sl

D=1- (27)

where U and U are the internal energies corresponding to the damaged and
undamaged states, i.e.

q T T T _
a/BadV:a /B(l—d)adV
1% V

U
U

|

T T _
a /VB odv (28)

In (28) the total energy of the structure is obtained by sum of the
element contributions in the standard manner.

Note that global structural failure corresponds to a value of D approach-
ing unity. Thus, the computation of the local and global damage indices
provides a useful tool for monitoring in detail the evolution of the non linear
response of the structure up to failure.
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Figure 4. Views of the 3D finite element mesh of St. Marks Basil-
ica Dome.



6. ANALYSIS OF ST. MARKS BASILICA IN VENICE

The methodology presented is currently being applied by the authors
to analyze structural elements of St. Marks Basilica in Venice for which
cracking patterns have been detected. The first example presented is the
preliminary damage analysis of the central dome under various static and
dynamic conditions using a finite element code developed by the authors
[28].

1 ! | | | I | | I I
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Global Damage Level

Figure 5. Global damage evolution for the static analysis.

Figure 4 shows different views of the finite element meshes of the struc-
ture using standard 20 node isoparametric hexahedral elements. All points
at the base (y = 0) have the vertical displacement restricted. In addition
the displacement in the plane y = 0 of two base points have been also re-
stricted to avoid rigid body motions. The material properties assumed in
the analysis are the following :



Case 1:
Stone
e E = 600.000 kg/cm?2, v=0.15
e Tension limit strength = 40 kg/cm?
e Compression limit strength = 400 kg/ cm?
e Density = 2.7 g/cm?

Masonry (vertical cylindrical wall elements)

e E = 200.000 kg/cm?, v=0.15

e Tension limit strength = 10 kg/ cm?

e Compression limit strength = 100 kg/cm?

e Density = 2.4 g/cm?3
The first solution attempted is the analysis of the limit static structural
strength under self weight loading. The study has been undertaken for a
constant value of the PCB parameter § = 0.9 for simplicity. Figure 5 shows
the evolution of the global damage index D for increasing values of the
self weight up to failure characterized by a value of D rapidly approaching
unity. Convergence of the non-linear solution was lost for D = 0.8 and
a safety coefficient of ~ 4.6 was found. The evolution of the local damage
index d contours is plotted in Figures 6a-c. Note that the maximum value of
d reaches 0.9513 at the dome base where existing cracks have been observed
in practice. The contours of equal vertical displacement and a picture of
the deformed shape of the structure at the failure load are plotted in Fig.7.

The same analysis was repeated for reduced values of the masonry
strength of
CASE 2

e Tension limit strength = 5 kg/cm?

e Compression limit strength = 50 kg/cm?
CASE 3

e Tension limit strength = 1 kg/cm?

e Compression limit strength = 10 kg/ cm?
while keeping the rest of the material properties constant and equal to those
chosen in Case 1.

Figure 8 shows the evolution of the safety coefficient for the three
different cases studied. It is interesting to note that the safety coefficient
does not substantially increase for values of the tension limit strength of
the masonry greater than 5 kg/ cm?. This is due to the change of the defor-
mation mode of the structure as the strength of the masonry wall increases
which leads to accelerated failure of the stone arches, as expected.

The next study is the dynamic analysis of the structure under a hy-
pothetic earthquake. The material parameters and boundary conditions
coincide with those of Case 1 described above.

The analysis was performed in two steps. First, the static solution under
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Figure 6.b Contours of the damaged zones for load factors of 1.8,

2.0, 2.2 and 2.6, respectively.
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Figure 6.c Contours of the damaged zones for load factors of 3.0.

, respectively.

3.6, 4.2 and 4.6
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Figure 7. Contours of equal displacement and deformed shape at

collapse.
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Figure 8. Safety coefficient evolution against the tensile strength
of masonry.

self weight was obtained and next the synthetic acceleration shown in Figure
9 was applied to the base of the initially self-loaded structure. The evolution
of the global damage index D with time is plotted in Figure 10. Note that
global failure is obtained after 3.02 seconds. Failure occurs due to fracture
of the masonry elements at the mid-hight of the cylindrical wall as clearly
shown in Figures 11a-b. The deformed shapes of the structure at different
times during the earthquake can be seen in Figure 12.

The last example corresponds to the full three-dimensional analysis of
the five domes of St. Marks Basilica. Figure 13 shows the mesh of 7676 20-
noded hexahedra involving 48505 nodes used for the analysis. 2265 15-noded
triangular prisms were also used as transition elements in some zones. The
material properties for the stone were taken the same as for the analysis of
the single dome in the previous example. The properties for the cylindrical
walls masonry where taken as:

e wall 1 E= BOOOOkg/cm v=0.15, 0,=40kg/cm?, 0,= IOkg/cm

e wall 2 E=60700kg/cm?, v=0.15, 0, 40kg/cm2 0,=10kg/cm?

e wall 3 E= 250000kg/cm , v=0.15, 0,=300kg/cm?, 0,= 30kg/cm

e wall 4 E=90000kg/cm?, v=0.15, 0,=40kg/cm?, 0,= lOkg/cm
The density was taken equal to 2.4g/ cm3 in all cases. A quasi-static study
was performed for a constant value of the PCB parameter 5 = 0.9.

Figure 14 shows the evolution of the global damage index for increasing
values of the self weight. Convergence of the solution was lost for D=0.84
and a safety coefficient of 5.75 was found. The contours of equal displace-
ment at that load level are displayed in Figure 15 whereas the damage
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Figure 9. Synthetic accelerogram.
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Figure 10. Global damage evolution for the dynamic analysis.
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Figure 11.b Contours of the damaged zones during the dynamic

corresponding to the final stages be-
fore structural collapse, for the time instants of 2.2,

2.9, 3.0 and 3.02 seconds.
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Figure 13. Finite Element mesh for the full 3D analysis of the 5
domes.
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Figure 14. Evolution of global damage function of the self-weight
factor.



Figure 15. Contours of equal displacement for a 5.75 self-weight
factor.
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Figure 16. Damage contours for a 5.75 self-weight factor.



Figure 17. Crack patterns for a 5.75 self-weight factor.
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Figure 18. Above: The central dome of St. Mark’s Basilica.
Below: Perspective of St. Mark’s square from the roof.



contours are shown in Figure 16.

Figure 17 shows finally the crack pattern at failure. Cracks have been
assumed to appear at each integration point in the orthogonal direction to
the maximum principal strain. The size of each crack has been defined as
proportional to the damage level at that point. Figure 17 shows that failure
occur due to accumulated damage at the base of the masonry walls and at
the central stone arches.

Figure 18 shows finally a close-up picture of the central dome taken
during a recent visit of the first author to St. Marks Basilica in the company
of the architect responsible for its maintenance Mr. E. Vio. A perspective of
St. Marks square taken from the Basilica’s roof is also shown in the second
photograph.

7. CONCLUDING REMARKS

The environmental-mechanical damage methodology presented can be
applied successfully to assess the structural conditions and estimate the
safety level and durability of historical constructions under static and dy-
namic loading. A full coupled solution taking into account physical-chemi-
cal-biological degradation and mechanical effects is nowadays possible and
this will allow to trace the history of structural pathologies and to design the
correct intervention measures. A particularly interesting immediate appli-
cation of the damage model here proposed is the evaluation of the structural
strength increase for different intervention measures, thus allowing to opti-
mize any restoration investment.
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