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In China, air traffic congestion has become increasingly prominent and tends to spread from terminal areas to en route networks.
Accurate and objective traffic demand prediction could alleviate congestion effectively. However, the usual demand prediction is
based on conjecture method of flying track, and the number of aircraft flying over a sector in a set time interval could be inferred
through the location information of any aircraft track. In this paper, we proposed a probabilistic traffic demand prediction method
by considering the deviations caused by random events, such as the change of departure or arrival time, the temporary change in
route or altitude under severe weather conditions, and unscheduled cancellation for a flight. The probabilistic method quantifies
these uncertain factors and presents numerical value with its corresponding probability instead of the deterministic number of
aircraft in a sector during a time interval. The analysis results indicate that the probabilistic traffic demand prediction based on
error distribution characteristics achieves an effective match with the realistic operation in airspace of central and southern China,
which contributes to enhancing the implementation of airspace congestion risk management.

1. Introduction

As an important part of the Next Generation Air Transporta-
tion System (NextGen) program, traffic flow management
based on probabilistic traffic demand prediction by consider-
ing uncertainty has received much attention in recent years
due to the stochastic nature of the predictions. It provides
more accurate prediction results that will benefit realistic
decisions than deterministic prediction.

Intelligence and dynamic of traffic environment has been
deepened with the complexity since the 90s of last cen-
tury. The method of original static and deterministic traffic
demand prediction has gradually been unable to meet the
requirements of optimizing the air trafficmanagement.Many
scholars began to study the characteristics of the uncertainties
in the air traffic system from the perspective of both the tra-
jectory uncertainty and the uncertainties of departure/arrival
time [1–10]. In 2002, Larry A. Meyn [11] established a
probabilistic approach to predicting traffic demand andmade
a scientific estimate on demandof the airport throughMonte-
Carlo simulation. In the same year, K. T. Muller et al. [12]

studied the uncertainty models of the factors in the strategic
trajectory prediction and simulated the future operating
environment by controlling the distribution of these factors.
In 2003, Sandip Roy [13] established an aggregate dynamic
stochastic model based on Poisson distribution to quantify
the uncertainty of traffic demand. For the disadvantages of
themethod, Craig R.Wanke et al. [14] extracted andmeasured
the characteristics of uncertainty in demand predictions
based on the deviation analysis between predicted values
and actual values. In 2004, Craig R. Wanke et al. [15]
improved the algorithm and established a statistical model of
error distribution applied to Monte-Carlo simulation under
special traffic samples. In 2007, E. Gilbo and S. Smith [16]
improved the ETMS model by proposing a new model to
improve aggregate air traffic demand predictions. In 2009,
E. Gilbo and S. Smith [17] analyzed probabilistic prediction
of aggregate traffic flow in the terminal area of the airport
using uncertainty in individual flight predictions. In 2011, E.
Gilbo et al. [18] proposed a new method for probabilistic
traffic demand predictions for en route sectors based on
uncertain predictions of individual flight events. Wen Tian
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Figure 1: Relationship between 𝛼𝑇𝐶 and 𝛼.

and Minghua Hu [19] of Nanjing University of Aeronautics
and Astronautics explored the random variation of traffic
demand in the airspace sectors in 2011 and established a
probabilistic traffic demand prediction model for tactical
operations. The proposed model has made contributions to
the further study of uncertainty and measurement in air
traffic demand prediction. Also in 2011, Chao Wang and Le
Yang [20] of Civil Aviation University of China proposed
a prediction method of congestion prediction based on the
Monte-Carlo simulation. They established the probabilistic
distribution model based on aircraft sector entry time, sector
exit time, and stay time in the airspace sectors. In 2013, from
the perspective of demand uncertainty, Shanmei Li et al.
[21] analyzed the influence of aircraft arrival and departure
time on the airport traffic demand prediction and established
a probabilistic distribution model of multiperiod method.
In the same year, Wen Tian [22] further optimized the
probabilistic traffic demand prediction method for airspace
sectors and applied it to the risk management of airspace
congestion. In addition,more andmoreATFM researches are
probability/uncertainty-based on, which have made contri-
butions to network optimization and decreased congestion.
F. Gonze et al. [23] proposed a probabilistic framework
for modeling air traffic occupancy count to provide ATC
with more precise and valuable information. Dan Chen et
al. [24] established a model to reduce en route delays by
characterizing realistic dynamics and uncertainty of en route
airspace system. Prediction uncertainty is explicitly used in
demand and capacity balancing tools to develop effective and
efficient congestion resolution actions [25]. YH Chang et al.
[26] mainly focus on reduced sector volume problems caused
by weather uncertainty and proposed effective solutions to
avoid sector congestion.

As mentioned, the majority of traditional research has
focused on the measurement of uncertain traffic demand
prediction. For more and more study based on aircraft,
these segments need to be considered based on actual data.
According to the prediction deviation of the time that aircraft
went through the en route sector boundaries, we could obtain
time randomness characteristics of the single aircraft entering
and leaving the sector.Therefore, probabilistic traffic demand
of the en route sector could be calculated. A large number
of targeted aircraft performance data of particular periods
and fixes are required, which made high requirements on
accumulation and organization of historical data (including

radar data and prediction data). In our traffic prediction
and management system, the latitude 𝜙 and longitude 𝜆 of
any waypoint could be provided easily. We assume that fix
A(𝜙𝐴, 𝜆𝐴) and fix B(𝜙𝐵, 𝜆𝐵) represent origin and destination
separately; method of spherical trigonometry was applied
to derive the corresponding parameter as (1) and (2). True
course 𝛼𝑇𝐶 depends on which quadrant it is in (Figure 1).

tan𝛼 = 𝜆𝐵 − 𝜆𝐴
ln tan (45∘ + 𝜙𝐵/2) − ln tan (45∘ + 𝜙𝐴/2) (1)

𝐷 = (𝜆𝐵 − 𝜆𝐴) cos𝜙 ⋅ sec𝛼 (2)

where

𝛼 is the angle between the rhumb line track and
longitude

𝜙 is the average latitude of fix A and B, i.e., 𝜙 = (𝜙𝐴 +𝜙𝐵)/2
𝐷 is the distance from fix A to B (unit: radian)

In addition, the unit of 𝜆𝐵 −𝜆𝐴 is radian, 𝛼 takes absolute
value of calculation results and we should converse D’s unit
from radian to nautical mile. The cruise speed varies with
the aircraft types. Then the estimated time of the arrival time
at fix B (𝑇𝐵) since the flying time from A to B could be
calculated. During the process of track conjecture, the system
scans radar data and telegraph data (such as DEP, departure
message; ARR, arrivalmessage; andOVFLY, overflymessage)
at a regular interval to obtain the latitude, longitude, and
speed of the aircraft. The total aircraft in time interval would
be the results of deterministic prediction.

2. Data Preparation

An aircraft flying over the en route boundary fixes is defined
as a random event. In order to obtain the probability density
distribution function of the event, the distribution parameter
is usually obtained according to the historical data for a given
distribution characteristic, which is a subjective method [19,
21]. In this paper, a direct statistical method was adopted
to predict the time error of the large number of aircraft the
en route boundary in a certain period of time for a more
realistic, objective reflection of random events regularity of
the discrete distribution function.
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Figure 2: Bar chart of aircraft in Sector AR05 in central and
southern China in different periods in May.
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Figure 3: Bar chart of aircraft from Sectors AR01 to AR08 in central
and southern China in May.

2.1. Analysis of the Prediction Error Characteristics. The rel-
ative error of the predicted time of the aircraft through the
sector boundary is calculated by comparing the historical
predicted time with the corresponding historical actual time.
Some regularity can be found after statistical analysis of a
large number of predicted values and actual ones, and it may
vary depending on the busy level of the predicted periods and
the location of targeted sectors. Details are as follows.

(1) The Busy Level of the Predicted Periods. As shown in
Figure 2 (for details of this analysis see SupplementalMaterial
[S1]), majority of data is concentrated in the time interval
of 09: 00-24: 00; it is easier to find the regularity. On the
contrary, sectorAR05 seems relatively free during the period
of 01: 00-08: 00.

(2)TheLocation of Targeted Sectors. Figure 3 (for details of
this analysis see SupplementalMaterial [S1]) shows the results
that the aircraft numbers vary significantly among different
sectors. Usually, the more aircraft in the sector there are, the
easier error regularity of the predicted time could be found.

2.2. Influencing Factors of Prediction Error andModel Descrip-
tion. It is convenient to describe the problem as a simplified
network model composed of four elements: airspace, en
route, sectors, and sector boundary fixes. In addition, the

four-dimensional space (one-dimensional time and three-
dimensional space) of the aircraft flight is simplified as
one-dimension time and two-dimensional space. The entire
airspace is divided into two parts: targeted airspace and
nontargeted part. As illustrated in Figure 4, targeted airspace
consists of those airspace, en route, sectors, and sector
boundary fixes which are within predicted space. Others
belong to nontargeted part. The aircraft departs from the
take-off airport, then enters the targeted airspace through the
sector boundary fixes, and finally travels along the en route
and continues to fly over several sector boundary fixes until
it leaves the targeted airspace.

During the predicted period 𝑇, we assume that the total
amount of aircraft passed through a targeted sector is 𝑁.
Aircraft’s predicted time error of flying over several sector
boundary fixes can be expressed as

Δ𝑡𝑖 = 𝑡𝑒𝑡𝑝𝑖 − 𝑡𝑎𝑡𝑝𝑖 (3)
where

𝑓𝑖 is aircraft 𝑖 (1 ≤ 𝑖 ≤ 𝑁)
𝑡𝑑𝑒𝑝𝑖 is departure time of aircraft 𝑖
𝑡𝑒𝑡𝑝𝑖 is estimated time of aircraft 𝑖 (1 ≤ 𝑖 ≤ 𝑁) flying
over several sector boundary fixes
𝑡𝑎𝑡𝑝𝑖 is actual time of aircraft 𝑖 (1 ≤ 𝑖 ≤ 𝑁) flying over
several sector boundary fixes

The samples that estimated time of aircraft flying over
several sector boundary fixes are divided into two subsets. All
data before day𝑚th belong to the subset I, data from day𝑚+
1th to the day𝑀th belong to subset II, and the former class is
used to find the distribution characteristics of the prediction
deviation. The latter one is used to verify the validity of
the statistical regularity. After successful verification, sector
enter time of any aircraft on any day can be predicted
probabilistically in the future. The analysis process in this
paper is based on typical route sectors at typical run time.
When the sector changes or emergencies happen (such as
bad weather and major events), restatistics and reanalysis
on the changed situation are required by method mentioned
above to guarantee the accuracy and validity of the error
distribution regularity. The location of targeted sectors, the
busy degree of the predicted periods, and the difference of
the predicted time scale are considered as the main reasons
for the time prediction deviation. Two-dimensional proba-
bility distribution 𝑓(𝑇𝑘𝑃𝑗) is used to describe the variation
regularity of the prediction error characteristic over time.

(1) 𝑇𝑘 represents the time zone. The prediction error
results often depends on the busy levels in different periods of
the sector.Therefore, according to the air traffic flowmanage-
ment controllers’ habits, a day was divided into several time
zones for every 15 minutes for analyzing the typical predicted
time curve trend and error statistics. 𝑘 (𝑘 = 1, 2, . . . , 𝐾)
means time period of error statistics and𝐾 indicates the sum
of time periods.

(2)𝑃𝑗 is a feature quantity that describes the aircraft’s time
passing through the boundary fixes. In this paper, a bivariate
cumulative distribution function is proposed to describe the
predicted time of the aircraft passing through these fixes.
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Figure 4: Diagram of en route network.

3. Statistical Methods for Predicting
Error Distribution

According to the probability statistics management [13], the
event frequency function (empirical distribution) can be used
as the probability density in big sample analysis due to the
minor errors presence compared to the overall distribution
density. General solution can be summarized as follows.

(1) We take the 15min time window as the interval unit
for the typical operation day of an en route sector and the
aircraft’s time passing through the boundary fixes could be
predicted. Each unit is defined as 𝑇𝑘 (𝑘 = 1, 2, . . . , 𝐾).

(2) The prediction error sample in interval 𝑇𝑘 is divided
twice according to the uniform distribution of the number of
the prediction error and its size. The steps of the procedure
are described below.

(a) The first division is based on prediction error value of
interval𝑇𝑘. Take the number of intervals corresponding to the
prediction error value 𝑇𝑘 + 𝑖 (𝑖 = 0, 2, . . . , 59) as the abscissa
and the prediction error value as the ordinate to establish
coordinate system for the first division. The vertical axis is
separated in unit of 𝜆 (e.g., 2min).

(b) The second division is necessary to avoid that the
deviation trend of prediction error cannot be reflected due to
lack of maximum and minimum in the sample. The sample
reference interval is set as [𝑙 − 𝛿, 𝑙 + 𝛿], where 𝑙 indicates the
appropriate number of sample (e.g., 𝑙 = 8) and 𝛿 is fluctuation
range (it could be defined approximately 12% of 𝑙). The initial
divided intervals are merged from both sides of the predicted
value to satisfy the number of prediction error samples in
each interval as much as possible, and the boundary values of
each interval are recorded as well. If the number of samples
cannot meet the requirement after merging process, then a
smaller reference interval should replace the original one.

Following the steps mentioned above, total 𝑊 layer
partitions corresponding to the interval 𝑇𝑘 can be calculated
easily. 𝐿𝑘,𝑤 (𝑤 = 1, 2, . . . ,𝑊) is defined as each partition
and the sample size is 𝑅𝑘,𝑤 for partition 𝐿𝑘,𝑤. As results
showed in Figures 5 and 6, the historical data can be classified
from the horizontal and vertical angles, respectively. The
results reflect the predicted time error distribution of passing
through boundary fixes in different intervals.

Figure 5: Prediction error distribution of 𝐿1,1.

Figure 6: Prediction error distribution of 𝐿1,2.

(3) Calculate prediction errors V𝑟 (𝑟 = 1, 2, . . . , 𝑅𝑘,𝑤) of𝐿𝑘,𝑤 (𝑘 = 1, 2, . . . , 𝐾; 𝑤 = 1, 2, . . . ,𝑊) one by one and the
distribution is shown in Figure 7. Note that the abscissa is the
percentage of predicted error.

The number of samples in each prediction error interval
is calculated as 𝑚𝑠 (𝑠 = 1, 2, . . . , 𝑆) and ∑𝑆1𝑚𝑠 = 𝑅𝑘,𝑤. In
addition, 𝑓𝑠 = 𝑚𝑠/𝑅𝑘,𝑤, as 𝑅𝑘,𝑤 is sufficiently large and 𝑓𝑠
is regarded as discrete exact probability distribution of the
prediction error of layer partition 𝐿𝑘,𝑤 in interval 𝑇𝑘.
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Figure 7: Diagram of prediction error distribution.

(4) Finally, upon overall historical data, we can get exact
probability cumulative distribution functions of a total of
𝑀𝑊 prediction error, which is the table of error statistics.
Furthermore, efficiency test should be conducted to ensure
that the statistical method of the predicted error distribution
characteristic is valid. Assuming that the prediction data of
the same time interval in the first day after the historical
statistical sample is the predicted sample data, the proposed
statistical method is used to calculate the discrete probability
distribution predicted time error of the aircraft passing
through the boundary fixes and the distribution test is carried
out.

(5) According to the time that aircraft passing through
the boundary, we divided the aircraft into two categories;
one is time of aircraft entering the sector from boundary
fixes and the other is time about leaving the sector. Research
on probabilistic en route sector traffic demand prediction is
based on the error distribution rules of these two types time.

4. Probabilistic En Route Sector Traffic
Demand Prediction

4.1. Probabilistic Methods for En Route Sector Traffic Demand
Prediction. The probabilistic traffic demand prediction is a
derivative of the conventional deterministic traffic demand
prediction. After verifying the discrete probability distribu-
tion of the prediction error Δ𝑡𝑖 of the aircraft’s time passing
through the boundary fixes, the error statistics can be used
to analyze the possible distribution of the aircraft entering
and leaving the en route sector. Then the probable number
of aircraft in a certain period of one sector can be computed,
that is, the probabilistic results of the traffic demand value of
the sector. It reflects the implied risk factors in the prediction
of traffic demand and provides the prerequisites and basis for
the study of the sector congestion risk.

We assume that there are𝑁𝑘 aircraft passing through the
sector within targeted prediction interval [𝑡𝑘, 𝑡𝑘 + 14]; the
predicted time errorΔ𝑡𝑖𝑛𝑖 of these aircraft through the bound-
ary fixes going into the sector can be obtained according
to the aforementioned method (i.e., predicted time error of
aircraft entering the sector). 𝑝(Δ𝑡𝑖𝑛𝑖 ) and𝑃(Δ𝑡𝑖𝑛𝑖 ) represent the
corresponding probability density function and cumulative
probability function separately. Similarly, Δ𝑡𝑜𝑢𝑡𝑖 indicates the
predicted time error that aircraft leave the sector through

𝑃0 [0] = 1;
For (𝑖 = 1; 𝑖 ≤ 𝑀; 𝑖 + +)
{ 𝑃𝑖[0] = [1 − 𝑃(𝑖)] ⋅ 𝑃𝑖−1[0];𝑃𝑖[𝑖] = 𝑃(𝑖) ⋅ 𝑃𝑖−1[𝑖 − 1];
For (𝑘 = 1; 𝑘 ≤ (𝑖 − 1); 𝑘 + +)

{ 𝑃𝑖[𝑘] = 𝑃(𝑖) ⋅ 𝑃𝑖−1[𝑘 − 1] + [1 − 𝑃(𝑖)] ⋅ 𝑃𝑖−1[𝑘]; }}

Pseudocode 1

the boundary fixes and the corresponding probability den-
sity probability density function and cumulative probability
function are 𝑝(Δ𝑡𝑜𝑢𝑡𝑖 ) and 𝑃(Δ𝑡𝑜𝑢𝑡𝑖 ).

The predicted time for aircraft 𝑖 (1 ≤ 𝑖 ≤ 𝑁𝑘) entering
the sector could be calculated by equation 𝑡𝑖𝑛𝑖 = 𝑡𝑎𝑡𝑝𝑖 + Δ𝑡𝑖𝑛𝑖 ,
where 𝑡𝑎𝑡𝑝𝑖 is a constant which means boundary fix arrival
time. It is determined by take-off time, route length, and
flight performance. Therefore, the probability for aircraft 𝑓𝑖
entering and leaving the sector in interval [𝑡𝑘, 𝑡𝑘 + 14] is
calculated by the following equations:

𝑃 (𝑡𝑘 ≤ 𝑡𝑖𝑛𝑖 ≤ (𝑡𝑘 + 14))
= 𝑃 (𝑡𝑖𝑛𝑖 ≤ (𝑡𝑘 + 14)) − 𝑃 (𝑡𝑖𝑛𝑖 ≤ 𝑡𝑘)

= ∫
𝑡𝑘+14

𝑡𝑘

[𝑡𝑎𝑡𝑝𝑖 + 𝑝 (Δ𝑡𝑖𝑛𝑖 )] 𝑑Δ𝑡𝑖𝑛𝑖

(4)

𝑃 (𝑡𝑘 ≤ 𝑡𝑜𝑢𝑡𝑖 ≤ (𝑡𝑘 + 14))
= 𝑃 (𝑡𝑜𝑢𝑡𝑖 ≤ (𝑡𝑘 + 14)) − 𝑃 (𝑡𝑜𝑢𝑡𝑖 ≤ 𝑡𝑘)

= ∫
𝑡𝑘+14

𝑡𝑘

[𝑡𝑎𝑡𝑝𝑖 + 𝑝 (Δ𝑡𝑜𝑢𝑡𝑖 )] 𝑑Δ𝑡𝑜𝑢𝑡𝑖

(5)

Based on (4) and (5), the probability for aircraft𝑓𝑖 staying
in the sector in interval [𝑡𝑘, 𝑡𝑘 + 14] is shown in

𝑃 (𝑖) = 𝑃 (𝑡𝑘 ≤ 𝑡𝑖𝑛𝑖 ≤ (𝑡𝑘 + 14))
⋅ [1 − 𝑃 (𝑡𝑘 ≤ 𝑡𝑜𝑢𝑡𝑖 ≤ (𝑡𝑘 + 14))]

(6)

If the deterministic demand prediction value for aircraft
𝑓𝑖 existing in the sector in interval [𝑡𝑘, 𝑡𝑘 + 14] on someday
is 𝑀, then 𝑃𝑀[𝑚] (0 ≤ 𝑚 ≤ 𝑀) represents that there will
be 𝑚 aircraft in the sector of that interval probably. It can be
expressed in Pseudocode 1.

4.2. Efficiency Test. In order to verify the validity of the
proposed method further, we conduct efficiency test from
the perspective of cumulative probability on the basis of the
distribution test in the third section. We use 𝑃(𝑖) to indicate
the probability that aircraft 𝑓𝑖 is located within the sector
during the interval [𝑡𝑘, 𝑡𝑘 + 14] for full description of error
distribution regularity.

We assume that a day is divided into 𝑛 intervals, the
probable demand prediction value is 𝑥𝑖 in interval 𝑖, and
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the corresponding calculated actual demand value based on
historical data is 𝑦𝑖; then the correlation coefficient is denoted
as

𝜌 = ∑𝑛1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)
√∑𝑛1 (𝑥𝑖 − 𝑥)2∑𝑛1 (𝑦𝑖 − 𝑦)2 (7)

where 𝑥 and 𝑦 denote the mean of 𝑥𝑖 and 𝑦𝑖, respectively;
therefore, 𝑥 = ∑𝑛1 𝑥𝑖/𝑛 and 𝑦 = ∑𝑛1 𝑦𝑖/𝑛. The larger the
correlation coefficient 𝜌 is, the better the prediction value
fluctuation simulation of the day is. In addition, it is of
great practical value and the prediction error laws are equally
effective for the same interval of another day.

5. Case Study

5.1. Numerical Examples. In this section, we carried out
a case study based on operation data from May 1, 2014,
00:00:00, to May 24, 2014, 23:59:59, of the sectors AR01-
AR08 in central and southern China. A total of 19624 time
samples of passing through these sectors’ boundary fixes
from every 07:00 (a relative free level) to 11:59 (a relative
busy level) were obtained as historical sample for statistical
analysis. Central Limit Theorem (CLT) establishes that, in
most situations, when independent random variables are
added, their properly normalized sum tends toward a normal
distribution even if the original variables themselves are not
normally distributed. When the sample size is equal to or
greater than 30, and the variables are approximately normally
distributed [15]. We can assume that the sample space is
subject to the normal distribution; the calculation results are
shown in Tables 1 and 2 (for details of analysis from 07:00-
07:14 in sectors AR01-AR08 see Supplemental Material [S3],
which also applied to the results of the rest 19 intervals).

We use the Quantile-Quantile plot (Q-Q plot) of Normal
Probability Paper Test to test actual error sample distribution
in this paper. It relies on the relationship between the
quantile of the sample data and the quantile of the specified
distribution to verify whether the data obey the normal
distribution. If the relationship curve is a straight line, then
the data obey the normal distribution, and otherwise it is not.
A total of 320 hypothesis tests were performed on the above
samples, and the results were found to be consistent with
the normal distribution hypothesis. Due to space limitations,
only 16 of the AR01-AR08 sectors test results for a 15-minute
interval were selected and shown in Figure 8 (for details of
this analysis see Supplemental Material [S2]).

5.2. Results Analysis. Probability distributions of every typ-
ical operation day from 07:00 to 11:59 of the sectors AR01-
AR08 in central and southern China can be computed
according to the prediction error distribution characteristics,
probabilistic en route sector traffic demand prediction, and
time predicted error parameter. Taking the predicted results
in interval 07: 00-07: 14 from May 1, 2014, to May 24, 2014,
of sector AR01 as an example, according to the maximum
number of aircraft in sector AR01 which is denoted as𝑀, the
probability of number 𝑚 aircraft occurring in the sector is
shown in Table 3 (for details of this analysis see Supplemental
Material [S3]).

As is shown in Table 3, the abscissa 𝑀 represents the
number of aircraft to be presented of the same interval
in the future, which is demand predicted results that used
deterministic method referred in Section 4.1. The ordinate𝑚
represents the possible number of aircraft and the values in
the table mean the corresponding probability of 𝑚 aircraft
present in sector AR01 for 𝑀 aircraft has been predicted in
interval 07: 00-07: 14 of the same sector. Similar to Table 2, a
total of 160 en route sector traffic demand and its probability
distribution tables can be obtained. However, only 8 test
results in interval 07: 00-07: 14 of sectors AR01-AR08 were
selected due to space limitations, as shown in Figure 9 (for
details of this analysis see Supplemental Material [S3]).

We calculated that the average flight time is 12 minutes
of the central and southern regions based on the sample.
According to the results, we enlarge each interval by increas-
ing 12 minutes both forward and backward from 07: 00
to 11: 59. Then the corresponding traffic demand and its
probability of each sector onMay 25, 2014, could be obtained.
The maximum predicted traffic demand is picked as the
final values shown in Table 4 (for details of this analysis see
Supplemental Material [S4]).

Correlation test results of the above predicted results
and the actual ones are shown in Table 5 (for details of this
analysis see Supplemental Material [S4]). It can be found that
the correlation coefficient is more than 70% in busy period
(such as 09: 00-11: 59) or sectors with large traffic flow (such
as AR01-AR05), the highest or even 99%, which proved that
the statistic law is quite effective. In contrast, the correlation
coefficient of the idle sector or the smaller flow is not as ideal
as the former one because of the small sample size, but it is
acceptable overall.

Based on the predicted results above, we take the AR05
sector (the capacity is 15 per minute) as an example; both
the deterministic and probabilistic traffic demand predicted
results and actual value for each interval of period 07: 00-
11: 59 are shown in Figure 10 (for details of this analysis see
Supplemental Material [S4]). We also found the following.

(1) Because the deterministic prediction approach is
limited by the prediction scale, the result is more accurate
when the scale is small.The probabilistic prediction approach
is more accurate in the peak period when the sample size is
larger than normal.

(2) In the period 08: 45-08: 59, the probabilistic demand
prediction results reflected that the traffic demand exceeded
volume accurately, which would make the controllers predict
the sector congestion easier. From 09:15 to 09: 29, the
probabilistic results showed that demand did not exceed
the volume, thus avoiding the false alarm caused by the
deterministic results.

In general, the accuracy rate of probabilistic traffic
demand prediction is 80%, which is 23.1% higher than the
accuracy rate of deterministic traffic demand prediction.

6. Conclusions

Since most mature probabilistic traffic demand methods
cannot be applied to data of current air traffic management
system in China, in this paper, an approach for predicting
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Table 1: Mean 𝜇 and variance 𝜎 of aircraft’s predicted time error Δ𝑡𝑖𝑛𝑖 of entering sector AR01-AR08 (min).

AR01 AR02 AR03 AR04 AR05 AR06 AR07 AR08

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎
07:00
-07:14

1.7 1.9 8.1 12.4 7.6 9.7 -70.7 112.2 6.3 18.4 6.4 1.1 6.2 0 3.3 7.5

07:15
-07:29

0.5 1.5 2.5 7.6 3.1 9.8 -23.0 70.7 4.7 7.5 5.6 0 1.5 10.3 4.2 0.9

07:30
-07:44

0.7 0.4 4.9 5.7 2.4 8.2 -13.4 24.0 8.4 17.7 9.5 3.5 2.4 10.9 5.6 3.6

07:45
-07:59

0.7 0.5 -0.1 11.4 5.6 10.7 -29.7 28.4 2.2 23.8 7.3 2.9 1.3 4.7 3.6 4.4

08:00
-08:14

0.6 1.3 4.7 5.2 6.0 10.2 -9.1 43.5 -2.1 24.2 0.3 6.3 2.3 9.8 -5.8 5.9

08:15
-08:29

1.8 1.5 0.7 10.4 3.0 9.8 5.6 13.1 2.6 19.2 -4.9 7.8 6.1 6.6 2.6 6.6

08:30
-08:44

2.2 1.8 8.5 18.3 3.2 9.4 -1.5 18.3 5.6 15.9 3.1 5.9 9.5 8.3 -0.4 5.5

08:45
-08:59

2.9 3.7 2.7 13.4 6.6 9.8 -6.1 25.9 2.8 20.9 4.0 4.7 3.8 11.6 -0.6 6.7

09:00
-09:14

6.8 4.3 3.2 10.1 7.8 8.5 0.6 15.4 -0.2 27.9 1.9 8.6 6.7 10.7 2.8 1.9

09:15
-09:29

4.4 4.9 6.6 9.1 6.7 8.7 3.4 17.0 3.6 15.5 3.8 1.8 8.0 11.6 1.0 1.4

09:30
-09:44

10.4 7.6 6.7 7.2 6.1 8.9 2.6 13.1 5.7 13.0 8.4 3.8 2.8 13.9 3.1 2.3

09:45
-09:59

3.7 5.7 4.5 9.0 4.3 8.6 -4.5 15.9 1.4 16.5 6.9 3.9 1.2 13.0 7.0 4.4

10:00
-10:14

1.3 5.9 1.6 9.7 4.63 8.3 1.6 12.9 5.3 15.7 7.5 4.7 3.3 13.4 5.8 3.7

10:15
-10:29

1.60 0.97 1.49 8.62 6.94 8.65 5.8 29.6 3.39 10.57 7.46 1.83 3.22 9.48 0.26 1.83

10:30
-10:44

7.7 7.7 1.5 11.1 4.3 6.9 2.7 9.3 4.7 24.8 -1.1 6.2 1.7 8.6 0.3 5.6

10:45
-10:59

4.2 4.5 0.7 9.9 3.5 7.9 1.1 12.4 2.9 11.5 2.1 4.4 4.2 9.4 -2.8 4.2

11:00
-11:14

1.88 2.56 -0.2 8.57 8.67 8.27 8.5 26.1 4.99 13.00 0.21 4.6 8.58 11.3 3.4 2.6

11:15
-11:29

3.1 3.0 1.0 9.3 4.6 8.3 -4.2 20.8 5.2 13.6 5.9 2.45 -2.99 18.09 6.59 7.16

11:30
-11:44

3.7 4.8 20.4 8.7 5.9 8.8 5.4 13.3 5.3 13.6 6.1 5.3 5.4 5.4 4.9 6.1

11:45
-11:59

2.0 1.4 2.2 10.0 4.9 8.4 5.7 20.5 4.8 13.4 5.4 5.8 0.7 7.6 -1.2 9.9

the time of flying over several sector boundary fixes and
probabilistic en route sector traffic demand was proposed
to analyze time predicted error distribution characteristics
and influencing factors. Furthermore, the traffic demand

probability distribution and the change regularities in a
certain period of the sectors are obtained based on the actual
operation data. In this way, the accuracy of probabilistic
demand prediction is estimated to be 23.1% higher than that
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Table 2: Mean 𝜇 and variance 𝜎 of aircraft’s predicted time error Δ𝑡𝑜𝑢𝑡𝑖 of leaving sector AR01-AR08 (min).

AR01 AR02 AR03 AR04 AR05 AR06 AR07 AR08

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎
07:00
-07:14

3.3 2.0 10.3 14.1 8.3 9.9 -70.8 112.6 6.5 18.4 8.6 1.6 9.9 0 6.2 1.1

07:15
-07:29

1.7 2.0 3.8 8.6 1.1 11.5 -23.0 70.7 5.5 7.9 6.8 0 1.6 10.3 6.4 1.4

07:30
-07:44

1.6 1.1 7.4 5.7 0.1 10.2 -13.3 24.1 7.30 14.3 10.9 3.5 2.4 10.9 8.2 3.5

07:45
-07:59

1.2 1.4 1.5 11.9 4.5 12.5 -29.5 28.7 1.2 21.2 8.8 2.6 2.5 4.9 5.1 5.4

08:00
-08:14

1.4 1.8 8.3 6.6 5.8 12.3 -9.1 43.6 -1.3 24.8 0.5 6.7 2.6 9.7 -5.7 5.9

08:15
-08:29

3.6 2.5 2.3 11.4 2.4 11.1 6.6 12.9 3.1 19.1 -4.8 8.0 6.9 6.8 2.7 6.6

08:30
-08:44

2.8 2.2 8.8 18.5 2.2 10.7 -1.2 18.5 5.8 15.8 3.1 5.9 9.7 8.4 -0.1 5.5

08:45
-08:59

3.77 3.84 3.17 13.7 5.66 11.2 -5.9 25.9 2.8 20.9 5.0 4.9 4.2 11.2 1.3 7.4

09:00
-09:14

7.2 4.4 4.2 10.4 7.3 9.6 0.9 15.5 -0.2 28.0 3.4 9.2 6.8 10.7 4.1 1.9

09:15
-09:29

4.9 4.7 7.7 9.7 5.9 9.7 3.5 16.9 3.7 15.7 5.3 2.0 7.9 11.4 2.2 1.6

09:30
-09:44

10.7 7.4 9.0 8.9 5.0 10.3 3.0 13.2 6.5 13.7 9.2 3.2 2.3 14.2 4.7 2.6

09:45
-09:59

4.2 5.4 5.6 10.0 2.6 10.2 -4.4 15.9 1.9 17.0 7.7 3.9 1.4 12.9 7.9 3.6

10:00
-10:14

1.9 6.1 1.7 9.8 3.9 9.2 1.8 12.9 4.9 13.4 10.7 8.2 3.0 12.1 8.2 4.3

10:15
-10:29

2.1 1.2 1.7 8.8 5.9 9.6 6.2 29.6 3.5 10.7 8.7 1.9 3.5 9.4 0.8 1.9

10:30
-10:44

8.2 7.3 1.9 11.5 4.9 8.2 2.8 9.4 4.9 24.9 -0.7 6.6 1.8 8.8 1.1 6.1

10:45
-10:59

5.4 4.6 1.0 10.0 2.5 9.7 1.4 12.4 3.1 11.7 2.9 4.9 4.3 9.7 -1.7 5.1

11:00
-11:14

2.8 3.0 0.5 9.4 6.1 9.2 8.8 26.1 5.3 13.3 1.3 5.2 8.2 11.9 4.9 2.4

11:15
-11:29

4.1 3.0 1.7 9.9 4.1 9.1 -4.0 20.9 5.6 13.9 7.3 2.5 -3.2 18.2 7.1 6.5

11:30
-11:44

4.4 4.5 21.1 8.7 5.7 9.3 5.7 13.2 5.6 13.9 6.1 4.9 5.8 5.54 5.8 5.9

11:45
-11:59

2.9 2.1 2.8 10.4 4.5 9.7 6.0 20.7 5.0 13.6 5.5 5.3 1.9 8.1 -0.8 10.1

of the traditional deterministic traffic demand prediction,
which shows that this method can provide more proper and
accurate analysis of traffic demand prediction for air traffic
flow management.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Table 3: Traffic demand and probability distribution in interval 07: 00-07: 14 of sector AR01.

𝑚 𝑀
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0.0 1.00 0.98 0.79 0.65 0.54 0.49 0.46 0.37 0.30 0.25 0.23 0.16 0.13 0.09 0.08 0.06
1.0 — 0.02 0.21 0.31 0.37 0.38 0.39 0.40 0.40 0.38 0.37 0.33 0.30 0.25 0.22 0.19
2.0 — — 0.00 0.04 0.09 0.11 0.13 0.18 0.22 0.25 0.26 0.29 0.30 0.30 0.29 0.28
3.0 — — — 0.00 0.01 0.01 0.02 0.04 0.07 0.10 0.10 0.15 0.18 0.21 0.23 0.24
4.0 — — — — 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.12 0.14
5.0 — — — — — 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06
6.0 — — — — — — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
7.0 — — — — — — — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8.0 — — — — — — — — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.0 — — — — — — — — — 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10.0 — — — — — — — — — — 0.00 0.00 0.00 0.00 0.00 0.00
11.0 — — — — — — — — — — — 0.00 0.00 0.00 0.00 0.00
12.0 — — — — — — — — — — — — 0.00 0.00 0.00 0.00
13.0 — — — — — — — — — — — — — 0.00 0.00 0.00
14.0 — — — — — — — — — — — — — — 0.00 0.00
15.0 — — — — — — — — — — — — — — — 0.00

Table 4: Probabilistic traffic demand prediction results in interval 07: 00-11:59 on May 25, 2014, of Sectors AR01-AR08 (number and
probability abbreviated as N and P separately).

Interval
Sector

AR01 AR02 AR03 AR04 AR05 AR06 AR07 AR08
N P N P N P N P N P N P N P N P

07:00-07:14 2 30% 0 28% 2 37% 1 33% 5 27% 1 19% 0 27% 1 18%
07:15-07:29 2 45% 1 25% 5 14% 3 48% 3 34% 1 27% 1 31% 2 19%
07:30-07:44 0 47% 2 33% 6 22% 0 34% 8 15% 1 28% 2 25% 1 23%
07:45-07:59 2 35% 3 17% 8 19% 4 29% 13 23% 2 31% 1 31% 0 31%
08:00-08:14 1 15% 3 21% 10 28% 2 25% 13 11% 0 25% 2 21% 1 28%
08:15-08:29 0 27% 4 39% 11 40% 5 37% 8 38% 2 37% 1 26% 3 31%
08:30-08:44 0 25% 6 14% 13 17% 7 56% 12 23% 3 22% 2 29% 0 17%
08:45-08:59 2 31% 7 21% 14 31% 12 28% 20 19% 1 27% 3 31% 2 27%
09:00-09:14 2 47% 6 35% 13 42% 10 35% 21 29% 1 38% 3 26% 2 30%
09:15-09:29 4 39% 8 41% 16 49% 8 24% 13 31% 2 23% 3 18% 1 23%
09:30-09:44 5 42% 9 11% 18 19% 8 26% 14 29% 1 13% 0 17% 1 32%
09:45-09:59 3 22% 9 26% 14 39% 3 29% 11 21% 1 29% 1 31% 0 16%
10:00-10:14 3 44% 11 30% 11 23% 6 34% 9 32% 1 34% 3 28% 1 40%
10:15-10:29 0 15% 7 18% 6 19% 8 26% 9 18% 0 37% 1 27% 2 19%
10:30-10:44 3 39% 10 42% 7 24% 4 21% 10 20% 1 29% 2 19% 1 23%
10:45-10:59 3 51% 9 47% 8 32% 1 15% 12 18% 2 31% 4 25% 0 38%
11:00-11:14 3 29% 10 28% 8 29% 4 23% 14 34% 1 27% 1 30% 4 18%
11:15-11:29 3 47% 11 18% 10 24% 3 34% 20 28% 2 34% 2 41% 2 32%
11:30-11:44 0 13% 8 31% 8 11% 6 19% 16 19% 1 23% 3 33% 2 27%
11:45-11:59 0 15% 11 23% 5 29% 6 38% 17 17% 1 21% 3 29% 1 13%

Table 5: Correlation test of traffic demand forecast of each sector in interval 07:00-11:59 on May 25, 2014.

Interval Sector
AR01 AR02 AR03 AR04 AR05 AR06 AR07 AR08

07:00-08:59 0.703146 0.916477 0.992406 0.984911 0.983829 0.667256 0.700649 0.695608
09:00-11:59 0.933251 0.982346 0.992271 0.989755 0.99632 0.87519 0.920918 0.915726
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Figure 8: Q-Q plots of normal test on aircraft’ arrival / departure time predicted error.
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Figure 9: Continued.
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Figure 9: Traffic demand and probability density function of each sector in interval 07:00-07:14.
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Figure 10: Comparison of the deterministic and probabilistic demand prediction results and comparison of the actual traffic flow value and
capacity (Sector AR05).
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